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Long non-coding RNAs (lncRNAs) emerge as critical regulators across a wide variety of
biological functions in living organisms. However, to date, no systematic characterization
of lncRNAs has been investigated in the ectoparasitic mite Varroa destructor, the
most severe biotic threat to honey bees worldwide. Here, we performed an initial
genome-wide identification of lncRNAs in V. destructor via high-throughput sequencing
technology and reported, for the first time, the transcriptomic landscape of lncRNAs
in the devastating parasite. By means of a lncRNA identification pipeline, 6,645 novel
lncRNA transcripts, encoded by 3,897 gene loci, were identified, including 2,066 sense
lncRNAs, 2,772 lincRNAs, and 1,807 lncNATs. Compared with protein-coding mRNAs,
V. destructor lncRNAs are shorter in terms of full length, as well as of the ORF length,
contain less exons, and express at lower level. GO term and KEGG pathway enrichment
analyses of the lncRNA target genes demonstrated that these predicted lncRNAs
may be potentially responsible for the regulatory functions of cellular and biological
progresses in the reproductive phase of V. destructor. To our knowledge, this is the first
catalog of lncRNA profile in the parasitiformes species, providing a valuable resource
for genetic and genomic studies. Understanding the characteristics and features of
lncRNAs in V. destructor would promote sustainable parasite control.
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INTRODUCTION

Colony losses of the western honey bee Apis mellifera in the Western world are a serious issue due
to the critical role of honey bees in the balance of the ecosystem, sustainable agriculture, and food
security (Neumann and Carreck, 2010; Potts et al., 2016; Steinhauer et al., 2018). There has been a
consensus that an emerging ectoparasitic mite, Varroa destructor, is the principal threatening factor
(Neumann and Carreck, 2010; Nazzi and Conte, 2016; Evans, 2019). V. destructor feasts on the fat
body (Ramsey et al., 2018, 2019) of honey bees, transmits viruses, and affects host immunity (Yang
and Cox-Foster, 2005; Rosenkranz et al., 2010; Di Prisco et al., 2016), severely interrupting the
social organization and demographic continuity in A. mellifera colonies. Without treatment against
this mite, infested A. mellifera colonies usually die within 6 months to 2 years (Kraus and Page,
1995; Le Conte et al., 2010). In the wake of the occurrence of V. destructor in New Zealand in 2000
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(Todd et al., 2007; Mondet et al., 2014) and in Hawaii in 2007
(Martin et al., 2012), this mite has been distributed globally except
for Australia and a few remote islands (Muli et al., 2018; Noël
et al., 2020; Traynor et al., 2020).

V. destructor lives entirely on its host and cannot survive
independently (Traynor et al., 2020) with two life cycles: the
phoretic (non-reproductive) phase on the body surface of adult
bees and the reproductive phase in the sealed brood cells with
immature bees (Martin, 1994). Reproduction of the parasite starts
from the oogenesis process, which occurs since approximately
6 h later after the invaded cell is capped and is crucial for
understanding the reproductive biology of the parasite (Garrido
et al., 2000; Häußermann et al., 2019). A great number of studies
have been performed on different life phases of this obligate bee
parasite, however, molecular studies are very limited as a result of
the lack of genomic information. Cornman et al. (2010) analyzed
V. destructor genome sequence for the first time, which largely
facilitated Mondet et al. (2018) to investigate a full life cycle
transcriptomic profiling in adult V. destructor. Nevertheless, the
emerging functional elements of non-coding RNAs (ncRNAs)
have yet to report with this parasitic mite.

Numerous genome-wide transcriptome has observed that
the majority of transcripts do not code for proteins, and
these transcripts are referred to as ncRNAs (Lee et al., 2012).
NcRNA is a generic term for all functional RNAs that are
transcribed from DNA but not translated into proteins, and
the widespread expression of ncRNAs in eukaryotic cells has
been demonstrated to be of importance in the processes of
development, disease resistance, etc. (Esteller, 2011). Long non-
coding RNAs (lncRNAs), most of which are located in the nucleus
of eukaryotes, are a cluster of ncRNAs with a length of more than
200 nt, with cap-structure and ploy (A)-tail but usually without
a long reading frame (Guttman et al., 2009). LncRNAs can be
classified into four groups based on their positional information
on genomes, i.e., sense lncRNAs, intergenic lncRNAs (lincRNAs),
intronic lncRNAs (ilncRNAs), and antisense lncRNAs (lncNATs)
(Harrow et al., 2012; Ma et al., 2013). As functional elements,
lncRNAs have been proved to exert their bioactivities by
regulating gene expression at the level of epigenetic inheritance,
transcription, and post transcription, as well as by affecting
protein localization and telomere replication (Furuno et al., 2006;
Mercer et al., 2009). Currently, however, studies of lncRNAs in
the field of honey bee science are still in its infancy.

The present a few studies have demonstrated that these
functional elements of lncRNAs participate in the regulation of
the physiological processes of honey bees, such as labor division,
ovary development, neural networks, pesticide metabolism, and
pathogen resistance (Kiya et al., 2008; Humann et al., 2013;
Jayakodi et al., 2015; Chen et al., 2017, 2019; Liu et al., 2019;
Fent et al., 2020). Guo et al. (2018a,b) screened the lncRNAs
in two honey bee fungi, Ascospheara apis and Nosema ceranae,
providing the first two lncRNA profiles in honey bee pathogenic
agents. In the present study, we deeply sequenced the ubiquitous
ectoparasite V. destructor on the Illumina platform during the
oogenesis stage. We identified 6,645 novel lncRNA transcripts
corresponding to 3,897 lncRNA genes in the detrimental mite.
The subcellular localization patterns of the lncRNAs were

predicted, most of which were located in nucleus. The structural
features and the subcellular localization of the lncRNAs identified
in this study showed consistent with their counterparts in the
mammals. In order to comprehensively investigate the main
biological properties and functions of the target genes of the
putative novel lncRNAs, we performed Gene Ontology (GO) and
pathway enrichment analyses. By comprehensively identifying
lncRNAs in the gravid V. destructor, we aimed to offer novel
insights into understanding the basic molecular biology of this
ubiquitous ectoparasitic mite of honey bees.

MATERIALS AND METHODS

Gravid Adult Female Varroa destructor
Mite Collection
V. destructor mites were collected from experimental A. mellifera
colonies untreated for half a year, which were located in
Yangzhou University of China. We employed the mites to
mimic phoretic phase before experimental infestation to obtain
similar physiological status (see details in Lin et al., 2018). Each
freshly capped worker cell was introduced with a mite, and
gravid adult mites were collected from sealed worker brood
with the tweezers and the paint brushes 2 days later after
infestation (Supplementary Figure 1). Three samples, each of
which contained 15 randomly gathered mites, were prepared for
RNA-seq (i.e., Vd-1, Vd-2, and Vd-3; Table 1). All the mites were
frozen in liquid nitrogen after bathing in the phosphate buffered
saline, pH 7.4 (Sigma, MO, United States), twice. The samples
were stored in −80◦C until RNA extraction.

Library Preparation for lncRNA
Sequencing
Total RNA was extracted using TRIzol reagent kit (Invitrogen,
CA, United States) according to the manufacturer’s protocol.
Purity and quantity of total RNA were measured using
NanoDropTM 2000 (Thermo Fisher Scientific, DE, United States).
RNA quality was assessed using the RNA Nano 6000 Assay
Kit of the Bioanalyzer 2100 system (Agilent Technologies,
CA, United States) and was checked on RNase free agarose
gel electrophoresis. For the sample preparation, 3 µg RNA
was used for each of the three V. destructor samples, and
NEBNext R© UltraTM RNA Library Prep Kit for Illumina R© (NEB,
MA, United States) was used to generate sequencing libraries.
After removing rRNAs, the enriched mRNAs and ncRNAs
were fragmented into short fragments by using fragmentation
buffer and reverse transcribed into cDNA with random primers.
Second-strand cDNA were subsequently synthesized by using
DNA polymerase I, RNase H, dNTP, and buffer. The cDNA
fragments were then purified with QiaQuick PCR extraction
kit (Qiagen, Venlo, The Netherlands), end repaired, poly(A)
added, and ligated to Illumina sequencing adapters. Uracil-
N-Glycosylase was used to digest the second-strand cDNA
and the digested products were size selected by agarose gel
electrophoresis, PCR amplified, and sequenced on an Illumina
HiSeqTM 2500 platform at the Novogene Bioinformatics Institute
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TABLE 1 | Throughput and quality of RNA-seq of the three libraries.

Sample name Total nucleotides (G) Raw reads Clean reads Q20 (%) Q30 (%) GC content (%)

Vd-1 13.3 88,932,536 88,072,510 97.3 92.2 43.6

Vd-2 12.6 84,224,988 83,475,384 97.3 92.3 43.7

Vd-3 16.8 111,930,228 108,997,328 97.7 93.5 43.0

FIGURE 1 | Prediction of novel lncRNA of V. destructor. (A) Venn analysis of the putative novel lncRNAs by using CPC, CNCI, and PFAM. (B) The source and
distribution percentage of the novel lncRNAs based on the intersection of Venn diagram.

(Beijing, China). The raw sequencing data were uploaded
to the National Centre for Biotechnology Information (SRA
accession: SRP258850).

LncRNA Identification and Analyses
Clean reads were obtained by removing reads containing adapter,
or ploy-N and low-quality reads from the raw data. Meanwhile,
we calculated the Q20, Q30, and GC content. The paired-
end clean reads were mapped to the reference genome of
V. destructor1 (Techer et al., 2019) using HISAT2 (Kim et al.,
2015). We then reconstruct the transcripts with StringTie and
HISAT2. To identify new transcripts, all the reconstructed
transcripts were aligned to the reference genome and were
divided into 12 categories by employing Cuffcompare, and
transcripts with one of the five class codes “I," “j,” “o,” “u,”
and “x” were potentially recognized as novel ones. The putative
novel transcripts were further eliminated by removing the
ones with length ≤ 200 nt or with exon number <2. Coding
Potential Calculator (CPC), Coding-Non-Coding Index (CNCI),
and Pfam-scan (PFAM) were jointly used to assess the protein-
coding potential of the selected novel transcript candidates and

1https://www.ncbi.nlm.nih.gov/assembly/GCF_002443255.1

the intersection was considered as the candidate set of lncRNAs.
We used StringTie again to quantify transcripts abundances
by calculating the FPKM (expected fragments per kilobase of
transcript per million fragments mapped) values. All the putative
novel lncRNAs were computed their subcellular localization by
means of lncLocator, an online software for lncRNA location
prediction based on a stacked ensemble classifier (Cao et al.,
2018). LncLocator can predict five subcellular localizations of
lncRNAs, including nucleus, cytoplasm (part of cytoplasm except
for cytosol, ribosome, and exosome), ribosome, cytosol, and
exosome. Then, we searched coding genes 100 kb upstream and
downstream of the predicted novel lncRNAs as cis target genes
(Guil and Esteller, 2012; Feng et al., 2019), which were subjected
to enrichment analysis of GO functions and kyoto encyclopedia
of genes and genomes (KEGG) pathways.

The statistical analyses (Student’s t-test) of the characteristic
differences between lncRNAs and mRNAs were performed with
SPSS Statistics 25.

RT-PCR Validation
Removal of gDNA and synthesis of cDNA was performed
with RNA products following the manufacturer’s instructions of
ReverTra Ace qPCR RT Master Mix (Tiangen, Beijing, China). To
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FIGURE 2 | Genomic features of the predicted lncRNAs. Exon number distribution (A), length distribution (B), ORF length distribution (C), and expression level
indicated by log10 (FPKM + 1) (D) of 32,415 coding transcripts (mRNAs) and 6,645 novel lncRNAs were plotted.

validate the putative lncRNAs in V. destructor mites, 16 lncRNAs
were randomly selected to determine with PCR amplification,
which was carried out with the obtained cDNA in a 20 µL
reaction volume mixture (2 × Taq PCR StarMix; GenStar, Beijing,
China) on an Eppendorf cycler. PCR profile consists of a pre-
denaturation at 94◦C for 5 min; followed by 30 cycles including
94◦C for 50 s, 55◦C for 30 s, and 72◦C for 1 min; and a final
elongation step at 72◦C for 10 min (Guo et al., 2018a). The tested
lncRNAs with their forward and reverse primers were presented
in Supplementary Table 1. PCR products were electrophoresed
in 2.5% Tris acetate-EDTA-agarose gel containing 0.01% Gelview
(BioTeke, Beijing, China) and visualized under ultraviolet light
(Peiqing, Shanghai, China).

RESULTS

Total RNA of the three V. destructor samples (Vd-1, Vd-2, and
Vd-3) were isolated and sequenced. Overall, 42.8 G sequencing
data were generated, corresponding to 285.1 million raw reads
and 280.5 million quality filtered (clean) reads were generated
from the three cDNA libraries (Table 1). G20, G30, and GC
content were also shown in Table 1 with the mean values of
97.4, 92.7, and 43.5%. For the three V. destructor samples, 93.2,
93.6, and 90.0% obtained reads were mapped to the reference
genome sequence, and the mapped regions of each sample on
the genome were shown in Supplementary Figure 2. Then 6,645
putative novel non-coding transcripts were predicted using CPC,
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FIGURE 3 | Subcellular localization prediction of the sense lncRNAs (A), the intergenic lncRNAs (lincRNAs, B), and the antisense lncRNAs (lncNATs, C). An online
prediction program, lncLocator, which can predict five subcellular localizations of lncRNAs, was used for this analysis. The term “cytoplasm” here includes the part of
cytoplasm except for cytosol, ribosome, and exosome.

CNCI, and PFAM (Figure 1A and Supplementary Table 2),
of which 2,066 (31.1%) were sense lncRNAs, 2,772 (41.7%)
were lincRNAs, and 1,807 (27.2%) were lncNATs (Figure 1B).
IlncRNAs were not observed in this mite. In addition, 32,415
protein coding transcripts were obtained, with 32,331 mapped
to the reference genome, and the remaining 84 ones were not
annotated (Supplementary Table 2).

Most lncRNAs contained two exons (55.8%), followed by
three (23.8%), four (9.6%), five (4.2%), six (2.2%), and seven
(1.1%) (Figure 2A and Supplementary Table 2). The ratio of
lncRNAs is less than one when the number of exons is greater
than seven, and they contained at most 27 exons (Figure 2A
and Supplementary Table 2). This was significantly different
from the coding transcripts (Student’s t-test, p < 0.001), which
peaked at six exons (9.5%) and were up to 68 exons. Meanwhile,
the ratio of mRNAs with three to eight exons were respectively
more than seven (Figure 2A and Supplementary Table 2).
Most of both lncRNAs (55.4%) and mRNAs (65.5%) ranged
from 1,000 to 5,000 nt in length. But then, 33.2% lncRNAs
were less than 1,000 nt and 24.7% mRNAs were between
5,001 nt and 10,000 nt. For the long sequence (>10,000 nt),
2.1% lncRNAs and 4.7% mRNAs were occupied. As a result,
lncRNAs averaged 2,435 nt in length, which was significantly
shorter than protein-coding genes (4,187 nt; Student’s t-test,
p < 0.001; Figure 2B and Supplementary Table 2). Regarding
the length of open reading frames (ORFs) in lncRNAs and
mRNAs, we got a similar trend with above. Most of the
ORFs of both lncRNAs (58.5%) and mRNAs (51.4%) were in
the middle range 100–500 nt in length, followed by 39.9%
lncRNAs ≤100 nt and 31.9% mRNAs ranging from 501 to
1,000 nt. Consistently, 0.2% lncRNAs and 16.3% mRNAs
were respectively greater than 1,000 nt, and the mean length
of ORFs in lncRNAs was significantly shorter than that of
mRNAs (132 vs. 649 nt; Student’s t-test, p < 0.001; Figure 2C
and Supplementary Table 2). Further, the expression level
of lncRNAs showed significantly lower compared to mRNAs

(Figure 2D). Additionally, 16 lncRNAs were randomly chosen
to be validated with RT-PCR with 15 (93.8%) successful
amplification (Supplementary Figure 3). Sanger sequencing
confirmed most of the validated lncRNAs (Supplementary
Table 5) although two of the 15 failed due to the low expression,
which were reflected by the dimmed electrophoretic band in
Supplementary Figure 3 (band 2 and 4).

As shown in Figure 3, most of the novel lncRNAs were
predicted to be localized in the nucleus, followed by in cytoplasm,
irrespective of their different sources. In total, only 31, 5, and
5 lncRNAs were predicted in exosome, cytosol, and ribosome,
respectively. We then obtained 9,500 target genes of novel
lncRNAs in cis regulation. GO term analysis indicated the target
genes were in the ontology class of cellular component, molecular
function, and biological process (Figure 4A and Supplementary
Table 3). The top five enriched GO terms with extremely small
padj values participated in protein binding, catalytic activity,
and transferase activity, indicating that lncRNAs may play roles
in the important process of enzyme-related catalytic activities
in V. destructor (Figure 4A and Supplementary Table 3). The
KEGG pathway enrichment denoted that the target genes mostly
participated in 104 pathways (Supplementary Table 4). The
top 20 enriched pathways, which was divided into five classes
based on their major functions, i.e., organismal systems, cellular
processes, metabolism, environmental information processing
and genetic information processing, were displayed in Figure 4B.
The top five enriched pathways were endocytosis, RNA
transport, phagosome, ubiquitin mediated proteolysis, and
protein processing in endoplasmic reticulum (Supplementary
Table 4), involving the critical processes of endocytosis, and
protein processing and degradation, which belong to the cellular
processes and the genetic information processing (Figure 4B).
Notably, 115 genes are enriched in the RNA transport, which is
a fundamental process for gene expression, signifying lncRNAs
may play key parts in the transcriptional regulation during the
oogenesis of V. destructor.
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FIGURE 4 | Gene ontology (GO) categorization (A) and kyoto encyclopedia of genes and genomes (KEGG) pathway (B) analyses for the target genes of the
predicted lncRNAs. Top 20 enriched terms were respectively shown. (A) Genes were assigned to three GO categories: cellular component, biological process, and
molecular function. (B) The pathway terms were classified as the main functions. The color of each bar corresponded to the right specific color of the function form,
which referred to the KEGG pathway map (https://www.genome.jp/kegg/kegg2.html).
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DISCUSSION

LncRNAs have emerged as critical participators in a variety of
cellular activities, ranging from simple housekeeping to complex
regulatory functions. However, till now, the studies of lncRNAs
are mainly conducted in the field of humans, mammal, and crops.
In contrast, the research on invertebrates is still at the early stage.
Here, we identified the sequences and expression features of the
lncRNAs via high-throughput sequencing technology, for the first
time, in a devastating ectoparasite, V. destructor, of the chief
pollinator, honey bee. We obtained 6,645 putative novel lncRNAs
from 3,897 gene loci in the V. destructor, including 2,066 sense
lncRNAs, 2,772 lincRNAs, and 1,807 lncNATs. The characteristics
of the lncRNAs and the comparison with mRNAs were also
reported. To verify the reliability of the RNA-seq results and the
predicted lncRNAs, 16 non-coding transcripts were randomly
selected to do RT-PCR validation, and 93.8% lncRNAs amplified
signal bands denoting a reliable output of lncRNAs identified in
this study. To the best of our knowledge, lncRNA studies have not
performed in the parasitiformes species before.

V. destructor reproduction is limited to a short window when
the immature honey bee host is concealed in wax cells. Mated
female mites target to meal on the larva host 5 h after the
invaded cell was capped (Ifantidis, 1988; Donzé and Guerin,
1994) and initiates oogenesis about another hour later (Garrido
et al., 2000). The mite then lays the first male egg approximately
70 h after the cell capping (Donzé and Guerin, 1994; Martin,
1994). Considering these timing, we collected the mites 48 h
later after the mite was introduced into the freshly capped cells.
The artificial infestation has been established to be a suitable
method for V. destructor research (Dietemann et al., 2013; Lin
et al., 2018; Häußermann et al., 2019), and mites parasitized in
the capped brood cells are less variable in physiology and fitness
than on the adult bee bodies (Milani, 1995). The mites collected
were further confirmed gravid with dilated post-abdomen, from
which we can even see the eggs inside under microscope
(Supplementary Figure 1B).

Just as lncRNA screening in other species, lincRNAs, the
most extensively studied category of lncRNAs, usually account
for the largest proportion (Sun et al., 2013; Wu et al., 2016;
Zhan et al., 2016; Guo et al., 2018a), although some studies
show otherwise (Guo et al., 2018b). We did not detect any
ilncRNAs, which were regarded as the lowest conservative class
of lncRNAs (Wang et al., 2016), in V. destructor. Intriguingly,
this is also the case of N. ceranae, another pathogenic agent of
honey bees (Guo et al., 2018b). Most of the V. destructor lncRNAs
contained two exons with the average of 3.0 exons, significantly
less than mRNAs (Figure 2 and Supplementary Table 2), which
was also in line with the related studies of lncRNAs on other
invertebrate counterparts, even mammalian and plant species
(Trapnell et al., 2010; Zhang et al., 2014; Wu et al., 2016; Zhan
et al., 2016; Guo et al., 2018a,b; Liu et al., 2019). Besides, the
shorter length of the putative lncRNAs and the ORFs compared
to mRNA also shared similar features with other well-studied
species (Trapnell et al., 2010; Zhang et al., 2014; Wang et al.,
2016; Wu et al., 2016; Zhan et al., 2016; Guo et al., 2018a,b;
Liu et al., 2019). Although lncRNAs always performed lower

expression level than the protein-coding genes (this study; Guo
et al., 2018a,b; Chen et al., 2019; Liu et al., 2019), their role in the
functional activities of organisms has been widely proved to be of
significance (Furuno et al., 2006; Mercer et al., 2009; Zhang et al.,
2014; Wu et al., 2016; Chen et al., 2019; Liu et al., 2019).

LncRNAs can operate in cis to regulate the transcriptional
expression of neighboring genes on the same allele (Robinson
et al., 2020). The upstream lncRNAs with intersection of
promoter or other cis elements may regulate gene expression
at the level of transcription or post-transcription, and lncRNAs
in the downstream or 3’UTR region may have other regulatory
functions. LncRNAs in less than 100 kb up/down stream of a
gene may serve as cis regulatory factors (Guil and Esteller, 2012;
Feng et al., 2019). The cis target genes were engaged in various
molecular functions and biological processes. GO and KEGG
analyses revealed the target genes were mainly included in protein
binding, enzyme activities, metabolism, signaling molecules and
interaction, and so forth (Figure 4 and Supplementary Tables 3,
4). Intriguingly, 25 genes were enriched in a pathway of dorso-
ventral axis formation (Figure 4B and Supplementary Table 4),
suggesting that they may play a crucial role in the development
and regeneration during the process of oogenesis of the mite.

Similar to proteins, lncRNAs are of importance to be localized
in specific cellular compartments, which provides insights for
understanding their complex biological functions (Chen, 2016).
We predicted the subcellular localizations of the identified sense
lncRNAs, lincRNAs, and lncNATs, of which 95.6, 91.7, and
92.4% were respectively accumulated in nucleus (Figure 3).
These lncRNAs have been proposed to play strong roles
in nuclear architecture and gene expression regulation. They
are associated with chromatin-modifying complexes, directly
influence transcription, act as precursors for small RNAs,
participate in stem cell pluripotency and differentiation, and so
forth (Chen and Carmichael, 2010). Cytoplasmic lncRNAs, the
second most popularly located lncRNAs, have been evidenced to
impact gene expression in a variety of ways, such as interfering
with protein post-translational modifications with a result of
aberrant signal transduction (Lin et al., 2016), acting as decoys
for miRNAs and proteins (Cesana et al., 2011; Lee et al.,
2016) and affecting mRNA translation in the cytoplasm (Gong
and Maquat, 2011). Hence, the lncRNAs in distinct subcellular
compartments are of great interest to decipher their diverse
functional significance.

CONCLUSION

V. destructor presents tremendous threat to apiculture
worldwide, and the in-depth molecular studies on the parasite
will facilitate to control this unpopular pest. We reported the
lncRNA profile of V. destructor by genome-wide RNA-seq in this
study, and the genomic and structural features of the lncRNAs
showed consistent with their counterparts in other species.
Evidence is becoming increasingly clear that the function of
lncRNAs is associated with their unique subcellular localization
(Chen, 2016), and most of the lncRNAs detected in V. destructor
were accumulated in nucleus. The target genes of lncRNAs
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were inferred to participate in diverse regulatory functions via
cis regulation by GO term and KEGG pathway enrichment
analyses. Our data provide genetic resources for exploration of
the functional roles of lncRNAs involved in the ectoparasite
V. destructor. Further studies would be of interest and value to
characterize the expression profile of lncRNAs in the different life
stages of the ubiquitous mite.
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