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Abstract

The antigenic repertoire presented by MHC molecules is generated by the antigen processing and presentation (APP)
pathway. We analyzed the evolutionary history of 45 genes involved in APP at the inter- and intra-species level. Results
showed that 11 genes evolved adaptively in mammals. Several positively selected sites involve positions of fundamental
importance to the protein function (e.g. the TAP1 peptide-binding domains, the sugar binding interface of langerin, and the
CD1D trafficking signal region). In CYBB, all selected sites cluster in two loops protruding into the endosomal lumen; analysis
of missense mutations responsible for chronic granulomatous disease (CGD) showed the action of different selective forces
on the very same gene region, as most CGD substitutions involve aminoacid positions that are conserved in all mammals. As
for ERAP2, different computational methods indicated that positive selection has driven the recurrent appearance of
protein-destabilizing variants during mammalian evolution. Application of a population-genetics phylogenetics approach
showed that purifying selection represented a major force acting on some APP components (e.g. immunoproteasome
subunits and chaperones) and allowed identification of positive selection events in the human lineage. We also
investigated the evolutionary history of APP genes in human populations by developing a new approach that uses several
different tests to identify the selection target, and that integrates low-coverage whole-genome sequencing data with
Sanger sequencing. This analysis revealed that 9 APP genes underwent local adaptation in human populations. Most
positive selection targets are located within noncoding regions with regulatory function in myeloid cells or act as expression
quantitative trait loci. Conversely, balancing selection targeted nonsynonymous variants in TAPT and CD207 (langerin).
Finally, we suggest that selected variants in PSMB10 and CD207 contribute to human phenotypes. Thus, we used
evolutionary information to generate experimentally-testable hypotheses and to provide a list of sites to prioritize in follow-
up analyses.
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Whatever the nature of the presenting molecule, the limited
dimension of its cleft makes it impossible for macromolecules to be
presented: only fragments deriving from the lysis of such molecules
will be nested in the cleft. Most steps leading to the formation of

Introduction

Cell mediated immune responses are initiated by the recogni-
tion of an MHC/antigen complex on the surface of an APC

(antigen presenting cell) by a T cell receptor (T'cR). MHC class 1
and II molecules present peptides to T cells that express the CD8
or CD4 molecules, respectively.

Non-conventional T cell populations also exist that express
TcRs with semi-invariant o-chains: MAIT (mucosal-associated
invariant T) cells recognize antigens bound to the class Ib MHC
molecule MR 1, and iNKT (invariant natural killer T) cells respond
to lipids and glycolipid antigens bound to CD1D.

PLOS Genetics | www.plosgenetics.org

MHC class I- and II-peptide complexes have been defined [1].
Peptides that will be embedded into the cleft of class I molecules
are initially processed by the proteasome, a complex structure
located in the cytoplasm. Immune cells and other cell types
exposed to interferon gamma express a variant of the proteasome
referred to as the immunoproteasome and differing in a few
subunit components (Figure 1) [1]. The proteasome activity can be
complemented in the cytosol by endopeptidases (Figure 1) [1,2].

March 2014 | Volume 10 | Issue 3 | e1004189


http://creativecommons.org/licenses/by/4.0/

Author Summary

Antigen-presenting cells digest intracellular and extracel-
lular proteins and display the resulting antigenic repertoire
on cell surface molecules for recognition by T cells. This
process initiates cell-mediated immune responses and is
essential to detect infections. The antigenic repertoire is
generated by the antigen processing and presentation
pathway. Because several pathogens evade immune
recognition by hampering this process, genes involved in
antigen processing and presentation may represent
common natural selection targets. Thus, we analyzed the
evolutionary history of these genes during mammalian
evolution and in the more recent history of human
populations. Evolutionary analyses in mammals indicated
that positive selection targeted a very high proportion of
genes (24%), and revealed that many selected sites affect
positions of fundamental importance to the protein
function. In humans, we found different signatures of
natural selection acting both on regions that are expected
to regulate gene expression levels or timing and on coding
variants; two human selected polymorphisms may mod-
ulate the susceptibility to Crohn’s disease and to HIV-1
infection. Therefore, we provide a comprehensive evolu-
tionary analysis of antigen processing and we show that
evolutionary studies can provide useful information
concerning the location and nature of functional variants,
ultimately helping to clarify phenotypic differences be-
tween and within species.

Channels formed by TAP molecules (TAP1 and TAP2) allow
peptides generated in the cytoplasm to be transported into the
endoplasmic reticulum (ER), where they may be trimmed at their
N-terminal end by ERAP proteins. In the ER, MHC class I are
bound to the TAP complex through tapasin (TAPBP), and they
are further stabilized by two chaperones, calreticulin (CALR) and
ERp57 (PDIAS3) [1] (Figure 1). The whole complex is referred to as
the peptide-loading complex (PLC). The peptide/MHC class 1
dimer will then bind a molecule of f2 microglobulin; this results in
the stabilization of the complex that will be exported to the cell
surface by an exocytic vescicle [1].

MHC class II molecules wait for the proper peptide in
endosomes; these will fuse with lysosomes where the exogenous
proteins have been processed by resident proteases (Figure 1). The
removal of the CD74-derived invariant DM peptide by cathepsin
S or L (CTSS, CTSL1) from the cleft of the MHC molecule will
render it available to the incoming peptides. The resulting MHC/
peptide complexes will then be exported to the cell surface by
endosomes [1].

Finally, in cross-presentation phagocytosed antigens are par-
tially degraded, exported to the cytoplasm for further processing,
and then loaded onto MHC class I molecules. A central role in this
process is played by the superoxide-producing phagocyte
NADPH-oxidase, a multiprotein complex (Figure 1) which
regulates alkalinization of the phagosomal lumen [3].

Classic MHC molecules are encoded by genes that show
extreme levels of polymorphism in most vertebrates and several
studies have demonstrated that diversity at the peptide binding
region is maintained by natural selection [4]. Thus, their role in
adaptive immunity and their pattern of diversity indicate
adaptation to a wide range of pathogen species leading to
aminoacid diversification of the antigen binding cleft. Nonetheless,
the generation and loading of the antigenic repertoire presented by
MHC molecules also depend on the action of a number of
molecules, as detailed above. Therefore, it is straightforward to
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imagine that a proportion of these should be targeted by natural
selection, as well. The observation whereby several pathogens
encode molecules that hijack specific components of the antigen
processing and presentation (APP) pathway further supports this
possibility [5]. Herein, we investigated the evolutionary history of
45 genes with a central role in APP by analyzing inter-specific
divergence in mammals and intra-specific diversity in human
populations.

Results

Several APP genes evolved adaptively in mammals

To analyze the evolutionary history of the APP pathway, we
compiled a list of 45 genes that play roles of central importance in
this process. Specifically, based on Gene Ontology classification,
we included genes involved in the processing of both endogenous
and exogenous antigens and in the presentation via class I, class II
or class Ib MHC molecules (see methods for details of gene
selection criteria) (Figure 1, Supplementary Table S1). Because
they have already been the topic of extensive investigation, HLA
genes were not included. Moreover, genes involved in APP, but
also in general cellular processes (e.g. components of the
constitutive proteasome, genes involved in vesicle trafficking) were
not analyzed.

First we analyzed the evolutionary history of these genes in
mammals by retrieving coding sequence information for all
available species. For CTSLI and CTSL2 only primate sequences
were included because the two genes originated from a relatively
recent duplication event (which occurred before the split of
modern primates) and, due to their high similarity, it is very
difficult to establish one-to-one orthology with more distantly
related mammals.

Analysis of sequence alignments revealed that all genes evolved
under purifying selection, as the average non-synonymous
substitution rate (dN) was generally lower than the rate for
synonymous substitutions (dS) (Supplementary Table S2). Yet,
positive selection can operate on specific residues or domains
within coding regions that are otherwise selectively constrained.
To test this possibility we applied maximum-likelihood analyses by
comparing models of gene evolution that allow (NSsite models
MZ2a and M8) or disallow (NSsite models M1a, and M7) a class of
codons to evolve with dN/dS>1 [6]. After accounting for the
presence of recombination (that might yield false positive results
[7]) and using different models of codon frequency (see Materials
and Methods and Supplementary Figure S1), eleven APP genes
(BLMH, CDID, CD207, CTSL2, CTSG, CYBB, ERAP2, LNPEPS,
TAPBP, TAPBPL, and TAPI) were found to evolve adaptively in
mammals (Table 1, Figure 1, Supplementary Table S3 and S4).
To identify specific sites subject to positive selection, we applied
two methods: the Bayes Empirical Bayes (BEB) analysis (with a
cut-off of 0.90) from M8 [8], and the Mixed Effects Model of
Evolution (MEME) (with the default cutoff of 0.1) [9]. Only sites
detected using both methods were considered and these are listed
in Table 1.

In order to explore possible variations in selective pressure
among different lineages, we used the branch site-random effects
likelihood (BS-REL) method [10], which was applied to the 45
APP gene alignments or to sub-regions (alignments were split on
the basis of recombination breakpoint location). BS-REL makes
no a priori assumption about which lineages are more likely to
represent selection targets. We focused our attention on genes
showing evidences of episodic positive selection in lineages that
include the human species (i.e. the human lineage or branches
leading to great apes) or in branches leading to murids (due to the
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relevance these species have as model organisms). Thus, three
genes were selected for further analysis: CD207, CTSG, and CYBB
(Figure 2 and Supplementary Figure S2). For these alignments,
the primate/murid branches detected by BS-REL were cross-
validated using the branch-site models implemented in PAML
[11], which apply a likelihood ratio test to compare a model (MA)
that allows positive selection on one or more lineages (foreground
lineages) with a model (MAI) that does not allow such positive
selection. As suggested [12], a false discovery rate (FDR)
correction was applied to these p values, as multiple hypotheses
are being tested on the same phylogeny. As shown in figure 2,
PAML confirmed episodic positive selection at 1 and 2 branches in
CD207 and CTSG, respectively; no (BB branch was validated by
PAML (Supplementary Table S5, Supplementary Figure S2). The
PAML branch-site models can identify specific sites that evolved
under positive selection in the foreground branches; this is
achieved through implementation of a BEB analysis, which is
accurate but has low statistical power [11]. BEB analysis identified
one positively selected site in C'T'SG (175]) on the lineage leading
to simians.

In line with its ability to detect episodic positive selection, the
MEME analysis performed on the whole phylogeny also detected
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the 1751 residue in CTSG. Thus, episodic positive selection acted
on CTSG and CD207 in simians and murids, respectively.

Positively selected sites involve functional residues

We next analyzed the location of positively selected sites relative
to known protein domains or crystal structures.

The extracellular portion of CD1D comprises two domains (o1
and a2) that form the antigen-binding groove and interact with the
TcR, plus an a3 domain that interacts with B2M. All positively
selected sites we identified in the extracellular portion of the
protein are in the ol/a2 domains, and four of them cluster in a
spatially defined region in the C’ pocket; these positions are not
directly involved in the binding of known antigens, and one of
them flanks the TcR interaction surface (Figure 3A). One
additional positively selected site was located in the short CD1D
cytoplasmic tail, which carries signals essential for CD1D cellular
trafficking. Specifically, the human 322T residue is essential for
transportation to the plasma membrane [13].

CD207 encodes langerin, a C-type lectin that binds glycocon-
jugates and functions as a trimer [14,15]. The extracellular portion
of the protein contains a carbohydrate-recognition domain (CRD)
and a neck region that participates in trimer formation. The two
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Table 1. Evolutionary analysis of mammalian/primate APP genes.

Gene (length in

codons)? N species® N recombination breakpoints® N significant regions® Positively selected sites (human codons)®

BLMH (455) 39 2 1 211V, 388A, 390T

CD207 (329) 32 0 1 213P, 289A

CD1D (353) 28 1 2 25L, 108L, 136F, 139K, 157L, 161L, 302M, 322T

CTSG (255) 28 0 1 66W, 69N, 106Q, 122R, 177G, 221S

CTSL2 (334) 1 0 1 262S

CYBB (570) 38 2 1 136P, 148Q, 149N, 233A, 234E, 237A, 240N, 2411,
242T, 243V, 245E, 249S, 250E, 255K

ERAP2 (970) 26 2 1 416Y, 420V, 857A

LNPEP (1025) 38 1 1 872K, 884l, 918N, 1023W

TAP1 (777) 35 1 2 R137, E145, G225, Q516, L557, L562

TAPBP (468) 33 0 1 67S, 225N

TAPBPL (438) 32 0 1 394G, 433T

2Only genes subject to positive selection (see text) are shown.

PNumber of species in the alignment.

“Number of recombination breakpoints from GARD.

4Number of gene regions showing evidences of positive selection (see text).
Positively selected sites identified by both BEB and MEME.
doi:10.1371/journal.pgen.1004189.t001

positively selected sites are located in the CRD domain; one of
them (289A) is directly involved in Ca™ mediated carbohydrate
binding [14] (Figure 3C); the other site (213P) immediately flanks
residues that contribute to the interaction among langerin subunits
forming the trimer. The W264R mutation in CD207 has been
associated with Birbeck granule deficiency [16] and 264W is
conserved in all mammals (Figure 3C).

The CYBB gene encodes an integral membrane protein that
functions as the catalytic subunit of the phagocyte NADPH
oxidase. Because the crystallographic structure of CYBB has not
been solved, we mapped selected sites onto the membrane
topology arrangement [17]: results indicated that all sites are
located in extracellular/phagosome lumenal loops; specifically
several sites cluster in the third loop and one of these (240N) affects
a glycosylation site [18]. C¥YBB mutations are responsible for X-
linked chronic granulomatous disease (CGD) [19] and for
mendelian inheritance to mycobacterial diseases (MSMD) [20];
analysis of MSMD and CGD missense mutations located in the
region where the positively selected sites were detected indicated
that they all affect extremely conserved positions (Figure 3D).

TAP1 and TAPBP (tapasin) are part of the PLC. TAP1 belongs
to the family of ATP binding cassette (ABC) transporters and its
membrane topology has been determined [21]. Three of the
positively selected sites we identified are located in the transmem-
brane region or cytoplasmic loops of the TAPI unique N-terminal
domain that is involved in the binding of tapasin (TAPBP) [22].
Interestingly, three additional sites subject to diversifying selection
are located within or very close to the pore-forming region of
TAP1 - ie. the region responsible for peptide binding and
transportation (Figure 3E) [23]. As for tapasin, one of the two
positively selected sites is directly involved in ERp57 binding
(225N) [24] and the second one is located at the N-terminus (675)
(Figure 3F). The cystein residue involved in disulfide-bonding with
PDIA3 is conserved in all eutheria but not in metatheria
(Supplementary Figure S3).

Positively selected sites were also identified in two cathepsin
family members whose crystal structure has been solved. In CTSG
the six sites subject to pervasive positive selection are located
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within the serine protease domain and three of them immediately
flank (66W and 2218) or overlap (177G) residues that define the
substrate binding pockets [25] (Figure 3B). This also applies to the
1751 residue, targeted by positive selection in the simian lineage
(Figure 3B).

As for CTSL2, one positively selected site was found in the
protease domain, outside the substrate binding pockets (Supple-
mentary Figure S3).

LNPEP encodes leucyl/cystinyl aminopeptidase; the four
positively selected sites were found to be located in the C-terminal
domain 4, which has been shown to possess regulatory activity
[26] (Supplementary Figure S3).

Three sites subject to diversifying selection were also detected in
BLMH, which encodes a cytoplasmic cysteine protease highly
conserved from yeast to mammals [27]. One of them (211V) is
located on an exposed a-helix (Figure 3G); the other two sites are
on an unstructured loop and immediately flank a lysine residue
(391K) which undergoes acetylation and ubiquitination [28,29].
The modified lysine and most aminoacids in the region are highly
conserved, including a phenylalanine at position —2 relative to
391K that is present in all eutheria (Figure 3G) and represents a
highly preferred residue in cytosolic acetylation sites [29].

Finally, in ERAP2 we identified three positively selected sites,
which seem not be involved in proteolytic activity. 3D-structure
protein analysis indicated that the three residues are located on o
helices shaping the internal cavity of the protein where the
catalytic Zn ion is coordinated (Figure 4A). Two of these residues
are involved in several short-range interactions: 416Y can interact
hydrofobically with 362L, 413F, 746W, and 420V (and vice-versa);
the same kind of interactions can be made by 420V with 417F (not
shown); a side-chain side-chain H-bond can be formed by the OH
group of 416Y and the NHjy group of 366R (not shown). Thus, we
performed a stability analysis: 416Y and 420V were mutated to all
other residues through the use of three different methods. The
tyrosine and valine at positions 416 and 420 are the most common
aminoacids among the species we analyzed (Figure 4B) and
represent the ancestral state residues (see Materials and methods).
As shown in Figure 4C, the replacement of the two aminoacids led
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Figure 2. Branch-site analysis of positive selection for (D207 and CTSG. BS-REL analysis for CD207 (A) and CTSG (B). Branch lengths are scaled
to the expected number of substitutions per nucleotide, and branch colors indicate the strength of selection (dN/dS or ). Red, positive selection (o>
5); blue, purifying selection (@ =0); grey, neutral evolution (@ = 1). The proportion of each color represents the fraction of the sequence undergoing
the corresponding class of selection. Thick branches indicate statistical support for evolution under episodic diversifying selection as determined by
BS-REL. Dots denote branches that were confirmed (red) or not (gray) to be under positive selection using the PAML branch-site models (after FDR
correction for multiple tests). (C) Alignment of a portion of the CTSG peptidase domain for a few representative mammals showing positively selected

residues in simians (green) and in the whole phylogeny (red).
doi:10.1371/journal.pgen.1004189.g002

to changes of different magnitude in AG. Although the three
programs yielded different AAG values for every mutated residues,
the trend was maintained (in particular between I-Mutant and
PoPMusSiC) and indicated that replacement of 416Y and 420V
with any other aminoacid likely results in protein destabilization
(i.c. positive AAG values) (Figure 4C). These observations suggest
that positive selection might have driven the recurrent appearance
of destabilizing variants in ERAP2.

Different evolutionary scenarios for APP genes in the
human lineage

We next applied a recently developed population genetics-
phylogenetics approach to study the evolution of APP genes in the
human species. Specifically, we used the gammaMap program
[30], that jointly uses intra-specific variation and inter-specific
diversity to estimate the distribution of fitness effects (DFE) (1.c.
selection coefficients, y) along coding regions. To this aim, we
exploited data from the 1000 Genomes Pilot project deriving from
the low-coverage whole genome sequencing of 179 individuals
with different ancestry: Europeans (CEU), Yoruba from Nigeria
(YRI), and East Asians (AS; Japanese plus Chinese) [31]. Ancestral
sequences were reconstructed by parsimony from the human,
chimpanzee, orangutan and macaque sequences. We noted that
no human variant mapped to NCF/ in CEU and AS. Inspection of
accessibility by pair-end next generation sequencing approaches
(see Materials and Methods) indicated that NCF/ is poorly covered
in the 1000 Genomes Project data, possibly because of the
presence of segmental duplications. We thus discarded genes with
less than 80% of accessible sequence; this resulted in the removal
of NCFI and NPEPPS, which were excluded from further analyses.

We first analyzed the overall distribution of selection coeflicients
along the 43 APP genes. We observed a general preponderance of
codons evolving under negative selection (y<<0) in all APP genes,
with few exception including CDID, CD207, CTSG, and PSMFI
(Figure 5). The strongest level of negative selection was evident for
genes encoding chaperones or proteins involved in MHC class 1
binding and transport, as well as for loci encoding immunoprotea-
some subunits. Likewise several endolysosomal proteases and
peptidases located in the cytosol showed considerable levels of
negative selection (Figure 5).

GammaMap also allows to identify specific codons evolving
under positive selection. Herein we defined positively selected
codons as those having a cumulative probability >0.80 of y=1.
Some of these residues had previously been identified in the
positive selection analysis we conducted on the whole mammalian
phylogeny (Table 2). For example, the 302M residue in CD1D
had been detected by both MEME and BEB. Additional selected
sites were identified in human CD1D. Among these, residue 200 is
at the end of an a-helix that connects domains ol /o2 with o3; this
position is occupied by a negatively charged aminoacid in all
analyzed primates and mammals (not shown), but the human
protein carries a lysine (Figure 5). Likewise, two of the positively
selected sites in LGMN were also detected by MEME (Table 2):
they are located in the activation peptide (which needs to be
removed to generate catalytically active LGMN); in particular,
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288R involves the alpha-cleavage site (*FTKRK?*) [32] (Figure 5).
In ERAPI one of the positively selected sites (R528K, rs30187) has
previously been described as a target of balancing selection in
human populations [33] (Supplementary Figure S3). Analysis of
TAP1 selected sites indicated that they are located in the tapasin
binding region, where three sites positively selected in mammals
are also observed (Figure 3). As for PSMF1, two positively selected
sites map to the N-terminal PI31 proteasome regulator and flank a
highly conserved motif important for protein structure [34]
(Figure 3). Finally, in THOPI, one of the identified residues is
an exposed cystein, which might be involved in multimerization
[35] (Supplementary Figure S3).

Natural selection at APP genes is widespread in human
populations

To investigate the evolutionary pattern of APP genes during the
more recent history of human populations, we again exploited
data from the 1000 Genomes Pilot project. A work-flow of the
methods we applied is available as Supplementary Figure S4.
Briefly, we integrated different neutrality tests that rely on distinct
signatures left by natural selection. Thus, over whole gene regions
we calculated: 1) Oy [36] and m [37], which describe genetic
diversity; 2) Tajima’s D [38], normalized Fay and Wu’s H [39], as
well as Fu and Li’s I* and D* [40], which represent site frequency
spectrum (SES)-based statistics. Also, for all SNPs located within
APP genes we calculated Fgr [41], a measure of population
genetic differentiation in pairwise comparisons (CEU/YRI, YRI/
AS, and AS/CEU), and we performed the DIND (Derived Intra-
allelic Nucleotide Diversity) test [42], which is based on haplotype
homozygosity.

Because the low-coverage 1000 Genomes data suffer from a bias
in the SFS [31], and in order to account for the influence of
human demographic history, we applied an outlier approach by
deriving empirical distributions of the same parameters calculated
for a randomly selected set of human genes (see Materials and
methods).

Analysis of Oyy and 7 for APP genes indicated that 8 of them had
values higher than the 95" percentiles in at least one population
(Supplementary Figure S5); after excluding ERAPI, ERAP2, and
TAP2, which have previously been described as selection targets
[33,43,44], these genes were considered as balancing selection
candidates and were Sanger-resequenced, as detailed below.

For the remaining genes, we investigated whether they have
been targets of selective sweeps. To minimize the identification of
false positive signals, APP genes were considered targets of
directional selection if they represented outliers (in the 5% tails of
empirical distributions) in the same population for at least three
parameters based on distinct signatures (e.g. Fst, DIND and SFS-
statistics) or in at least two parameters based on different features
and both in the 1% tails of empirical distributions. Ten genes
satisfied these criteria and for all of them analyses were extended
to a 100 kb flanking region (50 kb up- and down-stream) to
account for the large span of selective sweeps.

As detailed below, we combined multiple tests to identify the
most likely selection target (i.e. the advantageous mutation
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Figure 3. Analysis of positively selected sites. In all panels aminoacid numbering refers to the human protein. (A) Left: ribbon diagram of the
extracellular domain of human CD1D bound to a-galactosylceramide (orange). Positively selected sites are shown in red, the a1/a2 and a3 domains
are depicted in dark and light grey, respectively. Yellow residues form the contact interface with the TcR. Right: alignment of the transmembrane and
cytoplasmic domains of CD1D for a few representative mammals; positively selected sites are in red and the YxxZ sequence is marked (blue line); the
green asterisk denotes a site positively selected in the human lineage. (B) Surface structure of the protease domain of human CTSG; sites that define
substrate binding pockets or form the catalytic triad are shown in yellow; positively selected sites are in red (whole phylogeny) and green (simians).
The violet residue confers to CTSG the ability to cleave Shigella virulence factors if mutated. 126R is not visible as it is located on the back surface. (C)
Left: ribbon diagram of the human CD207 CRD. Color codes are as follows: yellow, sites directly involved in sugar binding; green, positively selected
site at the sugar binding interface; brown, sites involved in trimer formation; orange, nonsynonymous SNPs; magenta, positively selected site that is
polymorphic in humans; black, missense SNP at the sugar binding interface; blue, a human mutation responsible for Birbeck granule deficiency. Right:
alignment of a portion of the CRD for a few representative mammals; color codes are as in the left panel. (D) Positively selected sites for CYBB are
shown relative to the membrane topology (left); sites subject to diversifying selection are in red, mutations responsible for CGD or MSMD are in blue
(note that mutations are shown only if falling in the region where positively selected sites are located); glycosylation sites are represented in green;
the magenta arrows denote the region which is represented in the multiple species alignment (right, color codes as in the membrane topology
diagram). (E) Membrane topology arrangement and positively selected sites for TAP1; TAP2 (green profiled) is shown although no positively selected
sites were identified. The TAP1 unique N-terminal domain is shown as grey cylinders, the ABC transporter domain is in blue; the nucleotide binding
domain is in orange and the protein portions that bind peptides are profiled in red. Sites subject to diversifying selection are in red, human missense
polymorphisms in black, positively selected sites in the human lineage are in green. (F) Ribbon diagram of human tapasin; positively selected sites are
shown in red; the 87 N-terminal aminoacids that facilitate the folding of MHC I-peptide complexes are in light blue. (G) Left: ribbon diagram of human
BLMH (one subunit of the hexameric complex is shown); positively selected sites are in red, the acetylated/ubiquitinated lysine (391K) is in violet, the
catalytic triad in yellow. Right: alignment of the region surrounding 391K and two positively selected sites for a few representative mammals; color
codes as in the left panel.

doi:10.1371/journal.pgen.1004189.g003
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Figure 4. Analysis of positively selected sites in EFRAP2. (A) Ribbon diagram of ERAP2: positively selected sites are shown in red and those that
coordinate the Zn ion (violet) in yellow. (B) Alignment of the region surrounding 416Y and 420V (in red) for a few representative mammals. (C) AAG in
kcal/mol for 416Y (left), 420V (right) mutations to all other 19 residues of the ERAP2 structure or sequence; results are shown for FoldX, PopMusSiC,
and |-Mutant.

doi:10.1371/journal.pgen.1004189.9g004
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Figure 5. Analysis of selective pressure in the human lineage for APP genes. (A) Violin plot of selection coefficients for APP genes (median,
white dot; interquartile range, black bar). Selection coefficients (y) are classified as strongly beneficial (100, 50), moderately beneficial (10, 5), weakly
beneficial (1), neutral (0), weakly deleterious (—1), moderately deleterious (=5, —10), strongly deleterious (=50, —100), and inviable (—500). (B)
Ribbon diagram of CD1D; the a1/a2 and o3 domains are depicted in dark and light grey, respectively. Positively selected sites in humans are in green;
in red sites selected in the whole phylogeny. (C) Ribbon diagram of LGMN with the activation peptide in dark grey. Human positively selected sites
are in green.

doi:10.1371/journal.pgen.1004189.g005

PLOS Genetics | www.plosgenetics.org 9 March 2014 | Volume 10 | Issue 3 | 1004189



underlying the sweep). Finally, we verified whether these signals
could also be detected using other tests based on extended
haplotype homozygosity [45,46].

Selective sweeps drove the frequency increase of
regulatory polymorphisms in APP genes

Among genes coding for immunoproteasome-specific subunits,
PSMBI10 and PSMES showed evidences of selection; nonetheless,
variants in PSMES might have hitchhiked with a selected allele in a
nearby gene, highlighting the need to analyze flanking regions to
avoid incorrect inference of selection at a given gene. In fact,
PSME3 showed low diversity and SFS statistics in all populations
(Supplementary Figure S5, Supplementary Table S6); in YRI one
variant in the gene (rs3785545) had a significant DIND test
(Supplementary Figure S6) and represented an outlier in the YRI/
CEU Fgr distributions (Supplementary Figure S6). Yet, analysis of
5" and 3’ flanking regions revealed that a SNP (rs61995868) in full
linkage disequilibrium (LD) with rs3785545 (> =1 in YRI) was an
Fsr outlier and had a DIND higher than rs3785545. This variant
is a nonsynonymous substitution in the nearby GNTDI gene and is
likely to represent the selection target (Supplementary Figure S7).
Conversely, PSMBI0 was subject to directional selection; indeed
the gene showed low diversity in CEU and AS (Supplementary
Figure S5) and negative FFay and Wu’s H in CEU (Supplementary
Table S6). One synonymous variant (rs14178) was an outlier in the
distribution of YRI/CEU Fgr values and in the distribution of
DIND-DAF values (Supplementary Figure S6); analysis of 100 kb
surrounding the gene revealed no SNP with higher Fg and DIND
ranks than rs14178. In CEU the SNP falls in a region of local
reduction in Fay and Wu’s H, and it is located in the fifth exon of
the small PSMBI0 gene (Figure 6A). In this region DNasel
hypersensitive sites and transcription factor binding sites have been
mapped by CHIP-seq in several cell lines (Figure 6A). In CEU
1514178 is in full LD (*=1) with rs11574514, which is located
1850 bp apart and has been associated with Crohn’s disease (CD)
in genome-wide association studies [47].

The activity of the proteasome is complemented by cytoplasmic
peptidases [2]. One of these, NRDI, was found to represent a
selection target in Asian populations. The gene showed low
diversity (Supplementary Figure S5) and negative SFS-based
statistics (Supplementary Table S6); several SNPs were outliers in
the YRI/AS Fgr distribution and in AS three of these also showed
a very high DIND test (Supplementary Figure S6). The three
variants had similar DAF (0.94) in AS, and rs1538881 had the
highest DIND rank; in an extended region no other variant
showed outlier values for DIND and Fgr. A sliding-window
analysis along the region indicated that rs1538881 falls in a valley
of Fay and Wu’s H calculated on AS chromosomes (Figure 6B).
The variant is located at the beginning of the long first intron of
the gene, a region where open chromatin signals and H3K4Mel
histone marks have been described in K562 and lymphoblastoid
cells (Figure 6B).

Among genes involved in MHC class II presentation, IFI50 (also
known as GILT), CTSE, and CTSL2 were found to represent
selection targets. Analysis of /FI50 indicated negative Fay and
Wu’s H values in AS (Supplementary Table S6) and one outlier
SNP (rs7125) in the DIND-DAF distribution for the same
population (Supplementary Figure S6). Analysis of the extended
region revealed no SNP with higher rank in the DIND test. The
variant 13 synonymous and falls within a nuclease accessible site in
CD34- maturing myeloid cells [48] (Figure 6C).

CTSL2 encodes a cysteine protease also referred to as CTSV;
analysis of the gene showed a significant negative Fay and Wu’s
H in CEU (Supplementary Table S6); Fsp analysis indicated
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rs7037968 as an outlier in the CEU/AS distribution (Supplemen-
tary Figure S6); analysis of an extended region revealed one single
variant with Fgr (rs4361859) similar to rs7037968. Sliding window
analysis of Fay and Wu’s H in CEU indicated that rs7037968 (but
not rs4361859) is in a local valley, suggesting that it represents the
selection target (Figure 6D). No functional annotation has been
described for rs7037968.

As for CTSE, encoding cathepsin E, the gene region showed
reduced diversity in AS (Supplementary Figure S5) and low
Tajima’s D and Fay and Wu’s D* and F* in this same population
(Supplementary Table S6). Fgr analysis was performed for all
variants in the gene and for genomic flanks, although the region
immediately telomeric to C7TSE is not covered in the human
reference sequence, therefore only variants centromeric to the
gene were included. Several SNPs were found to be outliers in the
YRI/AS Fgr distribution (Supplementary Figure S6) and closer
mspection revealed that in a number of cases this is due to derived
alleles that are fixed or almost fixed in AS, while remain at
intermediate frequency in African populations. Most variants
cluster in a region upstream C7SE or within the transcription unit
(Figure 6L), suggesting that a complete/almost complete selective
sweep has occurred in AS and targeted CTSE; mapping of these
variants indicated that many of them fall within potential
regulatory regions carrying H3K4Mel histone marks in different
cell types (Figure 6E).

MARCH]I has also been involved in APP, as it regulates the
surface expression of MHC class II molecules [1]. Two variants in
the gene (rs2036905 and rs13125648) had an extremely high
DIND test in CEU (Supplementary Figure S6) and represented
outliers in the YRI/CEU Fgr distribution (Supplementary Figure
S6). The two variants are located ~9 kb apart and have similar
DAF in CEU (0.61 and 0.66, respectively); interestingly,
rs2036905 falls within a sequence that is highly conserved in
mammals and affects a position invariant in most species
(Figure 6F). In AS, 9 variants with a similar DAF (0.12 to 0.16)
had very high DIND test values and represented outliers in the
YRI/AS or CEU/AS Fgt comparisons or in both (Supplementary
Figure S6). Several of these variants are located in a ~4 kb region
in intron 1, and one of them (rs12509765) is within a nuclease
accessible site in maturing myeloid cells (CD34- cells) [48]
(Figure 6F), suggesting a role in the regulation of MARCHI
transcription.

Antigen presentation to T cell populations distinct from CD4
and CD8 occurs through specialized molecules encoded by genes
that are not located in the MHC. AMRI showed two variants
(rs4048650 and rs6686208) with very high DIND test in CEU and
a similar DAF of 0.48 (Supplementary Figure S6); both SNPs are
located in the long 3"UTR. rs4048650 also represented an outlier
in the YRI/CEU Fgr distribution; analysis of an extended region
revealed no additional variants showing similarly high DIND and
Fgr values. rs4048650 is located in the 3'UTR and affects no
known microRNA binding site, but it lies in a region showing
H3K4Mel histone marks in lymphoblastoid cell lines (Figure 6G).
Consistently, this SNP represents an expression QTL for MRI
[49]. As for CDID, the gene showed low SFS-based statistics in
YRI (Supplementary Table S6). Several variants in the gene and
in flanking regions displayed extreme DIND test values in YRI
and represented outliers in the YRI/CEU or YRI/AS or in both
FST distributions (Supplementary Figure S6). Specifically, one of
these variants (rs73012242) is located upstream the transcription
start site of CDID and has a DAF of 0.95 in YRI; the remaining
variants are positioned downstream the transcription end site and
have a DAF ranging from 0.27 to 0.41 (Figure 6H). Sliding
window analysis indicated that the 5’ portion of CDID and the
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Figure 6. Analysis of selected variants. Location of the most likely selection targets in PSMB10 (A), NRD1 (B), IFI30 (C), CTSL2 (D), CTSE (E), MARCH1
(F), MR1 (G), CD1D (H), and CYBB (1) within the UCSC Genome Browser view. Relevant annotation tracks are shown. For MARCH1 a short alignment of
the highly conserved sequence encompassing rs2036905 is reported. For PSMB10, NRD1, IFI30, CTSL2, and CD1D a sliding-window analysis of Fay and
Wu's H is also shown, as mentioned in the text. The hatched horizontal line represents the 5th percentile (see methods) and significantly negative
values are in red. Variants in blue, red and green represent selection targets in CEU, AS, and YRI, respectively. SNP notation is as follows: triangle, Fst
outlier; diamond, DIND outlier; dot, both Fsr and DIND outlier; square, SNP associated with a disease.

doi:10.1371/journal.pgen.1004189.g006

upstream region encompassing rs73012242 correspond to a valley
of Fay and Wu’s H (Figure 6H), suggesting that this SNP
represents the selection target at the CDID locus and that the
downstream polymorphisms might result from a distinct selective
event possibly involving telomeric genes. The derived allele of
rs73012242 is fixed in CEU and AS, suggesting that the sweep is
complete in these populations. No functional annotation is
reported for this variant.

Finally, CYBB showed low diversity (Supplementary Figure S5)
and negative SFS-based statistics in AS (Supplementary Table S6);
in CEU 6y was reduced (Supplementary Figure S5). Analysis of
an extended region indicated that one variant (rs5918386) had
extremely high DIND test in both CEU and AS and represented
an outlier in the YRI/CEU and YRI/AS Fgr distributions
(Supplementary Figure S6). This variant is located downstream the
transcription end site of CVBB, in a region where open chromatin
and H3K4Mel histone marks have been described in lympho-
blastoid cell lines (Figure 6I). Sliding window analysis was not
performed due to the low number of variants segregating in the
region.

Finally, we assessed whether the selection signatures we
identified above could also be detected using other tests based
on extended haplotype homozygosity, namely InRsb [45] and iHS
[46], and if they overlapped with previous positive selection scans.
The InRsb test contrasts extended haplotype homozygosity
between two populations and has good power for selective events
at high frequency [45], whereas iHS compares the homozygosity
decay for haplotypes carrying the ancestral and derived alleles for
a given variant in the same population. The test has maximum
power for intermediate frequency selective events [46]. As above,
an empirical distribution was obtained for InRsb (CEU/YRI,
CEU/AS, and CEU/AS) and iHS values. Six of the selection
targets we identified in the analyses above showed very high InRsb
values: rs1538881 in NRDI (InRsbas/yrr: 1.63, rank: 0.951),
rs7037968 in CTSL2 (InRsbepu/as: 2.56, rank: 0.988; InRsbepy,
yrr: 2.38, rank: 0.990), most SNPs in C7SE and flanking regions
(strogest SNP: rs57713692, InRsbas,/yrr: 3.60, rank>0.999),
rs2036905 in MARCHI (InRsbepu,yri: 1.68, rank: 0.950),
rs4048650 in MRI (InRsbcpu,yri: 2.30, rank=0.987), and
rs5918386 downstream C1VBB (InRsbegu,/yrr: 2.62, rank = 0.994)
(Supplementary Figure S8). In the case of rs14178, InRsb was high
but not exceptionally so (InRsbogu,/yrr: 1.22, rank = 0.888). As for
the iHS test, no variant showed outlier results, the best value being
iHS = —1.80 (rank = 0.93) for rs7125 in AS. Nonetheless, it should
be noted that most variants we identified have high DAF, thus
being difficult to detect through the iHS. Also, the selective event
at 173012242 (upstream CDID) is almost impossible to detect
using either InRsb or iHS as the sweep is at very hight frequency in
YRI and likely complete in AS and CEU.

To evaluate the overlap between the signal we detected and
those identified in previous scans of positive selection, we retrieved
data from 9 genome-wide studies [45,46,50-56] that applied
different approaches. This analysis indicated that large genomic
regions covering portions of MARCHI had been previously
identified in both CEU and AS by Williamson and co-workers
[50], who applied a composite likelihood ratio (CLR) model (the
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MARCH] regions have CLR p values <0.01), and by Tang et al.
[45], by application of the InRsb test (Supplementary Figure S9).
These latter authors also described a genomic region encompass-
ing NRDI as a selection target in AS (Supplementary Figure S9).
No overlaps were detected for the remaining genes.

Balancing selection targeted coding variants in APP
genes

Balancing selection is more difficult to detect than positive
selection, mainly because its signal (an excess of polymorphism) is
often confined to narrow genomic regions [57]. Because the low-
coverage 1000 Genomes Pilot Project data are skewed against
singletons and low-frequency variants, and because this bias is not
homogeneous along the genome, local minor differences might
have a comparatively high weight when the selection signal is
restricted to relatively small regions. Thus, to obtain unbiased
estimates of nucleotide diversity and of the SFS, we Sanger
resequenced the putative balancing selection targets in 60
HapMap subjects (20 YRI, 20 CEU and 20 AS).

In particular, resequencing was performed for the entire coding
sequences of CD207, PSMB9 and TAPI. Given the large size of the
genes, two sub-regions of 4.6 and 3 kb, respectively were
resequenced for CTSB and NCF4 (Figure 7A); these genomic
portions were selected because they contain outlier SNPs in the
distribution of Fgt values (Supplementary Figure S6).

For each analyzed region/gene, nucleotide diversity was
assessed by calculating 6y and T; as a control for demographic
effects, both indexes were calculated for 5 kb windows deriving
from 238 genes resequenced by the NIEHS (National Institute of
Environmental Health Sciences) SNP Program. Because under
neutral evolution the amount of within-species diversity 1is
predicted to correlate with levels of between-species divergence,
we also applied a Maximum-Likelihood-ratio HKA (MLHKA) test
[58] to assess whether an excess of polymorphism was observed
relative to divergence.

Estimates of nucleotide diversity higher than the 95™ percentile
were obtained for all genes/regions in at least one population
(Table 3, Supplementary Table S7). Nonetheless, a significant
excess of nucleotide diversity versus inter-species divergence (as
detected by the MLHKA test) was observed only for D207 and
TAPI in YRI, and for NCF4 in AS (Table 3, Supplementary Table
S7). High levels of diversity in human populations that are
paralleled by high inter-species diversity (i.e. non-significant
MLHKA test) are difficult to interpret and raise the possibility
that polymorphisms are not being maintained by selection but
result from a high local mutation rate or from relaxation of
functional constraints. Thus, we considered candidates of balanc-
ing selection only genes/regions that rejected neutrality based on
the MLHKA results (in at least one population). For TAPI,
CD207, and NCF% we verified whether the neutral model could be
rejected by SFS-based statistics through coalescent simulations.
Positive values of Tajima’s D and of Fu and Li’s D* and F*
indicate an excess of intermediate frequency variants and are a
hallmark of balancing selection, although non-significant SFS
statistics may be observed when balancing selection is multiallelic
or when balanced haplotypes/alleles are not at intermediate
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frequency. Significantly high SES tests were observed for at least
one statistic for 7API and CD207 in YRI, as well as for NCF4 in
AS (Table 3). The values of Tajima’s D and of Fu and Li’s D* and
F* were also compared to the distributions obtained from 5 kb
windows deriving from Sanger resequenced NIEHS genes; also
these statistics were calculated using the 1000 Genomes Pilot
Project data (Supplementary Table S8). Overall, high concor-
dance was observed between coalescent simulation p values and
percentile ranks obtained from Sanger sequencing, whereas the
1000 Genomes Project data yielded few values higher than the
95" percentile (Supplementary Table S8), suggesting that Sanger
sequencing or high-coverage data may be better suited for the
detection of balancing selection.

To further extend these analyses, haplotype phylogenies were
reconstructed for NCF4, TAPI, and CD207. The haplotype
phylogeny for the resequenced NCF4 region showed 3 main
haplotype groups (hapI-III, Figure 7B) with an estimated time to
the most recent common ancestor (ITMRCA) ranging from
840,000 to 1,790,000 years (Supplementary Table S9, Supple-
mentary Figure S10). One of them (hap I) has low frequency in all
populations and carries putative regulatory variants (Figure 7A-B).
Hap II carries the derived allele of rs3788524, which is an outlier
in the YRI/AS Fgr distribution (Supplementary Figure S6); in AS
and CEU this variant is in strong LD with L272P (rs2075939),
which also defines Hapll. The derived allele of a putative
regulatory variant (rs738148) defines haplll (Figure 7A-B).
Opverall, these data support a scenario of multiallelic balancing
selection at the NCF4 gene, with both missense and regulatory
variants being maintained in human populations.

In the case of TAPI, the haplotype network showed a complex
scenario and revealed a few recurrent mutations, possibly
originating from recombination or gene conversion. One major
cluster of haplotypes is evident, and all these chromosomes carry
the derived alleles at aminoacid residues 393 and 697 (3931 and
697D). Two distantly related haplotypes are observed in YRI
(YRI-hapI and YRI-hapll, Figure 7C) and both carry at least one
distinctive nonsynonymous variant (V518L and G77R plus
Q788K, respectively). The presence of highly differentiated
haplotypes with restricted geographic distribution might be
suggestive of ancient population structure [59]; nonetheless,
calculation of the TMRCA for the haplotype phylogeny yielded
estimates ranging from 1,670,000 to 660,000 years (Supplemen-
tary Table S9, Supplementary Figure S10),which are not
consistent with population structure in Africa. Although some
variants that affect putative gene transcription regulatory elements
are also located on the branches of the haplotype genealogy,
the balancing (or diversifying) selection targets are likely to be
accounted for by aminoacid substitutions.

Finally, the haplotype network of CD207 was reconstructed
using variants located in a sub-region of relatively tight linkage
disequilibrium (covering the whole transcription unit with the
exclusion of exon 1 and intron 1); nonetheless, some recurrent
mutations were evident (Figure 7D). The two major haplogroups
carry different alleles at two polymorphisms that affect residues in
the CRD: N288D, which was shown to affect binding to mannose
[60], and K313I, where the lysine residue forms the sulfated
glycan recognition interface [61]. Within the more common
haplotype cluster, other missense variants are observed, including
A278V, which does not influence sugar binding or protein stability
[60]. Few CEU chromosomes are differentiated at the S213P
variant (Figure 7D); reconstruction of ancestral state at this site is
difficult as different primates carry distinct residues, in line with
the fact that this position was found to be positively selected in
mammals (Figure 3). Overall, these data suggest that in humans
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balancing selection targeted two nonsynonymous variants -K3131
and N288D- resulting in two major langerin forms (288N-313K
and 288D-313I), that segregate in human populations and are
likely different in their sugar binding specificity.

CD207/langerin can internalize HIV-1 to Birbeck granules
where it is degraded [62]. Thus, we explored the possibility that
the selected functional variants in the CRD domain affect the
susceptibility to sexually-transmitted HIV-1 infection. To this aim,
we genotyped rs13383830 (N288D) in a cohort of 87 Italian
heterosexual HIV-exposed seronegative (HESN) individuals who
have a history of unprotected sex with their seropositive partners
[63] and in 436 randomly selected Italian subjects (controls). The
variant significantly deviated from Hardy-Weinberg equilibrium
(HWE) with an excess of homozygotes in HESN alone (Table 4).
This observation may be explained by the underlying genetic
model (i.e. protection from HIV-1) or by spurious effects;
application of a goodness-of-fit test [64] indicated that a recessive
model with only genetic effects adequately explains HWE
deviation in HESN. Comparison of allele frequencies in the
HESN and control samples indicated no significant difference for
rs13383830. Conversely, the genotype distribution of the SNP was
significantly different in the two cohorts, with 288D/288D
homozygotes being much more common in HESN than in
controls (permutation p=0.015 and 0.023 for a genotypic and a
recessive model, respectively, Table 4). Thus, homozygosity for the
288D allele may be a factor in determining protection from
sexually-transmitted HIV-1 infection.

Discussion

Adaptive evolution acts at the level of genetic variants that
determine advantageous phenotypic traits. Selection signatures
can therefore be exploited to detect genomic regions/positions
underlying phenotypic diversity and adaptation. This has recently
been demonstrated within a host-pathogen arms race scenario
whereby an evolutionary-guided approach was used to identify a
protein loop in MX1 (myxovirus resistance 1) that determines
antiviral activity [65]. Similarly, it has been known for years that
natural selection has specifically acted on the peptide-binding cleft
of antigen presenting molecules [4]. Because the repertoire of
peptides that is available for presentation is generated by APP gene
products, we performed an evolutionary analysis of these locl.

Evolutionary analysis at the inter-specific level indicated that 11
genes have been targeted by diversifying positive selection; this
represents a substantial fraction (24%) of analyzed genes, despite
our application of a conservative approach. Moreover, an analysis
of positive selection in the human species identified positively
selected codons at four additional genes. Although large-scale
analyses had previously identified immune response loci as
preferential targets of positive selection in mammals [66,67],
those studies had limited power due to the inclusion of a small
number of species. Thus, in Kosiol et al. [66] the percentage of
positively selected genes among those involved in APP only
amounted to 14%.

Likewise, we identified several genes targeted by natural
selection during the more recent history of human populations.
Integration of different tests for selection was recently shown to be
a powerful tool to identify and finely map positive selection targets
[68]; the approach we applied herein differs in a number of ways
from that proposed by Grossman and co-workers [51,68]. We did
not apply the integrated haplotype score (iHS) or its derivatives,
but rather relied on the DIND test, which was proven to be more
powerful than iHS in most ranges of selected allele frequency [42].
We used the normalized H statistic (as it has higher power than the
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reconstructed through median-joining networks. Nonsynonymous variants are shown, as well as SNPs that fall within potential regulatory elements.

doi:10.1371/journal.pgen.1004189.9007

original non-normalized Fay and Wu’s H [39]) rather than the
ADATF test [51,68], and we included SFS-based statistics. Thus,
due to the different power of distinct tests, none of the variants
described herein was identified in previous scans for positive
selection. At the gene level, analysis of genome-wide scans of
positive selection indicated that regions encompassing MARCHI
and NRDI had previously been described as positive selection
targets [45,50], whereas no overlap was detected for the remaining
genes. Low concordance of positive selection signals among studies
has been previously noted (for a recent review [69]). However,
most previous positive selection scans have been performed using
SNP genotype data (however dense in some cases) whereas we
used resequencing data (although low-coverage), which are
expected to increase the power to detect selection [70]. Indeed,
even tests based on extended haplotype homozygosity, that are less
sensitive to the ascertainment bias, have increased power when the
actual selection target is included in the analysis [46]. One extreme
example of this is accounted for by CTSE, where no SNP mapped
in HapMap releases predating 2008 and which is still poorly
covered by HapMap data.

Several reports have indicated that genes involved in immune
response may be preferential targets of both positive [45,46,51,56]
and balancing [71] selection in humans, with some immune-response
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pathways possibly being particularly enriched in selection
signals. Tang et al. [45] found an over-representation of genes
coding for cytokines (IL-1 receptor agonists in particular) among
their top signals; likewise, other authors indicated an enrichment
for complement-mediated and class I MHC-related immune
response genes [46,51]. Beside genome-wide scans, studies that
focused on specific families of immune response loci often
revealed a high proportion of selected genes; these include, for
example, type III interferon genes [72], genes coding for T-cell
regulatory molecules [73], and NOD-like receptors [74]. These
observations clearly reflect the extremely important role of
immune response for in the face of infections.
Nonetheless, analyses herein also indicated that for some
components of the APP pathway (e.g. immunoproteasome
subunits, chaperones, several lysosomal proteases) negative
selection likely represented the major evolutionary force.
Conversely, genes that code for APP components that, at
different levels, directly interact with the antigens to be
presented (e.g. CDID, CD207, TAPI, ERAP2, and CYBB) have
been constantly targeted by positive or balancing selection, as
determined by both inter- and intra-species analyses.

Besides providing a general picture of the evolutionary forces
acting on the APP pathway, our aim was to describe in detail the

survival
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Table 4. Genotype counts, HWE proportions and association analysis for rs13383830.

Genotype counts

SNP ID Phenotype Genotype counts (recessive model) p* (HWE) P’ (genotype) P° (recessive)
rs13383830 (N288D) HESN 3/12/72 3/84 0.04 0.015 0.023
CTR 2/59/375 2/434 >0.99

“HWE deviation p value.
bp value obtained from 10,000 phenotype-label swapping permutations.
doi:10.1371/journal.pgen.1004189.t004

specific sites and variants targeted by natural selection so that this
information can be exploited to prioritize functional characteriza-
tion in follow-up analyses. We defined positively selected sites in
mammals by the combined use of two methods, BEB and MEME;
this choice was taken to limit the number of false positive results,
although we most likely underestimated the number of selected
sites. In fact, MEME was developed to detect both episodic and
pervasive positive selection [9], whereas sites evolving under
episodic selection are likely to be missed by BEB. Thus, the
combination of the two methods is expected to result in the
confident identification of sites evolving under pervasive diversi-
fying selection only.

Nonetheless, several sites evolving adaptively were identified
and they are expected to define positions and protein regions that
affect functional properties. As an example, our data indicate that
a threonine residue (3227T) that functions as a trafficking signal in
the cytoplasmic region of CD1D [13] is present in primates only
and represents a selected site, suggesting that different motifs
evolved in distinct mammalian species to modulate CDID
expression at the plasma membrane. Indeed, differences in
intracellular trafficking between mouse and human CDID
molecules have been reported [75]. Interestingly, it has been
proposed that the 3227T signal is exploited by HSV-1 to down-
modulate the surface expression of CD1D molecules as an evasion
strategy [13]. Thus, the cytoplasmic tail and the transmembrane
region of CD1D might have evolved under virus-driven selective
pressure. Indeed, different pathogens, including HSV-1, HPV,
HIV-1, VSV, and KSHYV, interfere with CD1D expression and
recycling [75], although the specific contact interfaces between
viral products and CDID molecules are unknown. Adaptive
evolution was also evident in the extracellular domains of CD1D;
sites positively selected in mammals are spatially clustered and
flank the TcR interaction surface and the lipid binding pocket,
suggesting that they may exert indirect effects on binding
specificity, especially in light of the broad array of lipid molecules
presented by CD1D [75]. Similarly, a human-specific positively
selected site at the a2/a.3 domain interface might modulate CD1D
activity by altering the flexibility or relative positioning of the
extracellular domains.

Different viral species are known to encode products that
counteract specific components of the APP pathway other than
CDI1D. This represents a strategy to evade the host immune
system by hampering the presentation of immunogenic epitopes.
Specifically, several viral proteins target the PLC by binding TAP
or tapasin [5]. Viral inhibition of the PLC is suggested to be of
pivotal importance for efficient infection; for example different
herpesviruses encode distinct TAP inhibitors, which are unrelated
in genome location, structure, and mechanism of action,
suggesting convergent evolution [76]. This indicates that some of
the positively selected sites we identified in TAP1 and tapasin
(TAPBP) might have evolved to avoid targeting by viral products.
One of these is the US3 immunomodulator encoded by HCMV;
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this protein directly binds the tapasin ER luminal domain, but has
no effect on the formation of the TAP-tapasin complex [5]. US3
might interfere with recruitment of ERp57 by tapasin [5],
suggesting that the tapasin 225N residue -located at the ERp57
binding interface - might be involved in this process.

Three of the positively selected sites in TAP1 are located in the
channel forming region and one of them (516Q) maps to a
transmembrane domain that directly interacts with peptides.
Because TAP is known to select peptides for transportation in a
species-specific manner [77], it would be interesting to evaluate the
effect of the identified residues on TAP binding affinity and
transportation preference, as well as on the sensitivity to viral
inhibitors. TAP contributes to the shaping of the overall repertoire
available for MHC presentation. On the one hand this property
per se represents a possible target for host-pathogen arms races, as
decreasing transport of specific peptides would translate in reduced
presentation. On the other hand, it has been noticed that in
human, mouse, and rat, the specificity of TAP transportation
correlates with the predominant peptide binding profiles of the
corresponding MHC class I molecules, suggesting co-evolution
[77].

Co-evolution with MHC class I molecules might also be driving
aminoacid replacements at BLMH and tapasin. Indeed, the N-
terminal domain of tapasin, where one of the selected residues
(678) is located, was shown to facilitate MHC-peptide complex
folding depending on the identity of both the peptide and of the
HLA T heavy chain. As for BLMH, experiments in human cells
indicated that its depletion affects peptide loading and MHC class
I surface expression in a /LA class I allele-dependent manner [78].
BLMH is highly conserved from yeast to mammals, suggesting
strong constraints [27]. As a consequence, selection might have
acted at the level of aminoacid residues that modulate protein
abundance at the post-translational level, as suggested by their
location. Likewise, natural selection might have acted at the
ERAP? locus to modulate protein stability and, consequently,
abundance. Although the observation that protein-destabilizing
variants have been favored during evolution might seem counter-
intuitive, it should be noted that an ERAP2 haplotype that results
in a truncated (and degraded) protein product is maintained by
balancing selection in human populations [33,44]. Also, some
rodent species, including mice and rats, lack a functional ERAP?
gene, suggesting that loss or decreased abundance of ERAP2
protein might confer some advantage, possibly related to selective
antigen trimming. We also detected human-specific selective
events at FRAPI. One of the two variants we identified had
previously been shown to represent a balancing selection target in
human populations [33]. The variant affects enzymatic properties
[79] and associates with the susceptibility to different autoimmune
diseases, often in interaction with HLA allelic status [80].

Analysis of CYBB and (D207 also provides remarkable
examples of the action of different selective forces on the very
same gene region, as both highly variable and strongly constrained
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positions are observed in close proximity at these loci. Indeed,
most missense substitutions that cause mendelian immunologic
defects involve aminoacid positions that are conserved in all
mammals, indicating that negative selection at these sites prevents
aminoacid replacements affecting host resistance to pathogens.
The pattern of positive selection at C¥YBB indicates that the two
long loops protruding in the extracellular space or in the
phagosome lumen are strongly targeted by diversifying selection.
These protein regions are expected to be mostly exposed to a
direct interaction with pathogen components, suggesting that they
have evolved to avoid inhibition by bacterial/fungal products, a
possibility that awaits experimental validation. In addition to its
role in cross-presentation, the NADPH oxidase complex directly
participates in the killing of pathogenic microbes through the
production of superoxide and other oxidants in neutrophils. This
activity 1s also required to activate cathepsin G and other proteases
that, in turn, kill and digest engulfed pathogens [81]. Most
positively selected sites we identified in C7SG are likely to
modulate substrate specificity as they rim the binding pockets.
Likewise, the site targeted by positive selection in simians is located
at the edge of the substrate binding pocket on an exposed loop that
also carries 177G (positively selected in the whole phylogeny); this
loop has previously been shown to confer substrate specificity to
other serine proteases [25,82]. Interestingly, a site subject to
diversifying selection (106Q)) is adjacent to a position (104T) that, if
replaced with the equivalent aminoacid in elastase (T104N),
confers to C'TSG the ability to cleave Shigella virulence factors [82]
(Figure 3B). Thus, the selective pressure acting on both ¢1BB and
CTSG might be related to their direct antimicrobial role in
addition to participation in APP. Finally, analysis of human-
specific positively selected sites in LGMN, which also encodes a
lysosomal protease, indicated that one of them maps to the o
cleavage site of the activation peptide. Although the identity of the
protease(s) responsible for cleavage is presently unknown, the
multistep activation of LGMN is thought to have a regulatory
significance and is modulated by the maturation status of dendritic
cells, possibly via acidification of the endosome/lysosome com-
partments [83].

Results herein also indicate a continuum in selective pressure
acting on different timescales and targeting the coding sequences
of TAPI and CD207, as aminoacid-replacement variants are
likely to represent the selection targets in human populations. In
both cases balancing selection signatures were detected in African
populations only. Because we accounted for demography events
both in coalescent simulations and by the empirical comparison
with genes resequenced in the same populations, the signatures
we detect are unlikely to represent demographic effects, but
instead indicate stronger selective pressure in Africa. Interesting-
ly, one of the putative balancing selection targets in 7API, the
V518L variant, is located in the peptide binding domain, close to
a positively selected site (516Q)), and defines a minor haplotype in
YRI; this variant might affect the affinity of TAP1 for one or
more antigenic peptides. Likewise, in the case of CD207 one
positively selected site (289A) immediately flanks a human
polymorphic position representing a balancing selection target
(N288D) with known effect on sugar binding [60]. The second
site subject to diversifying selection (213P) is polymorphic in
humans (P213S), although its positioning on the haplotype
network does not suggest that it is a major target of balancing
selection in humans. Indeed, the two major haplotype clades of
CD207 carry, in addition to N288D, a second variant, K313I,
that also affects langerin binding to glycan substrates [61]. This
indicates that balancing selection has maintained two alternative
langerin forms that differ in binding specificity and may recognize
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distinct microbial glycan structures, ultimately affecting the
susceptibility to specific infections. We show that homozygosity
for the 288D-313I langerin haplotype may be associated with
protection against sexually transmitted HIV-1 infection. The
HIV-1 gpl120 protein, which is bound by CD207, is heavily
glycosylated with both oligomannose and complex N-glycans
[84]; the 288D allele displays reduced binding to mannose-
containing structures [60], but may confer increased affinity for
more complex sugars, as suggested by the broad specificity of
langerin. Opverall, although the recessive effect of the rare
haplotype is consistent with the trimeric nature of langerin, and
its frequency differs in HESN and controls (3.45% and 0.46%,
respectively), the association results should be regarded as
preliminary and treated with caution due to the small sample
size and the low frequency of the putative protective haplotype.
Thus, replication in an independent cohort and functional
analyses on the role of the 288D allele in HIV-1 recognition
and internalization will be needed.

One nonsynonymous polymorphism (L272P) in NCF4,
encoding a cytosolic regulatory component of the NADPH
oxidase complex, was also identified as a possible balancing
selection target in human populations. This SNP is located in an
intron of the gene that may be retained in the transcript as a
result of alternative splicing. Nonetheless, the selection target
might also be accounted for by variants with a regulatory
function on NCF4 expression. Indeed SNPs located on the
branches of the haplotype genealogy fall within Chip-seq
mapped binding sites for transcription factors including STAT3,
which is regulated by RAC1 [85], a modulators of NAPH
oxidase activity [86], and NFKB, a central transcriptional
regulator in myeloid cells. Similarly, we found all adaptive
variants subject to directional selection to represent likely
modulators of gene expression levels.

As recently suggested [68], the use of large-scale low coverage
data, while posing challenges due to the biased SFS, may allow
identification of the causal variant underlying the selective event.
This represents a valuable advantage by providing a list of targets
that may be directly tested in functional analyses. Moreover,
integration of selection signals with extensive functional annota-
tions generated by the ENCODE project and by eQ'TL studies
further increases the possibility to underscore adaptive alleles.
Our analysis indicated that two of the selected variants (in 7FI50
and MARCH]I) are located within nuclease accessible sites in
maturing myeloid cells, suggesting they affect transcription
regulatory elements activated during cell differentiation [48]
and the selected variant in MR/ represents an eQTL. Likewise,
selected variants in or close to NRDI and CYBB fall within open
chromatin regions in lymphoblastoid cell lines, and the synon-
ymous variant in PSMBI0 maps to DNAse I sensitive sites in
different cell types and to transcription factor binding sites.
Interestingly, this variant is in full LD in CEU with a risk SNP for
Crohn’s disease [47], again supporting the view that adaptive
events underlie phenotypic variability. In general, most of the
positive selection events we described occur at positions with a
likely role controlling gene expression. Grossman and co-workers
[68] finely mapped causal variants in 412 candidate selected
regions and determined the large majority of these may modulate
transcription levels. Likewise, Vernot et al. [87] performed a
genome-wide analysis of DNase I hypersensitive regions and
indicated that these harbor a number of variants targeted by
positive selection in human populations. Thus, our data are in
agreement with previous findings and help substantiate the view
that regulatory variation represents a major target for adaptive
evolution in humans.
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Materials and Methods

Gene selection

The initial list of genes to be included in the study was obtained
from Gene Ontology (GO). Specifically, we queried GO for all the
all human genes (n = 180) associated with the following GO terms
(and children): GO:0019884 (antigen processing and presentation
of exogenous antigen), GO:0019883 (antigen processing and
presentation of endogenous antigen), G0O:0002474 (antigen
processing and presentation of peptide antigen via MHC class I),
GO:0002495 (antigen processing and presentation of peptide
antigen via MHC class II), GO:0002428 (antigen processing and
presentation of peptide antigen via MHC class Ib). From this
initial list we removed HLA class I (n=7) and class II genes
(n=15), as they have been the topic of intense investigation, as
well as immunoglobulin receptors (n = 3) and integrins (n =2), as
they are not directly involved in the process that leads to antigen
processing and presentation (APP). We also pruned genes that,
although participating in APP, play non-specific roles including
components of the constitutive proteasome (n=34), general
ubiquitination factors (n =4), molecules involved in the formation
and transport of clathrin-coated vescicles (n=19), proteins
involved in vesicle trafficking across different cellular compart-
ments (n = 14), dynamins and dyneins (n=11), dynactins (n =6),
and kinesins (n=19). Two ubiquitine-ribosomal protein gene
fusions were discarded as well, as their function is poorly
understood. Finally, HFF, encoding a nonclassical MHC class Ib
molecule, was discarded because this gene is believed to have no
antigen-presentation function [88]. Thus, we concentrated our
efforts on a list of 43 genes, which are considered to be central
components of the APP pathway. Notably, THOPI and NRDI
were also included in the final group of genes given their recently
established role in antigen processing [2]; this lead to a final list of
45 genes (Supplementary Table S1).

Evolutionary analysis in mammals

Mammalian sequences for APP genes were retrieved from the
Ensembl database. Mammalian orthologs of human APP genes
were included only if they represented 1-to-1 orthologs as reported
in the EnsemblCompara GeneTrees [89]. As mentioned in the
text only primate sequences were included for CTSL! and CTSL2
(Supplementary Table S2).

DNA alignments were performed using the Rev'Irans 2.0 utility
[90], which uses the protein sequence alignment as a scaffold for
constructing the corresponding DNA multiple alignment. This
latter was checked and edited by hand to remove alignment
uncertainties. Trees were generated by maximum-likelihood using
the program DnaML (PHYLIP Package). To detect selection,
NSsite models that allow (M2a, M8,) or disallow (M1a, M7) sites to
evolve with dN/dS>1 were fitted to the data two models of
equilibrium codon frequencies: the F3x4 model (codon frequencies
estimated from the nucleotide frequencies in the data at each
codon site) and the F61 model (frequencies of each of the 61 non-
stop codons estimated from the data). Results for the two codon
frequency models are reported in Supplementary Tables S3 and
S4. Whenever maximum-likelihood trees showed differences
(always minor) from the accepted mammalian phylogeny, analyses
were repeated using the accepted tree, and the same results were
obtained in all cases. Sites under selection with the M8 model were
identified using Bayes Empirical Bayes (BEB) analysis with a
significance cutoff of 0.90 [8,91].

In order to identify specific branches with a proportion of sites
evolving with ®>1, we used BS-REL [10]. Branches identified
using this approach were cross-validated with the branch-site
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likelihood ratio tests from PAML (the so-called modified model A
and model MAI, “test 2”) [11]. A false discovery rate correction
was applied to account for multiple hypothesis testing (i.e. we
corrected for the number of tested lineages), as suggested [12].
BEB analysis from MA (with a cut-off of 0.90) was used to identify
sites that evolve under positive selection on specific lineages.
Ancestral site reconstruction for positions 416 and 420 in ERAP?2
was obtained through the DataMonkey sever by ASR utility,
which implements three different methods. GARD [92], MEME
[9], SLAC [93], and BS-REL [10] analyses were performed
through the DataMonkey server [94] (http://www.datamonkey.

org).

In silico analysis of protein stability

Intra-protein interaction calculations were performed using PIC
(Protein Interactions Calculator) [95]. Stability analysis was
carried out using three different methods. FoldX 3.0 [96] and
PoPMuSiC (web-server version) [97], were used on the chain A of
the X-ray structure of ERAP2 (PDB code: 3SE6). I-Mutant 2.0
[98] was used on the corresponding protein sequence retrieved
from UniprotKB (Q6P179). In FoldX and I-Mutant the AAG
values are calculated as follows: AAG =A4G,uun—AGuiti-ppe In
FoldX and I-Mutant AAG values >0 kcal/mol indicate mutations
that decrease protein stability, whereas in PoOPMuSiC AAG values
>0 kcal/mol are mark of mutation increasing protein stability.
Therefore, PoPMuSiC AAG values were multiplied by —1 to
obtain homogeneous results.

In the analysis carried out with FoldX 3D, the three-
dimensional structure of the protein was repaired using the <
RepairPDB> command. Mutations were introduced using the <
BuildModel> command with <numberOfRuns> set to 5 and <
VdWdesign> set to 0. Temperature (298K), ionic strength (0.05
M) and pH (7) were set to default values and the force-field
predicted the water molecules on the protein surface. Residues
His370, His374, Glu393 and Tyr455, which coordinates the zinc
ion, were kept fixed during reparation and mutation procedures.

HapMap DNA samples and sequencing

Human genomic DNA from HapMap subjects (20 Yoruba,
YRI, 20 European, CEU, and 20 Asians, AS) was obtained from
the Coriell Institute for Medical Research. All analysed regions
were PCR amplified and directly sequenced. PCR products were
treated with ExoSAP-IT (USB Corporation Cleveland Ohio,
USA), directly sequenced on both strands with a Big Dye
Terminator sequencing Kit (v3.1 Applied Biosystems) and run
on an Applied Biosystems ABI 3130 XL Genetic Analyzer
(Applied Biosystems). Sequences were assembled using AutoAs-
sembler version 1.4.0 (Applied Biosystems), and inspected man-
ually by two distinct operators. All primers sequences are available
in Supplementary Table S10.

Population genetics-phylogenetics analysis

Data from the Pilot 1 phase of the 1000 Genomes Project were
retrieved from the dedicated website [31]. SNP genotypes were
organized in a MySQL database. Coding sequence information
was obtained for the 45 APP genes. Accessibility of gene region by
paired-end next-generation sequencing was evaluated using the
“1000 Genomes Project Phase 1 Paired-end Accessible Regions -
Pilot Criteria” UCSC track.

To analyze the DFE for APP genes we used gammaMap [30].
We assumed 0 (neutral mutation rate per site), k (transitions/
transversions ratio), and T’ (branch length) to vary among genes
following log-normal distributions. For each gene we set the
neutral frequencies of non-STOP codons (1/61) and the
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probability that adjacent codons share the same selection
coeflicient (p=0.02). For selection coeflicients we considered a
uniform Dirichlet distribution with the same prior weight (0.1) for
each selection class. For each gene we run 100,000 iterations with
thinning interval of 10 iterations.

Population genetic analyses

A set of programs was developed to retrieve genotypes from the
100 Genomes Pilot Project MySQL database and to analyse them
according to selected regions/populations. These programs were
developed in C4++ using the GeCo++ [99] and the libsequence
[100] libraries. Genotype information was obtained for the 45
APP genes. In order to obtain a control set of ~1,000 genes to use
as a reference set, we initially selected 1,200 genes by random
sampling of those included in the RefSeq list. For these genes we
retrieved orthologous regions in the chimpanzee, orangutan or
macaque genomes (outgroups) using the LiftOver tool; genes
showing less than 80% human-outgroup aligning bases were
discarded. This originated a final set of 987 genes, hereafter
referred to as control set. These data were used to calculate Oy
[36], m [37], as well as Tajima’s D [38], Fu and Li’s D* and F*
[40], and normalized Fay and Wu’s H [39,101] over each entire
gene region.

Data from the control gene set were used to calculate empirical
distributions of these parameters, as specified in the text.

Normalized Fay and Wu’s H was also calculated in 5 kb sliding
windows moving with a step of 500 bp. Sliding window analyses
have an inherent multiple testing problem that is difficult to
correct because of the non-independence of windows. In order to
partially account for this limitation, we applied the same
procedure to the control gene set, and the distribution of
normalized Fay and Wu’s H was obtained for the corresponding
windows. This allowed calculation of the 5 percentile and
visualization of regions below this threshold.

Fst [41] and the DIND test [42] were calculated for all SNPs
mapping to the control and APP gene sets. Because Fgt values are
not independent from allele frequencies, we binned variants based
on their MAF (50 classes) and calculated the 95™ and 99
percentiles for each MAF class. As for the DIND test, it was
originally developed for application to Sanger or high coverage
sequencing data [42], so that statistical significance can be inferred
through coalescent simulations. This is not the case for the 1000
Genomes Project data; thus, we calculated statistical significance
by obtaining an empirical distribution of DIND-DAF value pairs
for variants located within control genes. Specifically, DIND
values were calculated for all SNPs using a constant number of 40
flanking variants (20 up- and down-stream). The distributions of
DIND-DAF pairs for YRI, CEU and AS was binned in DAF
intervals (100 classes) and for each class the 95" and 99"
percentiles were calculated. As suggested previously [42], for
values of it = 0 we set the DIND value to the maximum obtained
over the whole dataset plus 20. Due to the nature of low-coverage
data, for low DAF values most ity resulted equal to O (i.e. the 95"
percentile could not be calculated); thus, we did not calculated
DIND in these ranges and we consequently cannot detect selection
acting on low frequency derived alleles.

The InRsb and iHS tests were calculated as previously described
[45,46] using the rehh R package [102]. Specifically, InRsb and
iHS were calculated for all tested SNPs using information from
200 kb flanking regions (100 kb 5" and 3'). To obtain empirical
distributions, we randomly selected 100 genic SNPs and calculated
InRsb and iHS values for all SNPs in their 200 kb flanks. Data
obtained from these randomly selected variants were alos used to
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calculate the median and standard deviation for InRsb’ normal-
ization [43].

As mentioned in the text, an approach based on coalescent
simulations was applied with Sanger sequencing data. In
particular, calibrated coalescent simulations were performed using
the cosi package [103] and its best-fit parameters for YRI, CEU,
and AS populations with 10,000 iterations. Demographic param-
eters for YRI, CEU and AS implemented in cosi are described in
[103]. Simulations were conditioned on mutation and recombi-
nation rates. Estimates of the population recombination rate
parameter p were obtained from resequencing data with the use of
the Web application MAXDIP [104] and converted to cM/Mb.

For Sanger-resequenced regions the percentile ranks of 8y and
n were obtained from the distribution of the same parameters
calculated for 5 Kb windows deriving from 238 human genes
resequenced by NIEHS (National Institute of Environmental
Health Sciences) SNPs Program, as previously described [105].
The maximum-likelihood-ratio HKA test was performed using the
MLHKA software [58], as previously proposed [105].

Haplotype analysis and TMRCA calculation

Haplotypes were inferred from Sanger resequencing data using
PHASE version 2.1 [106,107]. Median-joining networks to infer
haplotype genealogy were constructed using NETWORK 4.5
[108]. Estimates of the time to the most common ancestor
(TMRCA) was obtained using different methods: 1) a phylogeny
based approach implemented in NETWORK 4.5 using a
mutation rate based on the number of fixed differences between
chimpanzee and humans [108]; ii) GENETREE, which is based
on a maximum-likelihood coalescent method [109,110] assuming
an infinite-site model without recombination; haplotypes and sites
that violate these assumptions were removed; iii) a previously
described method [111] that calculates the average pairwise
difference between all chromosomes and the MRCA: this value
was converted into years on the basis of mutation rate retrieved as
above. The SD for this estimate was calculated as previously
described [112].

We based calculations on the assumption that the divergence
between human and chimpanzee occurred 6 MY ago [113] and
that the generation time is 25 years.

Human subjects, genotyping and association analysis

Inclusion criteria for HESN were a history of multiple
unprotected sexual episodes for more than 4 years at the time of
the enrolment, with at least 3 episodes of at-risk intercourse within
4 months prior to study entry and an average of 30 (range, 18 to >
100) reported unprotected sexual contacts per year. These HESN
subjects are part of a well characterized cohort of serodiscordant
heterosexual couples that has been followed since 1997 (reviewed
in [63]).

No HESN was homozygous for the CCR5432 variant, which
confers resistance to R5 HIV-1 strains [114]. As for controls, 436
Italian donors were also included in the study, irrespective of their
HIV infection status. The study was reviewed and approved by the
institutional review board of the S. M. Annunziata Hospital,
Florence. Written informed consent was obtained from all
subjects.

HWE deviation was analysed as suggested by Wittke-Thompson
and co-workers [64]. The equations are parametrized in q
(susceptibility allele frequency), o (risk in non-susceptible homo-
zygotes), P (heterozygote relative risk), ¥ (homozygote relative risk)
and K, (trait prevalence in the general population). We obtained
ML estimates for these parameters minimizing the goodness-of-fit
test statistic (as reported in [64]) using the BFGS method. Using an
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estimate of K, the procedure was repeated with a general model
estimating ¢, P and 7y, and for constrained specific models,
estimating q and gamma (dominant: = ; recessive: =1, y>1;
additive: B = (y+1)/2, y>1; multiplicative: B = sqrt(y), y>1). Given
the different number of parameters in the general model, the
Akaike Information Criteria (AIC) was used for the best fit model
selection. A p value was then calculated for the minimal value of
the test statistic using a o distribution with 1 or 2 df for the general
and constrained models respectively. Using a K, (prevalence of
HESN phenotype in the general population) of 0.20 [115,116], the
best model fitting the genotypic proportions in HESN and controls
was a recessive model with q (susceptibility allele frequen-
cy)=0.079, o (risk in non-susceptible homozygotes)=0.20, B
(heterozygote relative risk)=1, and 7y (homozygote relative
risk) = 3.23. For this model, the goodness-of-fit test was not
significant (o = 1.81, p=0.40, df=2), indicating that a recessive
model with only genetic effects adequately explains HWE
deviation. We performed the same analysis using a range of K,
(from 0.10 to 0.30) and similar results were obtained (not shown).

Association p values for the genotypic and recessive models
were calculated using PLINK [117] by performing 10,000
phenotype-label swapping permutations.

Supporting Information

Figure S1 Work-flow and main results for the inter-species
analysis. Genes that were defined as targets of positive selection are
shown in red.

(PDF)

Figure 82 Branch-site analysis of positive selection for CYBB.
Branch lengths are scaled to the expected number of substitutions
per nucleotide, and branch colors indicate the strength of selection
(dN/dS or m). Red, positive selection (®>5); blue, purifying
selection (® = 0); grey, neutral evolution (® = 1). The proportion of
each color represents the fraction of the sequence undergoing the
corresponding class of selection. Thick branches indicate statistical
support for evolution under episodic diversifying selection as
determined by BS-REL. Grey dots denote branches that were
tested but not confirmed to be under positive selection using the
PAML branch-site models.

(PDF)

Figure 83 Alignment of a TAPBP region and positively selected
sites in CTSL2, LNPEP, ERAP1, THOPI, and PSMF1. (A)
Multiple alignment of a TAPBP region for a few representative
mammalian species. A positively selected site (67S) is colored in red,
the cystein residue involved in disulfide-bonding is colored in blue.
(B) Ribbon diagram of human CTSL2; sites that define substrate
binding are shown in yellow; positively selected sites are in red
(whole phylogeny) or green (humans). (C) Schematic representation
of LNPEP domains; positively selected sites are indicated in red. (D)
Ribbon diagram of ERAPI with positively selected sites in orange
(polymorphic) or green (fixed in humans); the active site is
represented in yellow. (E) Ribbon diagram of THOP1 sites subject
to positive selection in the human lineage highlighted in green. The
active site is shown in yellow. (F) ribbon diagram of PSMF1; the
dark grey helix indicates a motif important for protein stability.
Positively selected sites are in orange or green depending on their
being polymorphic or not, respectively, in humans.

(PDF)

Figure S4 Work-flow and main results for the intra-species
analysis. Genes that were defined as targets of positive or
balancing selection are shown in red.

(PDF)
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Figure S5 Nucleotide diversity estimates for APP genes. w is
plotted against By. The dashed lines represent the 5" and 95"
percentiles of a distribution of ~1000 randomly selected human
genes, represented by grey dots.

(PDF)

Figure S6 DIND test and Fgr results. (A) The ratio between the
ancestral and derived nucleotide diversity, ima/inp, 18 plotted
against the derived allele frequency (DAF). The dashed line
represents the 95" percentile of a distribution of ~1000 randomly
selected human genes. The grey shaded areas represent frequency
ranges where the ratio could not be calculated. (B) Fgt values are
plotted against the minor allele frequency (MAF). The dashed lines
represent the 95" and 99™ percentiles of a distribution of SNPs
deriving from ~1000 randomly selected human genes. Black
crosses mark SNPs mentioned in the text which display Fgy values
higher than the 95" percentile.

(PDF)

Figure S7 Analysis of positively selected sites in the PSME3/
CNTDI region. Location of the most likely selection targets in
PSME3/CNTDI region within the UCSC Genome Browser view.
Relevant annotation tracks are shown. Variants in green represent
both Fgr and DIND outliers in AS population.

(PDF)

Figure 88 Lixtended haplotype homozygosity (EHH) decay plots

for variants showing a high InRsb test.
(PDF)

Figure 89 Overlap between the signals we detected and those
identified in previous scans of positive selection. Previously
identified regions are represented as black bars and are tagged
by author name and population showing selection signatures. The
best candidate variants we identified in NRD! (upper panel) and
MARCHI (lower panel) are also shown. Figure S9. Overlap
between the signals we detected and those identified in previous
scans of positive selection. Previously identified regions are
represented as black bars and are tagged by author name and
population showing selection signatures. The best candidate
variants we identified in NRD! (upper panel) and MARCHI (lower
panel) are also shown.

(PDI)

Figure S10 GENETREE analyses. Estimated haplotype trees
for the LD sub-region of CD207 (A), and for the sequenced regions
of NCF4 (B) and TAP! (C). Mutations are represented as black dots
and named for their physical position along the region. The
absolute frequency of each haplotype is also reported at the
bottom of each lineage.

(PDF)

Table S1 List of analysed genes.

(PDF)

Table 82 Average non-synonymous/synonynomus substitution
rate ratio (dAN/dS).

(PDF)

Table S3 Likelihood ratio test statistics for models of variable
selective pressure among sites (F3x4 model of codon frequency).

(PDF)
Table S4 Likelihood ratio test statistics for models of variable
selective pressure among sites (F61 model of codon frequency).

(PDF)

Table S5 Likelihood ratio test statistics for branch-site models
(CD207, CTSG, and CYBB).

(PDF)
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Table S6 SI'S-based statistics calculated over whole gene regions
using data from the 1000 Genomes Project.

(PDF)
Table 87 Nucleotide diversity and neutrality tests for €758 and

PSMBY gene regions.
(PDF)

Table S8 Nucleotide diversity and neutrality tests using low
coverage 1000 Genomes Project data for the Sanger-resequenced
regions.

(PDF)
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