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A B S T R A C T   

Triglycerides play a crucial role in the efficient storage of energy in the body. Mild and moderate hyper-
triglyceridemia (HTG) is a heterogeneous disorder with significant association with atherosclerotic cardiovas-
cular disease (ASCVD), including myocardial infarction, ischemic stroke, and peripheral artery disease and 
represents an important component of the residual ASCVD risk in statin treated patients despite optimal low- 
density lipoprotein cholesterol reduction. Individuals with severe HTG (>1,000 mg/dL) rarely develop athero-
sclerosis but have an incremental incidence of acute pancreatitis with significant morbidity and mortality. HTG 
can occur from a combination of genetic (both mono and polygenic) and environmental factors including poor 
diet, low physical activity, obesity, medications, and diseases like insulin resistance and other endocrine pa-
thologies. HTG represents a potential target for ASCVD risk and pancreatitis risk reduction, however data on 
ASCVD reduction by treating HTG is still lacking and HTG-associated acute pancreatitis occurs too rarely to 
effectively demonstrate treatment benefit. In this review, we address the key aspects of HTG pathophysiology 
and examine the mechanisms and background of current and emerging therapies in the management of HTG.   

1. Introduction - Triglyceride Pathophysiology, Metabolism, and 
Genomics 

Triglycerides (TG) are a major component of dietary fat. The 
macromolecule is composed of a glycerol backbone with three fatty acid 
(FA) chains. TG are insoluble in plasma and are transported by 

chylomicrons (CM), very low-density lipoprotein (VLDL), and VLDL- 
remnants, which are collectively referred to as “TG rich lipoproteins” 
(TRL) [1]. When ingested, TG undergo hydrolysis by intestinal lipases in 
the gut, forming FA and monoglycerides [2]. Monoglycerides undergo 
esterification in enterocytes to reform TG in a reaction catalyzed by 
diacylglycerol acyltransferase [3]. Cholesterol is esterified with FA by 
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acyl-coenzyme A:cholesterol acyltransferase [4]. Together, with phos-
pholipids, cholesterol esters, and a variety of apoproteins, the TG are 
packed into nascent chylomicrons (CM) using apolipoprotein B48 as a 
scaffold by microsomal TG transfer protein [5]. CM enter the blood-
stream, delivering FA to muscle and adipose tissue subsequent to 
lipolysis by lipoprotein lipase (LPL), which is expressed on the endo-
thelial surface of capillaries in adipose, skeletal, and cardiac muscle 
tissue. During TG lipolysis, the CM particle is converted into a smaller 
CM remnant (CMr) [2]. CM and their remnants are cleared from the 
circulation via hepatocyte receptors and low-density lipoprotein (LDL) 
receptor related protein 1 [6,7]. CM bind to the latter receptor via 
apoprotein E. The liver oxidizes the FA in TG via the beta-oxidation 
pathway or packages them back into VLDL, which are then secreted 
into the bloodstream [2,8]. 

Endogenous TRL production begins in hepatocytes via the incorpo-
ration of cholesterol, FA, and TG with apolipoprotein B100 by a process 
that recapitulates intestinal CM production mediated by microsomal TG 
transfer protein. Hepatic cholesterol concentrations are kept relatively 
constant, but TG availability varies depending upon recovery from CMr, 
FA delivery from peripheral sources, and de novo lipogenesis [2]. Car-
bohydrates can be converted into FA; when there is excess carbohydrate 
available, large amounts of pyruvate are converted to acetyl-CoA, which 
is used to synthesize both FA and cholesterol. During lipogenesis, FA 
undergo esterification with glycerol-3-phosphate, which can be released 
into the bloodstream within the core of VLDL particles. LPL hydrolyzes 
VLDL, releasing FA for uptake by extrahepatic tissues, such as skeletal 

muscle and adipose tissue [9]. VLDL particles undergo lipolysis, become 
smaller in size and increase in density, as TG are depleted and choles-
terol is added [10]. Remnant cholesterol (RC) is defined as the amount 
of cholesterol carried by TRL [11]. The lipoprotein particles form 
smaller VLDLs and then intermediate-density lipoprotein (IDL) particles 
(the precursor to LDL particles). VLDL can be cleared by VLDL receptors, 
LDL receptor related protein 1, and heparan sulfates, while IDLs can be 
cleared by both LDL receptors and LDL receptor related protein 1 [6,7] 
(Fig. 1). Given the multiple factors involved in the normal circulation 
from substrate to lipoprotein clearance, there are multiple points where 
this process can go awry. 

Similar to LDL particles, TRLs become entrapped by glycosamino-
glycans within the intima of blood vessels (Fig. 2). Here, macrophages 
scavenge them, leading to the formation of foam cells and the promul-
gation of inflammation [12]. Evidence suggests that free fatty acids, 
released from TG and TRL in the subendothelial space, have 
pro-inflammatory properties and contribute to atherosclerosis devel-
opment [12,13]. Remnants further stimulate the expression of 
pro-inflammatory cytokines and exert direct cytotoxic effects on the 
endothelium [14,15]. This inflammation within the subendothelial 
space triggers the formation of a pro-oxidative, pro-atherogenic sub-
strate. In most people, remnant lipoproteins (and TRL in general) are 
highly heterogeneous. Thus, defining which features confer atheroge-
nicity is challenging [16]. 

Genome-wide association studies have been performed to screen for 
genetic causes of hypertriglyceridemia (HTG) [17]. Monogenic 

Fig. 1. Absorption, transport, and metabolism of triglycerides. 
ANGPTL=angiopoietin-like; APO=apolipoprotein; FA=fatty acid; FGF21=fibroblast growth factor 21; W3= omega3; IDL=intermediate density lipoprotein; LDL- 
R=low density lipoprotein receptor; LRP-1=low density lipoprotein receptor-related protein 1; TRL=triglycerides rich lipoprotein; VLDL=very low density lipo-
protein. Created with biorender.com. 
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mutations are very rare (approximately 2 % of HTG), whereas polygenic 
mutations that interact with nongenetic factors constitute most of the 
genetic drivers of HTG [17]. The spectrum of genetic variations results 
in a wide range of phenotypic expression of serum TG levels with fa-
milial chylomicronemia syndrome (FCS) and multifactorial chylomi-
cronemia syndrome (MCS) at the higher end of the HTG spectrum. 

2. Hypertriglyceridemia 

2.1. Definition 

Normal TG are generally defined as fasting serum levels <150 mg/dL 
with HTG generally defined as levels >150 mg/dL. The American Col-
lege of Cardiology (ACC) and American Heart Association (AHA) define 
moderate and severe HTG (fasting or non fasting) as 175 to 499 mg/dL 
(2.5 to 5.6 mmol/L), and as a fasting value of >500 mg/dL (>5.65 
mmol/L), respectively [18,19]. The European Society of Cardiology 
Guidelines define mild to moderate HTG as 175 to 885 mg/dL (2.0 to 9.9 
mmol/L), severe HTG as >886 mg/dL (>10 mmol/L), and very severe as 
>1,770 mg/dL (>20 mmol/L)[20]. HTG is pathogenic and is associated 
with an increased risk for atherosclerotic cardiovascular disease 
(ASCVD), acute pancreatitis (particularly when >1,000 mg/dl), insulin 
resistance, and visceral organ steatosis [21]. 

2.2. Hypertriglyceridemia and Coronary Plaque 

Triglycerides have been linked to atherosclerotic pathogenesis via 
vascular endothelium dysfunction. While large chylomicrons and VLDL 

fail to cross the endothelial barrier, TRL (such as VLDL-remnants and 
CMr) can accumulate in the arterial endothelium and become trapped in 
the subendothelial glycoprotein matrix [22]. There, unlike LDL, they do 
not require oxidation to be taken up by macrophages which then stim-
ulate formation of foam cells. These foam cells promote fatty streak 
formation, the precursor to atherosclerotic plaque [15]. TRL are larger 
than LDL and carry up to 40 times more cholesterol per particle, which 
may render them more atherogenic than LDL. Free FA (FFA) also induce 
oxidative stress and inflammation, which can impact insulin signaling 
and lead to insulin resistance. Additionally, FFA activation of 
renin-angiotensin system increases endothelin-1 levels, causing vaso-
constriction, and triggers apoptotic pathways, resulting in endothelial 
cell apoptosis [16]. CM and VLDL-remnants amplify the inflammatory 
response eliciting arterial wall inflammation by increasing interleukin 
and cytokine release [17]. 

Numerous studies have focused on the interaction between HTG and 
coronary plaque. In asymptomatic individuals, the Multi-Ethnic Study of 
Atherosclerosis (MESA) study showed no association between HTG and 
coronary artery calcium in an intermediate risk population, though 
patients with TG >400 mg/dL were excluded [23]. Raposeiras-Rubin et al 
analyzed data from the Progression of Early Subclinical Atherosclerosis 
(PESA) study and found no correlation between TG level and CAC but 
TG levels ≥150 mg/dl showed an association with subclinical non-
coronary atherosclerosis (odds ratio [OR]: 1.35; 95 % confidence in-
terval [CI]: 1.08 to 1.68; p = 0.008) and with the presence of arterial 
inflammation (OR: 2.09; 95 % CI: 1.29 to 3.40; p = 0.003) [24]. This 
prospective cohort study included 3,754 middle-aged individuals (mean 
age 46, 39 % female, 0.3 % with diabetes, 20 % smoking) without prior 

Fig. 2. Pathophysiology of triglyceride pro-atherogenic effects. 
CETP: cholesterol ester transfer protein, HDL-C: high-density lipoprotein cholesterol, LPL: lipoprotein lipase, ox-FFA: oxidated free fatty acid, sdLDL: small dense low- 
density lipoprotein, TRL: triglyceride-rich lipoprotein, TRL-R: triglyceride-rich lipoprotein remnant. Created with biorender.com. 
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ASCVD, not on statin therapy, with low to moderate cardiovascular risk 
and evaluated subclinical atherosclerosis by 2-D vascular ultrasound, 
CAC and fluorine-18 fluorodeoxyglucose uptake on positron emission 
tomography. 

In symptomatic patients, a single-center retrospective study of 2,096 
patients who underwent percutaneous coronary intervention guided by 
optical coherence tomography showed higher TG levels were associated 
with higher prevalence of plaque vulnerability markers [25]. Matsuo et 
al, using intravascular ultrasound (IVUS) in 40 male patients on statin 
therapy with stable angina, found RC levels, and not low-density lipo-
protein cholesterol (LDL-C), to highly correlate with plaque necrosis 
[26]. Koide et al, conducted a single center prospective study of 935 
patients (55 % male, 34 % on statin therapy) who underwent coronary 
computed tomography angiography (CCTA) for suspected coronary ar-
tery disease (CAD), also demonstrated that higher serum TG/high den-
sity lipoprotein cholesterol (HDL-C) ratios, but not LDL-C, were 
associated with high-risk coronary plaque (defined by positive remod-
eling, spotty calcification, and low-density attenuation plaque) [27]. 
The relationship between TG/HDL-C ratio with metabolic syndrome, 
insulin resistance and cholesterol remnants has been established,[28] 
supporting the role of TRL in plaque vulnerability. Moreover, a study by 
Lin et al retrospectively evaluated 587 patients (mean age 61, 53 % male, 
13 % diabetes, 32 % on statin therapy) who underwent a clinically 
indicated CCTA with a lipid profile within 3 months from the study. 
Authors found that RC were associated with plaque burden in univariate 
(OR 1.29 [95 % CI 1.08-1.52], p=0.01) and multivariate analysis in the 
subset of patients with with optimal LDL-C levels (OR 3.87, 95 %CI 
1.34–7.55 per 1 mmol/L increase, p=0.004) [29]. Authors found no 
association between TG and total atherosclerotic burden. Altogether, 
findings suggest that it is likely that elevated TG are a marker of 
increased levels of RC, and that is the latter which causes 
atherosclerosis. 

2.3. Hypertriglyceridemia and ASCVD Risk 

Although clinical practice has primarily focused on LDL-C lowering 
methods to prevent ASCVD, emerging data in the past two decades has 
broadened the focus to include TG and their impact on ASCVD [30]. 
Even though normal TG levels have been defined as <150 mg/dL, Aberra 
et al analyzed 5,792 study participants, aged 40-65 years, free of CVD 
from the Atherosclerosis Risk in Communities and Framingham 
Offspring studies and found that regardless of the method of measure-
ment, higher TGs were associated with increased CVD risk, even at levels 
previously considered "optimal" (<150 mg/dL) [31]. The prospective 
Copenhagen General Population Study, including 58,547 participants in 
Denmark, reported incidence rates of major adverse cardiovascular 
event (MACE) and myocardial infarction (MI) in patients with TG levels 
between 352-439 mg/dL (4.0-4.99 mmol/L) of 7.9 (95 % CI 6.0 to 10.3) 
and of 4.3 (95 % CI 3.0 to 6.2) per 1000 person-years, respectively, 
compared to individuals with TG levels <88 mg/dL (<1.0 mmol/L) who 
had incidence rates of 2.2 (95 % CI 1.9-2.5) and 0.6 (95 % CI 0.5-0.8) per 
1000 person-years [32]. 

A study performed by Jorgensen et al including participants within 
the Copenhagen General Population Study, Copenhagen City Heart 
Study, and Copenhagen Ischemic Heart Disease Study, showed that 
higher levels of TG and TRL increased the risk of MI (OR 1.87; 95 % CI 
1.25-2.81) regardless of age, sex, smoking, hypertension and diabetes 
[23]. Data from the PREDIMED (Prevencion con Dieta Mediterranea) 
population trial with 6,901 individuals (mean age 67, 43 % male and 48 
% with diabetes, on statin 41 %) showed that levels of triglycerides (HR 

1.04; 95 % CI 1.02-1.06, per 10 mg/dl; p<0.001) and RC (HR 1.21; 95 % 
CI 1.10-1.33, per 10 mg/dl; p<0.001), but not LDL-C or HDL-C, were 
associated with cardiovascular outcomes independent of other risk 
factors [33]. Moreover, among patients on statins, reaching a TG target 
<150 mg/dL reduced the risk of recurrent cardiovascular events 
(including recurrent cardiovascular death or MI) compared to TG levels 
>150 mg/dL, with HR of 0.73 (95 % CI 0.62-0.87; P <0.001) regardless 
of LDL-C level [34–36]. Lastly, a study from the Korean National Health 
Insurance Service database across 15.6 million participants (aged 
118-99) with follow-up over 8.8 years showed a clear log-linear asso-
ciation between TG and CVD mortality down to 50 mg/dL. Each 
two-fold increase in TG was associated with a 1.10-fold (overall CVD), 
1.22-fold (ischemic heart disease), 1.24 (acute MI), and 1.10-fold 
(ischemic stroke) higher associated cardiovascular mortality; the effect 
of TG on CVD was apparent even in participants with LDL-C < 100 
mg/dl [37,38]. Interestingly, genetic variants leading to hypotriglycer-
idemia have been linked to a reduced risk of ischemic heart disease (HR 
0.40; 95 % CI 0.31-0.52) [39]. 

In a cohort of primary prevention subjects from the Jackson Heart 
Study and a random sample from the Framingham Offspring Cohort 
Study, RC were associated with predictive of CAD independently of 
traditional cardiovascular risk factors [25]. In particular, data from the 
Copenhagen General Population Study, showed that Moreover, RC 
≥30mg/dL were typically associated with increased ASCVD risk [27]. 
Recent studies reported a causal association between RC and CAD [40]. 
Furthermore, elevated RC levels were associated with an increase in 
all-cause mortality in large Danish populations both with and without 
CAD [35,36]. 

Peripheral vascular disease is another common manifestation of 
ASCVD and has been linked to CVD mortality. In a large retrospective 
analysis of a medical claims database, among patients on statin therapy, 
those with HTG had higher rates of peripheral revascularization 
compared to patients with TG <150 mg/dL (HR 1.37 95 %, CI 1.35 - 
1.64) [41]. Moreover, a meta-analysis including 61 prospective cohort 
studies reported a higher risk of CVD and all-cause mortality by 13 % 
and 12 % (P<0.001) per 88 mg/dL (1 mmol/L) TG increase. This rela-
tionship could be linked to TG’s roles in promoting inflammation, 
oxidative stress, and endothelial dysfunction [19]. 

Emerging data have shown a modest association between elevated 
TG and ischemic stroke. In a large prospective cohort study in China, 
267,500 individuals were followed over 6 to 19 years. For every 1 
mmol/L increase in serum TG, the adjusted HR was 1.07 (95 %CI 1.05- 
1.09) [42]. Another prospective study in China with 42,005 participants 
showed that high TG levels were associated with an increased risk of 
stroke (HR 1.06, 95 %CI 1.00-1.12) after adjusting for age, body mass 
index, blood pressure, and other comorbidities [43]. 

Support for a causal role of HTG in atherosclerotic disease is also 
provided by genome-wide association and Mendelian randomization 
studies [44,45]. A mendelian randomization meta-analysis with 17 
studies including 62,199 participants and 12,099 CHD events found that 
for triglycerides, the unrestricted allele score (67 single nucleotide 
polymorphisms [SNPs]) and the restricted allele score (27 SNPs) were 
both associated with CHD (OR: 1.62; 95 % CI: 1.24, 2.11 and 1.61; 95 % 
CI: 1.00, 2.59, respectively) per 1-log unit increment. The interplay 
among three apolipoprotein A5 (APOA5) variants and TG levels were 
explored in a Mendelian genomic study. A doubling of non-fasting TG 
levels and calculated RC levels were associated with an increase of 1.9- 
and 2.2-fold causal risk for MI, respectively [23]. Another Mendelian 
randomization study by Thomsen et al, reported that genetic variants in 
LPL resulted in reduced non-fasting TG levels and that an increasing 
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number of triglyceride-decreasing LPL alleles correspond to a reduction 
of non-fasting TG levels and RC (by 31 % and 23 %, respectively), with a 
15 % increase in HDL-C. A higher number of triglyceride-decreasing LPL 
alleles was also associated with increased survival (p=0.004) [46]. 

A Mendelian randomized study by Ferrence et al investigated the 
genetic variants of the LPL gene and the LDL-C–lowering variants in the 
LDL receptor gene. Both variants were associated with a lower risk of 
CHD per unit change in apolipoprotein B (apoB) (OR 0.771 [95 % CI, 
0.741-0.802], p= 3.9 × 10− 38 and OR 0.773 [95 % CI, 0.747-0.801], 
p = 1.1 × 10− 46, respectively) [47]. 

The vast majority of available evidence suggests a clinical benefit in 
reducing TG levels, potentially through an absolute reduction in TRL 
and apoB-containing lipoproteins. 

2.4. Hypertriglyceridemia and Acute Pancreatitis 

The prevalence of HTG-induced acute pancreatitis (AP) has been 
reported to be as high as 22 % [48,49]. The estimated global incidence 
for AP is 34 cases per 100,000 person-years [50]. While severe HTG is a 
well-recognized cause of AP, mild to moderate HTG has recently been 
associated with higher risk of acute pancreatitis (HR 2.3; 95 % CI 
1.3-4.0), despite an overall low incidence (5.5 events per 10,000 
patient-years) [51,52]. Thus, there may be a dose dependent relation-
ship between HTG and AP. The pathophysiology of HTG causing AP is 
not fully understood but has been suggested that HTG collectively 
contributes to making the pancreas susceptible to AP. High levels of CM 
are thought to increase plasma viscosity, which then may lead to 
impaired blood flow to pancreatic tissue, tissue ischemia and destruc-
tion, and ultimately acute pancreatitis [53,54]. Alternatively, there is 
reason to believe that ambient exposure to pancreatic lipase by CM in 
the pancreatic microcirculation leads to rapid fatty acid release trig-
gering trypsin activation and pancreatic auto-digestion [31,32]. 
Furthermore, the breakdown of TRL increases proinflammatory FFA, 
leading to damage of vascular endothelium and ischemia within the 
pancreas [55]. 

It is unclear whether all TRL are equally causative of AP, or if there is 
variation in the risk between CM and VLDL particles. While HTG may 
occur under a variety of circumstances and vary according to variable 
characteristics like obesity, insulin resistance, other medical and other 
medical conditions, individuals with FCS have persistently low or no LPL 
activity and significant chylomicronemia. Individuals with FCS have the 
highest lifetime risk of AP, with an incidence rate reported as high as 75- 
85 % [56,57]. Unfortunately, pharmacotherapy for this rare condition is 
not available since all available TG-lowering medicines enhance LPL 
activity as their primary mechanism. 

2.5. Hypertriglyceridemia: Environmental and Genetic 

The prevalence of HTG is approximately 25 % in the United States, 
with a greater prevalence in patients with metabolic syndrome or dia-
betes [58]. Among statin-treated adults, 31.6 % have TG >150 mg/dL 
[58]. In Europe, its prevalence is around 10 % in the adult population, 
with considerable interregional variation [59]. In the United States 
population, 2 % present as severe hypertriglyceridemia (TG >500 
mg/dL) [60]. Causes of HTG include primary factors, involving mono-
genic and polygenic variants, and secondary factors, which include 
medications, comorbidities, and lifestyle behaviors such as dietary 
indiscretion and alcohol intake [17,56,61]. Other disorders related to 
HTG include chronic liver, kidney, or thyroid disease, and most 
commonly, type 2 diabetes. Although incidence of HTG is rising in 
tandem with that of metabolic syndrome, severe HTG tends to require an 
inherited predisposition (primary factors). 

There are many genetic variants associated with primary HTG. A 
very small percentage of primary HTG patients (estimated to be around 
2 % of cases) are due to monogenic variants, which cause autosomal 
recessive FCS. Individuals with FCS have persistently low or no LPL 
activity, which results in the inability to hydrolyze FA from CM and 
VLDL. They have persistently very elevated and severe HTG and chy-
lomicronemia with low apolipoprotein B. FCS is either due to a mutation 
in LPL (80 % of cases) or mutations in various genes encoding proteins 
that metabolize TRL [62]. These patients rarely develop atherosclerosis, 
possibly due to the inability of the massive CM to penetrate the intima, 
but they suffer from frequent debilitating AP episodes. 

The remaining genetic disorders that cause moderate or severe HTG 
are from the complex interplay between polygenic mutations and 
nongenetic factors, which are manifest as conditions like familial HTG, 
familial combined hyperlipidemia, metabolic syndrome, and remnant 
hyperlipidemia. MCS is the most common form of chylomicronemia and 
severe HTG with an estimated US prevalence between 1:600 and 1:250 
[63]. This usually has a late-onset and presents with eruptive xantho-
mas, lipemia retinalis, and abdominal pain. MCS has been studied 
extensively in genomic studies that have identified over 40 loci with 
common variants associated with elevations in TG [64]. These variants 
can either act alone or more commonly, in conjunction with other ge-
netic and nongenetic factors that lead to moderate or severe HTG [62, 
64]. 

3. Current Treatments for Hypertriglyceridemia 

3.1. Lifestyle and Behavioral Modifications 

Lifestyle and behavioral modifications can have a significant effect 
on TG levels in patients with moderate to severe HTG (Table 1) [61]. For 
patients with FCS, extreme lifestyle modification with nutritionist sup-
port is recommended. Physical activity enhances insulin sensitivity, 
leading to more effective lipolysis. Cardiac rehabilitation and exercise 
training can lead to a TG reduction of 31 % in patients with CAD and 
HTG [65]. Weight loss is also associated with a TG lowering effect; 
weight loss of 5-10 % can lead to a 20 % TG reduction [66–68]. 

Altering macronutrient intake by replacing trans-fatty acids with 
polyunsaturated or monounsaturated fats and increasing dietary fiber 
has shown effectiveness in lowering TG levels [69]. The Mediterranean 
diet was associated with the lowest TG levels in the Framingham Heart 
Offspring Study, showing a 12-14 % TG reduction when compared to the 
control diet [70–72]. The relationship between alcohol consumption 
and TG levels is complex, but excess alcohol use has been linked to 
elevated triglycerides, requiring abstinence in severe cases and partic-
ularly in FCS. 

Table 1 
Treatments Currently Available for Hypertriglyceridemia.  

Class Mechanism of action Reduction in 
TG ( %) 

Weight loss of 5- 
10 % 

Reduced dietary intake, enhanced insulin 
sensitivity 

20 % 

Mediterranean 
diet 

Reduced dietary intake of unfavorable fats 12 % 

Statins Inhibit HMG-CoA reductase, which limits 
hepatic cholesterol biosynthesis 

20-50 % 

Fibrates Activate peroxisome proliferator-activated 
receptors and enhance lipid metabolism 

30-50 % 

Omega-3 fatty 
acids 

Unclear mechanism 20-30 % 

TG=triglycerides; HMG-CoA= 3-hydroxy-3-methyl-glutaryl-coenzyme A 
reductase. 
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3.2. Statins 

Statins are first-line therapy for the primary prevention of ASCVD in 
those 40 to 75 years old with an LDL-C ≥70 <190 mg/dL and estimated 
risk ≥7.5 % as per the pooled cohort equation, those with diabetes who 
are 40 to 75 years old, and those with LDL-C levels over 190 mg/dL 
(Central 1) [18]. They are also first-line therapy for secondary preven-
tion in those with established ASCVD or in those with subclinical cor-
onary atherosclerosis [73]. Statins lower LDL-C levels and reduce the 
production of VLDL, leading to a reduction in both apoB and TG [74]. 
Notably, in patients affected by HTG, statins also induce a 
dose-dependent reduction in TG levels, ranging from 10 % to 30 %[61], 

which can increase to 40-45 % in cases of severe HTG [10]. Concordant 
results were reported in a review of statins, showing a statin-associated 
TG reduction from 21 % to 52 % in patients with isolated HTG [75]. 

Statins are first-line therapy for HTG among patients who meet the 
aforementioned criteria for primary or secondary prevention of ASCVD. 
Some evidence suggests that there could be a cardioprotective benefit to 
additional TG lowering, beyond that provided by a statin. A study of the 
Cardiovascular Health in Ambulatory Care Research Team (CAN-
HEART) cohort analyzed a secondary prevention cohort of 196,717 
patients, almost all of which were already on statin therapy [44]. The 
study revealed that HTG was common, and that it was associated with 
increased ASCVD risk proportional to the degree of HTG. Moreover, in 

Fig. 3. Suggested HTG treatment algorithm.  
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the Pravastatin or Atorvastatin Evaluation and Infection 
Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) 
trial[34], patients with low TG (<150 mg/dL) and on statin therapy 
were at 20 % lower risk of death, MI, and recurrent ACS after adjustment 
for LDL-C and other covariates as compared to those with TG >150 
mg/dL. Therefore, HTG is a marker of residual ASCVD risk after statin 
therapy, even when LDL-C levels are at goal. These findings lead to the 
the hypothesis that additional interventions beyond statins, aimed at 
further lowering TG, could decrease this residual risk [76]. 

3.3. Omega-3 Fatty Acids 

Omega-3 fatty acids are polyunsaturated FA (PUFA), with alpha- 
linolenic acid (ALA) obtained from plant oils, and eicosapentaenoic 
acid (EPA) and docosahexaenoic acid (DHA) procured from fish, other 
seafood, and fish oil supplements. Omega-3 fatty acids have been an 
intervention of interest to decrease the residual CVD risk after statin 
therapy. Epidemiological studies suggested that omega-3 fatty acids are 
associated with reduced CVD mortality, possibly secondary to their 
biological effects on plaque stabilization, reduction of inflammation, 
inhibition of platelet aggregation, and TG reduction [77]. The first major 
trial for omega-3 supplements in the pre-statin era, Gruppo Italiano per 
lo Studio della Sopravvivenza nell’Infarto Miocardio - Prevenzione 
(GISSI-P), randomized 11,324 patients with a recent MI to 1g daily 
omega-3, vitamin E both or none (Table 2). It demonstrated a 14 % 
reduction in death, non-fatal MI, and stroke in those receiving omega-3 
(a mix of EPA and DHA) over 4 years of follow up [78–80]. 

There have been multiple key trials in the post-statin era, though 
comparison is difficult due to differences in omega-3 doses, formulations 
(with EPA thought to have more effect than DHA), placebo formulations, 
and patient populations. In the open-label Japan EPA Lipid Intervention 
Study (JELIS) trial, 18,645 patients with hypercholesterolemia, with or 
without CHD, were randomized to 1,800 mg of daily EPA in addition to a 
statin, versus a statin alone [81]. The trial noted a 19 % relative 
reduction (p=0.011) in major CVD events over an average follow up 
period of 4.6 years that was independent of the degree of LDL-C 
reduction. In subgroup analyses, this was shown to be driven by the 
secondary prevention cohort, with a significant 19 % relative risk 
reduction (p=0.048), as the effect on the primary prevention cohort did 
not reach statistical significance. The Study of Cardiovascular Events in 
Diabetes (ASCEND) trial, which studied omega-3 fatty acids at a dose of 
840 mg per day in 15,480 patients with diabetes without CHD, and the 
VITAL trial, with a 2 × 2 factorial design which studied 25,871 healthy 
middle aged adults (men>50, women> 55 years of age) randomized to 
vitamin D or placebo and omega-3 fatty acids at a dose of 1g per day or 
placebo, did not show statistically significant effectiveness in the 

primary prevention of overall CVD events [82,83]. The VITAL trial 
showed a significant 28 % reduction in total MI (1.1 % vs. 1.5 %, HR 
0.72, 95 % CI 0.59-0.90), though the primary outcome of CV death, 
nonfatal MI, or stroke, was not significant (3.0 % vs. 3.2 %, HR 0.92, 95 
% CI 0.80-1.06, p=0.24). Moreover, the nested VITAL-CKD and the 
VITAL Rhythm, showed no difference in progression/development of 
CKD among patients with type 2 diabetes or AF development [84,85]. 

The Long-Term Outcomes Study to Assess Statin Residual Risk with 
Epanova in High Cardiovascular Risk Patients with Hyper-
triglyceridemia (STRENGTH) trial sought to examine the effect of 
omega-3 fatty acids, specifically EPA combined with DHA, in a higher 
risk patient population [86,87]. This randomized, parallel, double-blind 
study, included 13,078 statin treated patients (mean age 63, 35 % fe-
male, 70 % with diabetes) with CVD or at high risk for CVD and with 
elevated TG and low HDL-C randomized to omega-3 fatty acids or pla-
cebo. The trial was terminated when interim data suggested a low 
probability of benefit. The primary outcome of cardiovascular death, 
myocardial infarction, stroke, coronary revascularization, or hospitali-
zation for unstable angina occurred in 12.0 % of the omega-3 group 
compared with 12.2 % of the placebo group (p=0.84). The Reduction of 
Cardiovascular Events with Icosa- pent Ethyl–Intervention Trial 
(REDUCE-IT) trial, however, did show a benefit in patients randomized 
to icosapent ethyl (IPE) 4g total daily, with a 25 % reduction in CVD 
events among a population of 8179 statin treated patients (median age 
64, 28.8 % female) with elevated fasting TG (135-499 mg/dL) and either 
CVD (70.7 %) or at high risk for developing CVD (HR=0.75; 95 %CI: 
0.68- 0.83; p<0.001) [87]. Notably, the benefit of therapy was inde-
pendent of TG reduction. The key differences between the REDUCE-IT 
trial and the STRENGTH trial include different patient populations, 
with REDUCE-IT having a greater proportion of secondary prevention 
patients (70.7 % versus 55.9 % in STRENGTH) and higher overall CVD 
event rates (25.5 % in the placebo group over 4.9 years of follow up 
versus 12 % over 3.5 years in STRENGTH), different omega-3 formula-
tions (REDUCE-IT had a higher dose and more purified EPA formula-
tion), and different placebos (with REDUCE-IT using mineral oil and 
STRENGTH using corn oil) [76,88]. 

3.4. Fibrates 

Fibrates activate peroxisome proliferator-activated receptors, 
increasing the production of apoA-I and apoA-II, while reducing the 
production of apoB, apoC-III, VLDL, and TG [64]. Fibrates were first 
tested in the era before widespread use of statins. The Veterans Affairs 
High-Density Lipoprotein Cholesterol Intervention Trial (VA-HIT) 
showed that gemfibrozil was associated with a 31 % reduction in TG and 
a 22 % reduction in CHD death in patients with CHD whose primary 
lipid abnormality was low HDL-C [65]. A mortality benefit was not 
appreciated after 6 years of follow up in the Bezafibrate Infarction 
Prevention Study (BIP), which tested bezafibrate in a population of 
patients with CHD [66]. The Fenofibrate Intervention and Event 
Lowering in Diabetes (FIELD) study evaluated fenofibrate use in a 
population of diabetic patients without a clear indication for 
cholesterol-lowering therapy, and also did not show a mortality benefit, 
though the placebo group was more likely to be treated with alternative 
lipid lowering agents (primarily statins) [67]. Of note, statin use was 
overall quite low in these early fibrate trials, which makes them less 
applicable in the modern era. 

Two key trials served to evaluate fibrates in the era of widespread 
statin use. The Action to Control Cardiovascular Risk in Diabetes 
(ACCORD) Lipid trial was notable for studying fibrates in a primary and 
secondary prevention cohort of diabetic patients, all of whom were 
started on simvastatin at the randomization visit, and it did not show a 
reduction in mortality or CVD events in the fenofibrate group despite a 
16 % reduction in TG compared to placebo [68]. The Pemafibrate to 
Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients 
with Diabetes (PROMINENT) trial, which studied pemafibrate use in 

Central 1. Illustration. APO=apolipoprotein; ANGPTL=angiopoietin-like 
proteins; ASCVD=Atherosclerotic Cardiovascular Disease; CAD=coronary ar-
tery disease; CVA=cerebral vascular accident; CVD=cardiovascular disease; 
DM=diabetes mellitus; FA=fatty acid; FGF=fibroblast growth factor; Hx=his-
tory; LDL-C=low-density lipoprotein-cholesterol; PAD=peripheral artery dis-
ease; TG=triglycerides; HoFH=homozygous familial hypercholesterolemia; 
siRNA=small interfering RNA; mRNA=messenger RNA. 
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Table 2 
Description of major clinical trials on hypertriglyceridemia with ASCVD endpoints.  

Name Published 
(month/ 
year) 

Intervention Placebo 
Composition 

Participants Major Inclusion Criteria Primary or 
Secondary 
Prevention 

Length of 
Trial (Actual 
Median/ 
Mean 
Follow-Up, if 
Given) 

Primary Endpoint Major Findings 
(compared to control) 

Treatment 
Composition (per 
day) 

GISSI-P 8/1999 EPA/DHA 
+/- vitamin 
E 

no placebo 11324 MI within past 3 months Secondary 3.5 years cumulative rate of all-cause 
death, non-fatal MI, and non- 
fatal stroke 

10 % and 15 % RRR of 
EPA/DHA vs placebo by 
two-way and four-way 
analyses, respectively 

850–882 mg of 
EPA/DHA (ratio 
1:2), 300 mg 
vitamin E 

JELIS 3/2007 EPA no placebo 18645 Japanese particupants with total 
cholesterol > ~250 mg/dL 

Mixed 4.6 (mean) composite: sudden cardiac 
death, fatal and non-fatal MI, 
and other non-fatal events 
including unstable angina 
pectoris, angioplasty, stenting, 
or coronary artery bypass 
grafting 

19 % RRR (0.7 % ARR) 
(P=0.011) 

600 mg of EPA, 
three times a day 
after meals (to a 
total of 1800 mg 
per day) 

ASCEND 10/2018 EPA/DHA olive oil 15480 age ≥ 40 years, DM, and without 
evidence of CVD 

Primary 7.4 (mean) composite: nonfatal MI or 
stroke (excluding ICH), TIA, or 
vascular death excluding ICH 

8.9 % vs 9.2 % (rate 
ratio, 0.97; 95 % CI, 
0.87-1.08; P=0.55) 

840 mg of marine 
n− 3 fatty acids 
(460 mg of EPA/ 
380 mg of DHA) 
(fatty acid group) 

REDUCE-IT 1/2019 IPE mineral oil 8179 age ≥ 45 years with CVD or age ≥
50 with DM and additional risk 
factors; patients were on statin 
therapy, with TG 135-499 mg/dL, 
and LDL-C 41-100 mg/dL 

Mixed 4.9 (median) composite: cardiovascular 
death, nonfatal MI, nonfatal 
stroke, coronary 
revascularization, or unstable 
angina 

17.2 % vs 22.0 % (HR, 
0.75; 95 % CI, 0.68-0.83; 
P<0.001) 

4 g IPE 

VITAL 4/2020 EPA/DHA +
vitamin D 

not disclosed 25871 age ≥ 50 (men) or 55 (women) 
years with no prior history of 
cancer (except non-melanoma 
skin cancer), MI, stroke, transient 
ischemic attack, angina pectoris, 
coronary-artery bypass grafting, 
or percutaneous coronary 
intervention 

Primary 5.3 (median) composite: MI, stroke, and 
death from cardiovascular 
causes 

3.0 % vs. 3.2 % (HR, 
0.92; 95 % CI 0.80-1.06, 
P=0.24) 

840 mg of EPA/ 
DHA (ratio 1.3:1); 
2000 IU/day 
chlecalciferol 

EVAPORATE 10/2020 IPE mineral oil 80 age 30–85 years with coronary 
atherosclerosis documented by 
MDCT (one or more angiographic 
stenoses with ≥ 20 % narrowing), 
on statin therapy, and with 
persistently elevated TG 
(135–499 mg/dL) 

Primary 1.5 change in low-attenuation 
plaque volume at 18 months 
between IPE and placebo 
groups 

17 % reduction vs 109 % 
increase (P=0.0061) 

4 g IPE vs 4 g 
mineral oil 

STRENGTH 11/2020 EPA/DHA corn oil 13078 age ≥ 18 years with established 
ASCVD; DM with at least 1 
additional risk factor: smoking, 
HTN, hs-CRP ≥ 2, albuminurial; 
or high-risk primary prevention 
patients with at least 1 additional 
risk factor: family history of 
premature CAD, smoking, hs-CRP 
≥ 2 mg/L, CKD, or coronary 
calcium score > 300 Agatston 
units 

Mixed 3.5 (median) composite: cardiovascular 
death, nonfatal MI, nonfatal 
stroke, coronary 
revascularization, or unstable 
angina requiring 
hospitalization 

Terminated - futility 
(12.0 % vs 12.2 %, HR, 
0.99 [95 % CI, 0.90- 
1.09]; P=0.84) 

- 

(continued on next page) 
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Table 2 (continued ) 

Name Published 
(month/ 
year) 

Intervention Placebo 
Composition 

Participants Major Inclusion Criteria Primary or 
Secondary 
Prevention 

Length of 
Trial (Actual 
Median/ 
Mean 
Follow-Up, if 
Given) 

Primary Endpoint Major Findings 
(compared to control) 

Treatment 
Composition (per 
day) 

OMEMI 11/2020 EPA/DHA corn oil 1027 age 70-82 years admitted for MI Secondary 2 composite: nonfatal MI, 
unscheduled revascularization, 
stroke, all-cause death, heart 
failure hospitalization 

21.4 % vs 20.0 % (HR, 
1.08; 95 % CI, 0.82-1.41; 
P=0.60) 

930 mg EPA/660 
mg DHA, corn oil 
(56 % linoleic acid, 
32 % oleic acid, 10 
% palmitic acid) 

VA-HIT 6/2001 Gemfibrozil not defined 2531 men < 74 years old, established 
CAD, HDL-C < 40 mg/dL, LDL-C 
< 140 mg/dL, and TG < 300 mg/ 
dL 

Secondary 5.1 (median) nonfatal MI or death from 
coronary causes 

22 % RRR (4.4 % ARR) in 
the primary outcome 
(P=.0006) 

1200 mg 
gemfibrozil 

BIP 7/2020 Bezafibrate not defined 3090 age 45-74 years with previous 
myocardial infarction or stable 
angina, total cholesterol of 180- 
250 mg/dL, HDL-C ≤ 45 mg/dL, 
TG ≤ 300 mg/dL, and LDL-C ≤
180 mg/dL 

Secondary 16 years 
(mean) 

fatal or nonfatal MI or sudden 
death 

13.6 % vs 15.0 % 
(P=0.26); post hoc 
analysis: in patients with 
TG ≥ 200 mg/dL, 
reduction in the 
cumulative probability 
of the primary end point 
was 39.5 % (p=0.02) 

400 mg bezafibrate 

FIELD 11/2005 Fenofibrate not defined 9795 age 50–75 years, type 2 DM, and 
not taking statin therapy at study 
entry 

Mixed 5 years coronary heart disease death or 
non-fatal MI 

11 % RRR (HR, 0.89; 95 
% CI, 0.75–1.05, 
P=0.16) 

200 mg fenofibrate 

ACCORD 4/2021 Fenofibrate not defined 5518 DM2, Hgb A1c ≥ 7.5 %, and either 
age > 40 with evidence of ASCVD 
or age ≥ 55 years and at least 2 
CVD risk factors 

Mixed 4.7 (mean) composite: major 
cardiovascular event, including 
nonfatal MI, nonfatal stroke, or 
death from cardiovascular 
causes 

2.2 % vs 2.4 % (HR, 0.92; 
95 % CI, 0.79-1.08; 
P=0.32) 

160 mg fenofibrate 

PROMINENT 11/2022 Pemafibrate not defined 10544 Type 2 DM, TG 200–499 mg/dl, 
HDL-C ≤ 40 mg/dl, and on 
moderate-high intensity statin 
therapy or have LDL-C ≤ 70 mg/ 
dl within prior 12 months 

Mixed 3.4 (median) composite: nonfatal MI, 
nonfatal ischemic stroke, 
hospitalization for unstable 
angina requiring urgent 
coronary revascularization, 
and cardiovascular death 

Terminated - futility 
(hazard ratio, 1.03; 95 % 
confidence interval, 0.91 
to 1.15) 

0.2 mg pemafibrate 
twice daily 

CAD: coronary artery disease, CKD: chronic kidney disease, CVD: cardiovascular disease, DHA: docosahexaenoic acid, HDL-C: high-density lipoprotein cholesterol, hs-CRP: high-sensitivity c-reactive protein, ICH: 
intracranial hemorrhage, IPE: icosapent ethyl, LDL-C: low-density lipoprotein cholesterol, MI: myocardial infarction, RRR: relative risk reduction, TG: triglyceride. 
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patients with diabetes, HTG, and low HDL-C, put an end to the discus-
sion of fibrate use for ASCVD risk reduction. Among its population of 
patients, 67 % of which were in the secondary prevention cohort, and 96 
% of whom were on a statin, there was no reduction in adverse CVD 
events associated with the addition of fibrate therapy despite a 26 % 
reduction in TG and VLDL compared to placebo [69]. 

3.5. Glucagon-Like Peptide 1 Receptor Agonists (GLP1-RA) 

A new set of medications named GLP1-RAs, are now guideline 
recommend in the management of type 2 DM and overweight status or 
obesity. They have been shown to reduce the risk of MACE in patients 
with type 2 DM at high ASCVD risk [89]. Exenatide, liraglutide, and 
dulaglutide are first generation GLP1-RA. Exenatide was associated with 
a modest decrease in TG and weight but did not show significant car-
diovascular benefits. Conversely, both liraglutide and dulaglutide 
resulted in a significant reduction in MACE compared to placebo in 

patients with type 2 DM, and were also associated with a 
dose-dependent weight loss. No significant changes were documented 
on TG levels [90–92]. However, in a diabetes population receiving up to 
liraglutide 1.8 mg weekly, a 60 % reduction in CM secretion and a 33 % 
reduction in CM synthesis was reported, with no significant effects on 
VLDL [93]. Semaglutide is a potent long-acting GLP1-RA. In an over-
weight and obese population, Semaglutide demonstrated a 16 % 
reduction in TG levels [94]. The SELECT multicenter trial included 17, 
604 patients (aged ≥45 years, BMI ≥27 kg/m2) with established CVD 
and no history of diabetes (28 % female, 66 % prediabetes, 88 % on 
statin therapy), who were randomized to semaglutide or placebo. This 
trial showed that those randomized to semaglutide had lower incidence 
of cardiovascular death, nonfatal MI, or nonfatal stroke HR 0.80 (95 %CI 
0.72-0.90, p<0.001). In addition, semaglutide improved lipid measures, 
inflammatory markers, and blood pressure. The mean change in TG 
levels was -18.34 % with semaglutide and -3.2 % with placebo (esti-
mated treatment difference, -15.64 %; 95 %CI -16.68 % to -14.58 %) 

Table 3 
Description of major clinical trials on hypertriglyceridemia with lipid endpoints.  

Name Published 
(month/ 
year) 

Phase Intervention Target Mechanism Participants Major Inclusion 
Criteria 

Primary Endpoint Major Findings 
(compared to 
control) 

APPROACH 8/2019 3 Volanesorsen APOC3 antisense 
oligonucleotide 

66 FCS, TG ≥ 750 mg/dL TG relative to the 
baseline 
percentage 
change, at month 
3 

ApoC3 - 84 % vs 
6.1 % reduction, 
TG - 77 % vs 18 % 
reduction; non- 
HDL-c - 46 % 
reduction, HDL - 
46 % increase, 
LDL-C - 136 % 
increase, total 
ApoB - 20 % 
increase 

COMPASS 5/2021 3 Volanesorsen APOC3 antisense 
oligonucleotide 

114 HTG (TG ≥ 500 mg/ 
dL), BMI ≤ 45 kg/m2 

% change from 
baseline in TG at 
3 months 

TG - 71.2 % vs 0.9 
% reduction 

BROADEN 11/2022 2/3 Volanesorsen APOC3 antisense 
oligonucleotide 

40 FPLD, HTG, T2DM % change from 
baseline in TG at 
3 months 

TG - 67 % relative 
reduction, HFF - 
53 % relative 
reduction 

TRANSLATE - 
TIMI 70 

5/2022 2 Vupanorsen ANGPTL3 antisense 
oligonucleotide 

286 TG ≥ 150 mg/dL but ≤
499 mg/dL, non–HDL- 
c ≥ 100 mg/dL, on 
SOC LLT 

% change from 
bseline Non-HDL- 
C at 24 weeks 

22.0 - 27.7 % 
reduction in non- 
HDL-c and 41.3- 
56.8 % reduction 
in TG levels, 6.0- 
15.1 % reduction 
in ApoB; elevation 
of liver enzymes 
≥3 times the upper 
limit of normal 
seen in up to 44.4 
% of patients; up to 
76 % increase in 
HFF 

ELIPSE HoFH 8/2022 3 Evinacumab ANGPTL3 monoclonal 
antibody 

65 Diagnosis of functional 
HoFH 

% change from 
baseline 
calculated LDL-C 
at week 24 

50.4 % reduction 
in TG (secondary 
analysis) 

(NCT03452228) 3/2023 2 Evinacumab ANGPTL3 monoclonal 
antibody 

52 TG ≥ 1000 mg/dL on 
more than 1 occasion, 
all fasting TG values ≥
500 mg/dL (5.6 
mmol/L) at screening, 
prior hospitalization 
and diagnosis of acute 
pancreatitis in the past 
10 years, on SOC LLT 

% change From 
baseline in TG 
following 12 
weeks of repeated 
IV doses of 
evinacumab in 
actual cohort 3 
participants with 
MCS 

27.1 % reduction 
in TG for cohort 3 

ENTRIGUE 6/2024 2 Pegozafermin FGF21 growth factor 
analogue 

85 TG ≥ 500 mg/dL and 
≤ 2,000 mg/dL 

median % change 
in TGs from 
baseline to 8 
weeks 

43.7 % relative 
reduction in TG 

FCS: familial chylomicronemia syndrome, FPLD: familial partial lipodystrophy, HDL-C: high-density lipoprotein cholesterol, HFF: hepatic fat fraction, LDL-C: low- 
density lipoprotein cholesterol, LLT: lipid lowering therapy, SOC: standard of care, TG: triglyceride. 
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[95]. The particular mechanism of the outcomes effect and potential 
contribution of TG lowering still needs to be determined. Lastly, Tirze-
patide, a novel GLP1-RA and glucagon inhibitory peptide (GIP) agonist, 
has been associated with a 20.9 % reduction in weight and a 20.3 % 
reduction in TG levels [96]. This new group of medications shows 
promising cardiometabolic effects with lowering of TG but they should 
not be used in those with history of pancreatitis. 

3.5.1. Emerging Treatments for Hypertriglyceridemia 

3.5.1.1. Apolipoprotein C3 Inhibition. Apolipoprotein C3 (ApoC3) is a 
circulating apolipoprotein found on the surface of TRL and is a key 
regulator of TRL metabolism primarily in the liver and intestine [97]. It 
inhibits the activation of LPL [98,99]. ApoC3 also inhibits the uptake of 
TRL via LDL receptor and LDL receptor-related protein-1 [100]. Lastly, 
intracellularly, ApoC3 promotes TG synthesis and VLDL assembly [101]. 
It has been proposed that ApoC3 promotes endothelial inflammation 
[102,103]. 

3.6. Volanesorsen 

Volanesorsen (ISIS 304801) is a second generation 2′-O-(2- 
methoxyethyl)–modified antisense oligonucleotide (ASO) that inhibits 
the synthesis of APOC3 in the liver by specifically binding to APOC3 
mRNA and leading to its degradation by RNase H1 [104]. 

In the multicenter randomized trial, Volanesorsen and Triglyceride 
Levels in Familial Chylomicronemia Syndrome (APPROACH), 66 pa-
tients with FCS received Volanesorsen 300mg/week or placebo (Table 3) 
[105]. A significant reduction of ApoC3 and TG was documented in the 
treatment group (84 % and 77 %; P<0.001) compared to the control 
group (6.1 % and 17 %; P<0.001). The treatment was effective 
regardless of baseline TG levels or presence of baseline therapy for HTG, 
with 76 % and 73 % reductions, respectively. Moreover, an increase in 
LDL-C and apoB was reported (136 % and 20 %, respectively). This 
translated to an absolute increase from 28 mg/dL to 61 mg/dL in the 
treatment arm, and was accompanied with a reduction in non-HDL-C of 
46 % (from 276 mg/dL to 131 mg/dL) [105]. 

In terms of safety, thrombocytopenia, was reported in 76 % and 24 % 
of the treatment and control group, respectively. Additionally, 61 % of 
patients had at least one injection-site reaction, and consequently, one 
additional subject dropped out from the treatment arm. Subsequently, 
the Efficacy and Safety of Volanesorsen in Patients with Multifactorial 
Chylomicronemia (COMPASS) trial expanded the study population to 
adults with multifactorial severe HTG or FCS (baseline serum TG >500 
mg/dL). In a cohort of 114 patients, a 71.2 % reduction of TG levels was 
documented in the Volanesorsen group, whereas the control group had a 
0.9 % increase in TG level. The development of thrombocytopenia be-
tween treatment and placebo groups was reported in 13 % versus 5 %, 
respectively. Also, injection-site reactions occurred in 24 % versus 0.2 % 
of the Volanesorsen and placebo groups, respectively [106]. 

A 2022 meta-analysis of four randomized control trials on vola-
nesorsen documented a reduction of 74 % in TG, 71 % in VLDL-C, and 69 
% in apoB48, as well as an increase of 46 % in HDL-C. Volanesorsen was 
also associated with a 10-fold reduction in the risk of AP [107]. The 
Assessment of Efficacy and Safety of Volanesorsen for Treatment of 
Metabolic Complications in Patients with Familial Partial Lipodystrophy 
(BROADEN) was a multicenter, double-blind, randomized 
placebo-controlled phase 2/3 trial in patients with familial partial lip-
odystrophy (FPLD) which reported a reduction in TG level by 67 % more 
in the treatment group (95 % CI, –104 to–30; P=0.0009). A 53 % relative 
reduction in hepatic fat fraction in the treatment arm was also noted at 
12 months. (observed mean [SD]: 9.7 [7.65] vs. 18.0 [8.89]; P=0.0039) 
[108]. Thrombocytopenia occurred in 52.6 % of the Volanesorsen group 
and 11.1 % of the placebo group. A recent fixed-effects meta-analysis on 
three randomized controlled trials on patients with HTG>500mg/dL 

reported a significant reduction in the incidence of AP in volanesorsen 
group compared to placebo (OR 0.18; 95 % CI 0.04-0.82) [105,106,108, 
109]. TG < 500mg/dL occurred in 84 % of the patients treated with 
volanesorsen compared to 35 % in the placebo group. 

The open-label extension trial of Volanesorsen 300mg/week in pa-
tients with FCS (APPROACH-OLE) examined patients from the 
APPROACH trial, COMPASS trial, and treatment naïve patients not in 
either index study for up to 104 weeks [110]. The reduction in TG, 
non-HDL-C, and APOC3 at 3, 6, 12, and 24 months after baseline were 
comparable to those found in the index study and were also consistent in 
treatment-naïve patients. Also, consistent with the index studies, the 
most common adverse event was injection-site reactions (61.8 %); 25 % 
of patients had significant thrombocytopenia, which led to 10 patients 
(15 %) being removed from the study. 

Given these results, the European Medicines Agency (EMA) allowed 
conditional marketing authorization for patients with confirmed FCS 
who are at high risk for AP and in whom there is a suboptimal reduction 
in TG with other measures [111]. However, the US Food and Drug 
Administration (FDA) denied approval to Volanesorsen due to concerns 
for thrombocytopenia and bleeding risk [112,113]. 

3.7. Olezarsen 

Olezarsen (AKCEA-APOCIII-LRx) is a third-generation ASO that is 
conjugated to an N-acetyl-galactosamine (Gal-NAc), which increases the 
first-pass hepatic clearance by specifically binding hepatic asialoglyco-
protein receptors and targeting APOC3 mRNA [114,115]. Preclinical 
studies have shown a 20-fold improvement in potency as compared to 
Volanesorsen due to receptor mediated uptake in hepatocytes[116,117], 
and the addition of Gal-NAc has already shown promise in a multicenter 
phase 2 clinical trial in patients with elevated lipoprotein(a) [Lp(a)] at 
lower dosages than prior ASO [118]. 

In 2016, a phase 1/2a, double blind, randomized, placebo- 
controlled, dose-escalation study on olezarsen reported a significant 
reduction of ApoC3 and TG levels (70-80 % and 60-70 %, respectively). 
No major adverse events were reported; there were no episodes of 
thrombocytopenia and only one episode of injection site reaction [115]. 
In 2018, a phase 2, multi-center, dose-ranging, randomized 
double-blind, placebo-controlled trial randomized 114 subjects to ole-
zarsen 10-50 mg/month or placebo [119]. Notably, patients were 
receiving standard-of-care preventative therapies for their elevated 
ASCVD risk. At six months, the treatment arm sustained a mean percent 
TG reduction of 23 % with 10 mg every 4 weeks, 56 % with 15 mg every 
2 weeks, 60 % with 10 mg every week, and 60 % with 50 mg every 4 
weeks, compared with an increase of 6 % for the pooled placebo group 
(p-values ranged from 0.0042 to <0.0001). Olezarsen also led to sig-
nificant reductions in VLDL-C, non-HDL-C, and apoB, while increasing 
HDL-C. In the treatment group, 10 % of participants experienced serious 
adverse events compared to 4 % in the placebo group; none were 
thought to be drug-related. There were no platelet count reductions to 
less than 100,000/mL. 

Further insights will be gained from several ongoing studies 
(Table 4). The BALANCE trial (NCT04568434) is a multi-center double- 
blind study that aims to assess olezarsen’s effect on percent change in TG 
over a 53-week period in 66 patients diagnosed with FCS who have 
fasting TG ≥880 mg/dL and history of pancreatitis [120]. Two other 
phase 3, multi-center, randomized, double-blind, placebo-controlled 
trials (NCT05079919 and NCT05552326) are being done in patients 
who have fasting TG ≥500 mg/dL and are on standard of care 
lipid-lowering therapies at baseline [121,122]. A total of 540 and 390 
subjects are being recruited for each study and the primary endpoint in 
both trials is percent change from baseline in fasting TG at 6 months. 
Lastly, a phase 3, multi-center, placebo-controlled trial (NCT05610280) 
in 1312 participants with HTG and ASCVD is being undertaken [123]. 
Subjects must meet one of two inclusion criteria: 1. HTG with fasting TG 
≥200 mg/dL and <500 mg/dL with known ASCVD or increased risk for 
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ASCVD, or 2. Severe HTG with fasting TG ≥500 mg/dL with adherence 
to standard of care lipid lowering therapies. The primary outcome 
measure is percent change from baseline in fasting TG at 25 weeks. A 
coronary tomography angiography sub-analysis is planned to evaluate 
whether olezarsen use may reduce coronary plaque progression. 

Olezarsen presents a promising therapeutic option for patients 
affected by MCS, FCS, and severe HTG who are at high risk of AP. As 
such, on February 15th, 2024, the FDA granted Orphan Drug designa-
tion to olezarsen for the treatment of FCS [124]. Also, the phase 2 
BRIDGE-TIMI 73a (NCT05355402), which examined the safety and ef-
ficacy of olezarsen in patients with HTG and high CVD risk, was recently 
completed and slated as a late-breaking presentation at the American 
College of Cardiology 73rd Annual Scientific Session and Expo (ACC 
2024) [125]. 

3.8. ARO-APOC3 

ARO-APOC3 is a Gal-NAc conjugated short interfering RNA which 

targets hepatocyte APOC3 transcription [126]. Phase 1 trials in patients 
with severe HTG showed 96 % reductions in ApoC3 and 92 % reductions 
in TG levels in the absence of treatment-related serious or severe adverse 
events [127]. Consequently, in 2023, Arrowhead Pharmaceuticals 
received FDA Fast Track designation for reducing HTG in patients with 
FCS. The phase 2 SHASTA-2 study examining the effect of ARO-APOC3 
in patients with severe HTG will be presented as a late-breaking trial at 
ACC 2024; preliminary reports suggest significant reductions in APOC-3 
and TG [128]. At present, ARO-APOC3 is undergoing the phase 2 MUIR 
study (NCT04998201) in patients with mixed dyslipidemia and phase 3 
PALISADE study (NCT05089084) in patients with FCS [129]. 

3.8.1. Apolipoprotein C2 Inhibition 
ApoC2 resides on TRL and has a central role in modulating LPL ac-

tivity largely through opposing the suppressive effects of ApoC3, and 
thus, activating LPL [130–133]. Several studies have shown that ApoC2 
may be a rate limiting step in LPL-mediate lipolysis and that both low 
and high circulating levels are associated with HTG [62,134,135]. A 

Table 4 
Description of major ongoing clinical trials on hypertriglyceridemia.  

Drug Target Mechanism Name Trial Number Phase Participants Population Primary Endpoint Estimated 
Completion 

Olezarsen APOC3 ASO - NCT05579860 1 104 Healthy, adult male or 
female, 18 to 64 years of 
age 

bioequivalence of 
olezarsen between 2 
subcutaneous (SC) 
formulations [(autoinjector 
(AI) and vial] at 2 dose 
levels 

5/2022 

Olezarsen APOC3 ASO - NCT05355402 2 152 1. HTG with fasting TG ≥
150 mg/dL and < 500 
mg/dL w/ known or 
increased risk for ASCVD, 
or 2. Severe HTG with 
fasting TG ≥ 500 mg/dL 
on SOC lipid lowering 
therapies 

% Change From Baseline in 
Fasting TG at Week 25; 
CCTA sub study to evaluate 
plaque progression 

12/2023 

Olezarsen APOC3 ASO BALANCE NCT04568434 3 66 FCS, TG ≥ 880, prior AP % Change from Baseline in 
Fasting TG at 6 Months 

10/2023 

Olezarsen APOC3 ASO - NCT05079919 3 540 TG ≥ 500, SOC LLT % Change from Baseline in 
Fasting TG at 6 Months 

2/2025 

Olezarsen APOC3 ASO - NCT05185843 3 24 FCS, previously received 
volanesorsen 

safety outcomes, including 
thrombocytopenia, liver 
injury, renal injury, and 
bleeding 

6/2025 

Olezarsen APOC3 ASO - NCT05610280 3 1312 1. HTG with fasting TG ≥
200 mg/dL and < 500 
mg/dL w/ known or 
increased risk for ASCVD, 
or 2. Severe HTG with 
fasting TG ≥ 500 mg/dL 
on SOC lipid lowering 
therapies 

% Change From Baseline in 
Fasting TG at Week 25; 
CCTA sub study to evaluate 
plaque progression 

6/2025 

Olezarsen APOC3 ASO - NCT05552326 3 390 TG ≥ 500, SOC LLT % Change from Baseline in 
Fasting TG at 6 Months 

7/2025 

ARO-APOC3 APOC3 siRNA SHASTA- 
2 

NCT04720534 2 229 TG ≥ 500 mg/dL and ≤
4000 mg/dL 

% Change From Baseline in 
Fasting TG at 24 weeks 

8/2023 

ARO-APOC3 APOC3 siRNA MUIR NCT04998201 2 353 TG ≥ 150 mg/dL but ≤
499 mg/dL, non-HDL-C ≥
100 mg/dL OR LDL-C ≥
70 mg/dL 

% Change From Baseline in 
Fasting TG at 24 weeks 

8/2023 

ARO-APOC3 APOC3 siRNA PALISADE NCT05089084 3 72 FCS, TG ≥ 10 mmol/L (≥
880 mg/dL), on SOC LLT 

% Change From Baseline in 
Fasting TG at 10 months 

4/2026 

ARO-ANG3 ANGPTL3 siRNA ARCHES- 
2 

NCT04832971 2 204 TG ≥ 150 mg/dL but ≤
499 mg/dL, LDL-C ≥ 70 
mg/dL OR non-HDL-C ≥
100 mg/dL, on SOC LLT 

% Change From Baseline in 
Fasting TG at 24 weeks 

12/2024 

Pegozafermin FGF21 growth 
factor 
analogue 

ENTRUST NCT05852431 3 360 TG ≥ 500 mg/dL and ≤
2000 mg/dL 

% Change From Baseline in 
Fasting TG at 26 weeks 

9/2026 

AP: acute pancreatitis, ASO: anti-sense oligonucleotide, ASCVD: atherosclerotic cardiovascular disease, ASO: anti-sense oligonucleotide, CCTA: coronary computed 
tomography angiography, FCS: familial chylomicronemia syndrome, FPLD: familial partial lipodystrophy, HDL-C: high-density lipoprotein cholesterol, HFF: hepatic 
fat fraction, HTG: hypertriglyceridemia, siRNA: short interfering RNA. 
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study by Silbernagel et al. examined 3141 subjects over 10 years and 
found a trend towards an inverse J-shaped relationship between ApoC2 
quintiles and CVD mortality [136]. They also used in vitro experiments 
to show that as more exogenous ApoC2 was added, LPL activity 
increased until very high levels of ApoC2 where function decreased, also 
following an inverted J-shaped relationship [136]. However, such a 
non-linear mechanistic relationship between ApoC2 and TG levels and a 
narrow therapeutic window renders ApoC2 modulation a difficult 
therapeutic target for pharmacologic management. Furthermore, 
neither genome-wide association nor Mendelian randomization studies 
have supported robust causal links between ApoC2 and ASCVD to date 
[137]. Studies with ApoC2 mimetic drugs have not passed the preclin-
ical phase [138,139]. 

3.8.1.1. Angiopoietin-Like Protein Inhibition. Lipoprotein Lipase is the 
central regulator of TG metabolism. LPL activity is upregulated in white 
adipose tissue (WAT) so TG can be hydrolyzed for FA uptake and 
downregulated in oxidative tissues (heart and skeletal muscle) when fed, 
and conversely, LPL function is increased in oxidative tissues while 
being decreased in WAP when fasting [140]. In addition to ApoC2 and 
ApoC3, the circulating angiopoietin-like (ANGPTL) proteins (ANGPTL3, 
ANGPTL4, and ANGPTL8) are key regulators of LPL activity [141,142]. 
The complex interplay of endocrine and paracrine functions within the 
ANGPTL family has not been completely elucidated. ANGPTL3 is 
secreted constitutively throughout the day to inhibit LPL in oxidative 
tissues and endothelial lipase while fasting, whereas ANGPTL8 and 
ANGPTL4 are secreted by the liver and adipocytes, respectively, to 
modulate TG partitioning [141,143]. ANGPTL8 complexes with and 
stimulates ANGPTL3, so in a fed state when ANGPTL8 is elevated overall 
LPL function in the skeletal and muscle tissue is decreased. Fasting in-
creases ANGPTL4, which inhibits LPL activity in WAT, and decreases 
ANGPTL8, which itself increases LPL activity in oxidative tissues while 
decreasing it in WAT [144]. Modulation of the ANGPTL axis has 
emerged as a possible target for HTG treatment. ANGPTL3 inhibition by 
ASO, siRNA, and monoclonal antibodies (mAb) is in development. 

3.9. Vupanorsen 

Vupanorsen (AKCEA-ANGPTL3-LRx or ISIS 703802) is an Gal-NAc- 
conjugated ASO. After successful phase 1 and 2a trials in subjects with 
HTG, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, the 
phase 2b trial, Effect of vupanorsen on Non-High-Density Lipoprotein 
Cholesterol Levels in Statin-Treated Patients With Elevated Cholesterol 
(TRANSLATE-TIMI 70) was conducted [145,146]. The study random-
ized 286 subjects on statin therapy to placebo or a range of vupanorsen 
doses who have non-HDL-C ≥100 mg/dL and TG 150 to 500 mg/dL to 
placebo or a range of vupanorsen doses. The treatment arm reported a 
22.0-27.7 % reduction in non-HDL-C and 41.3-56.8 % reduction in TG 
levels, however apoB only saw a 6.0-15.1 % reduction. Vupanorsen 
appeared to reduce the TG content of VLDL particles rather than 
decreasing their quantity, suggesting a potential, albeit modest, role in 
lowering the risk of ASCVD. Regardless, liver enzyme elevations ≥3 
times the upper limit of normal, which were seen in up to 44.4 % of 
patients, and dose-dependent increase in hepatic fat fraction of up to 76 
% ultimately led to discontinuation of the vupanorsen program [147]. 

3.10. Evinacumab 

Evinacumab is a fully human mAb directed against ANGPTL3. The 
phase 3 ELIPSE HoFH trial (NCT03399786) showed significant LDL-C 
reduction with evinacumab versus placebo (49.0 % reduction) in pa-
tients with homozygous familial hypercholesterolemia (HoFH) on 
maximal baseline lipid lowering therapies, and this led to FDA approval 
with orphan drug status for adjunct LDL-C lowering in this population 
[148]. In several studies including the ELIPSE HoFH trial and a 

double-blind, placebo-controlled, phase 2 trial in patients with or 
without heterozygous familial hypercholesterolemia (HeFH), evinacu-
mab also induced significant reductions in TG (up to 61.5 %); hence, 
evinacumab is being considered for the management of severe HTG 
[149–152]. In March of 2023, a phase 2 trial in subjects with severe HTG 
failed to achieve significance in the prespecified primary endpoint of 
percent change in mean TG. This was attributed to the lack of normal 
distribution of TG; however, a post-hoc analysis of median TG levels 
suggested significant reductions in fasting TGs with evinacumab in pa-
tients with normal LPL function [153]. Specifically, the cohort of pa-
tients with FCS with bi-allelic loss of function (LOF) LPL mutations did 
not show a significant TG reduction in the treatment versus control arm 
(− 27.7 % versus − 22.9 %, p=0.9495), whereas the response in the co-
horts with MCS with and without heterozygous LPL mutations was 
significant (–64.8 % versus +9.4 %, p=0.0076; and –81.7 % versus 
+80.9 %, p=0.0418, respectively). 

3.11. ARO-ANG3 

ARO-ANG3 is a subcutaneously administered Gal-NAc-conjugated 
double-stranded small interfering RNA, and results from the first in- 
human proof-of-concept phase 1 trial, AROANG001, were published in 
September of 2023 [154]. No major adverse events or significant 
thrombocytopenia were reported. ARO-ANG3 elicited up to a 92.7 % 
reduction from baseline in serum ANGPTL3 concentrations. There were 
concomitant reductions in serum TG (up to 58.58 %), LDL-C (up to 24.23 
%), and non-HDL-C (26.2 %). The phase 2 trial of ARO-ANG3 in adults 
with mixed dyslipidemia, ARCHES-2 (NCT04832971), is ongoing [155]. 

Studies evaluating the effects of GalNAc conjugated ASO and siRNA 
drugs targeting ANGPTL4 and ANGPTL8 on TG and ASCVD are in 
progress [140,156,157,158]. Preclinical knockout studies in ANGPTL4 
have shown adverse events in mice, leading to safety concerns [159]. 

3.11.1. Fibroblast Growth Factor Analogues 

3.11.1.1. Pegozafermin. Fibroblast growth factor 21 (FGF21) is a stress 
hormone, which regulates lipid and glucose metabolism, and has 
pleiotropic effects within the liver that are relevant to TG partitioning 
and flux. It has roles in FFA oxidation, down-regulation of de novo 
lipogenesis, TG secretion in the liver, TRL turnover, and up-regulation of 
LDL-receptor expression [160,161]. Pegozafermin is a glycopyegylated 
recombinant analog of human FGF21 that has been shown to improve 
lipid profiles, including reductions in TG in diabetic patients and those 
with nonalcoholic steatohepatitis. Recently, the phase 2b trial, The 
FGF21 Analog pegozafermin in Severe Hypertriglyceridemia (ENTRI-
GUE) was conducted among patients with severe HTG (fasting TG ≥ 500 
mg/dL and ≤2,000 mg/dL) across both a main cohort who were not on 
concurrent fibrate therapy and a fibrate expansion cohort [162]. After 8 
weeks of treatment, the pegozafermin group experienced a significant 
TG reduction (43.7 %) compared to the placebo group (95 %CI -57.1 %, 
-30.3 %; p<0.001). The effect was consistent across the 55 % of patients 
on baseline lipid modifying agents, including statins (45 %), prescrip-
tion O3FA (14 %), and fibrates (7 %). Furthermore, the study revealed 
incremental reductions in non-HDL-C (− 18.3 % vs − 0.6 %; 95 % CI: 
− 30.7 %, − 5.1 %; p=0.007, respectively), ApoC3 (–41.9 % vs –8.9 %; 95 
% CI: − 44.7 %, − 18.0 %; p<0.001), and liver fat (− 42.2 % vs − 8.3 %; 
95 % CI: − 60.9 %, − 8.7 %; p=0.012) in the pooled pegozafermin group 
as compared to placebo with an overall acceptable safety profile. Taken 
together, these findings suggest FGF21 analogs like pegozafermin may 
be promising therapies for robust management of HTG and ASCVD 
reduction. A phase 3 trial, ENTRUST (NCT05852431) in patients with 
severe HTG, which will evaluate pegozafermin versus placebo over 26 
weeks, is currently recruiting [163]. 
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4. Conclusions 

Hypertriglyceridemia is common and clearly pathological even at 
levels below the definition of optimal and associated with increased 
ASCVD risk in both primary and secondary risk populations where it 
represents a significant component of the residual risk. HTG signifi-
cantly amplifies the risk of ASCVD and can cause AP in particular in 
those with severe HTG. Guidelines recognize HTG as a risk-amplifying 
factor and advocate for a systematic and stepwise approach for TG 
reduction from those with mild to severe HTG (See Fig. 3 for a suggested 
algorithm). While trials aimed at decreasing ASCVD by reducing HTG 
have yielded negative results, in recent years, clinicians, researchers, 
and the pharmaceutical industry have shown increasing interest in 
developing novel pharmacological agents for HTG treatment. Emerging 
therapeutics targeting ApoC3 and ANGPTL3 have demonstrated prom-
ising safety profiles, tolerability, and efficacy in lowering TG and TRL. 
These treatments offer hope for further ASCVD risk reduction in patients 
with HTG, and numerous clinical trials evaluating these therapies are 
ongoing with therapies that decrease TRL and apoB being more likely to 
yield improvement in ASCVD outcomes. 
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