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ABSTRACT
A key problem in evolutionary developmental biology is identifying the sources of instructive
information that determine species-specific anatomical pattern. Understanding the inputs to large-
scale morphology is also crucial for efforts to manipulate pattern formation in regenerative
medicine and synthetic bioengineering. Recent studies have revealed a physiological system of
communication among cells that regulates pattern during embryogenesis and regeneration in
vertebrate and invertebrate models. Somatic tissues form networks using the same ion channels,
electrical synapses, and neurotransmitter mechanisms exploited by the brain for information-
processing. Experimental manipulation of these circuits was recently shown to override genome
default patterning outcomes, resulting in head shapes resembling those of other species in planaria
and Xenopus. The ability to drastically alter macroscopic anatomy to that of other extant species,
despite a wild-type genomic sequence, suggests exciting new approaches to the understanding
and control of patterning. Here, we review these results and discuss hypotheses regarding non-
genomic systems of instructive information that determine biological growth and form.
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“Treasure your exceptions! Keep them always uncovered
and in sight. Exceptions are like the rough brickwork of
a growing building which tells that there is more to
come and shows where the next construction is to be.”

—W. Bateson, The Methods and Scope of Genetics

Introduction: What determines anatomical
pattern?

Biological patterning is at the nexus of most of the impor-
tant problems facing basic biology and biomedicine. Under-
standing the instructive signals that ensure self-assembly
and maintenance of complex 3-dimensional morphology is
crucial for basic evolutionary and developmental biology.
How do cells, all derived from the same fertilized egg (the
original stem cell) and bearing the same DNA, become not
only differentiated into distinct cell types, but arranged into
stereotypical spatial patterns with no external guidance?
This question is at the center of understanding evolutionary

change because development is what links genetics (upon
which mutation acts) with form and function (upon which
selection operates). Moreover, the identification of and
functional control over these processes will lead to transfor-
mative strategies for injury repair, reversal of degeneration
and aging, and tumor reprogramming.1 If we understood
how the body created its structures in the first place, we
could coax it to repeat the process throughout its lifespan as
needed. Complex pattern control is thus at the heart of
regenerativemedicine as well as synthetic bioengineering.2,3

Importantly, pattern control does not solely occur
during the feed-forward process by which a fertilized
egg’s genome progressively unrolls toward an invariant
outcome. A view of embryogenesis as terminal shape
simply emerging over time from the parallel interactions
of molecular components is too limited. Patterning
information also has to be stored, processed, and acted
upon during shape homeostasis: regeneration, remodel-
ing, and maintenance of existing adult structures against
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damage, aging, and cancer.4-6 Salamanders readily
replace amputated body-parts, growing exactly what’s
missing and stopping when the correct pattern has been
achieved. Grafting the tail of one salamander to the flank
of another reveals an even more complex pattern-
homeostasis capability: over time, the grafted tail remod-
els to a limb – a structure more appropriate to its new
location.7 The most important aspect of regeneration
and remodeling is that it requires feedback: it cannot
simply be an emergent process from hardwired rules
because the details of injury are unpredictable for the
organism. Somatic plasticity requires an organism to be
able to recognize damage and enact repair from a vast
variety of starting states, toward the same (correct) target
morphology.

How do organs, tissues, and entire bodyplans know
what shape they are supposed to build and maintain
(Fig. 1A)? It is known that genomes do not specify target
morphology directly, but nevertheless it is thought that
the origin of a species’ specific anatomy, at multiple lev-
els of organization, is ultimately in its genome. The
genome is often held to be the entirety of the information
medium that determines pattern, and the key factor that
differentiates one species’ body from another. Thus, the
emphasis of modern synthetic biology is almost

exclusively on rewriting the genome.8 This view has to
be expanded in several ways toward epigenetic controls
of patterning (Fig. 1B). First is chromatin modification,
and the genomic regulatory code that drives cell type-
specific gene expression and thus cell specification and
differentiation.9,10 Second are biotic signals produced by
commensal organisms such as microbes,11,12 and abiotic
aspects of the environment, such as light which deter-
mines brain structure and function in some species13

and temperature which can determine sex.14

Feedback between genetic and physical forces is a key
determinant of patern formation, enabling gene regula-
tory circuits to generate specific anatomies. By expressing
molecules that couple to specific physical forces (e.g.,
adhesion proteins), genetic circuits can harness self-
organizing physical dynamics such as tensegrity,15 reac-
tion-diffusion,16,17 and many others.18-22 Consistent left-
right patterning23-25 is a perfect example of how impor-
tant physics is to pattern. While a cascade of regulatory
molecules (a gene-regulatory network, GRN) is required
for maintaining identity of the left and right sides of the
body,26-28 it is immediately clear that no genetic circuit
can be sufficient to distinguish left from right in space ab
initio. To establish proper laterality, the cascade of asym-
metrically-expressed genes is functionally positioned

Figure 1. Interplay of genetics and physics. (A) The process of developing an organism from a fertilized egg cell involves an interplay of
physics and genetics. Transcriptional gene-regulatory networks (GRNs) specify the production of effector proteins that allow coupling to
specific physical processes (adhesion, tension, electric propagation, diffusion, etc.). It is the emergent order in those physical processes
that ultimately results in a specific 3-dimensional shape of the body and its internal organs. (B) At least 3 codes participate in this pro-
cess. The genetic code, which maps DNA sequence to protein sequence, controls cell behavior. The Epigenetic code, which maps chro-
matin state to expression of specific genes, regulates cell type and physiological properties. The bioelectric code maps the distribution
of endogenous voltage gradients and electric fields in vivo, and appears to regulate large-scale anatomical patterning.54,55,75,108
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between essential physical processes: the chiral elements
that initiate asymmetry and orient it with the other 2
axes,29-31 and the physical forces that actually execute the
bending of asymmetric organs such as the heart and
gut.32,33

More generally, GRNs have to be “painted” onto a
pre-existing anatomical structure and integrated with
physical effectors of genetic information. Even this pic-
ture is likely too simple, as shape is not hardcoded but
can be edited by interactions with the environment.34

Trophic memory in deer antlers occurs when damage
made to one point in the branched antler structure will
cause an ectopic tine in that same location next year,
after the antler racks are discarded and re-grown anew.35

We currently lack the conceptual apparatus to propose a
plausible model by which genomes and physics allow the
growth plate at the scalp to ascertain the 3D location of a
wound, remember it for months, and use it to alter the
genome-default cell growth decisions during subsequent
antler re-growth.

While most of the above-mentioned models have not
been addressed with molecular tools, recent work has
begun to unravel genetic factors that mediate the differen-
ces among species. There are numerous incidences in
which simple genetic changes drastically alter the mor-
phology of populations as they diverge from their evolu-
tionary ancestors. Darwin’s finches, a group of 14 closely
related finch species, are one such example. They display
an impressive variety of beak shapes and sizes, and there-
fore diets, despite having evolved from the same ancestral
species. This variation is due, at least in part, to differen-
tial expression levels of the genes calmodulin and Bmp4,
which define beak length and width, respectively.36,37

Another compelling example is the evolution of the bat’s
wing from a mouse-like ancestral arm. Increased expres-
sion levels of Bmp2 and Prx1, regulators of bone develop-
ment, are responsible for the remarkable elongation of the
bat forelimb digits and long bones respectively, rendering
these animals capable of flight.38,39

Likewise, a number of epigenetic factors have been
shown to make significant input into species-specific pat-
tern outcomes. The long-term persistence of epigenetic
state has been an area of focus in modern molecular and
developmental biology, and work done in this field has
added to models of cellular differentiation and stem-
ness.40 Of especial interest to evolutionary developmental
biologists and ecologists are epigenetic modifications that
both inform phenotype in an appreciable manner, and
are transmitted to offspring through the germ line.41,42

Early botanist Linneaus was the first to describe the
puzzling diversity in shape of the toadflax flower (Linaria
vulgaris).43 Despite being genetically identical, one mor-
phological variant displays a rounded flower with lobed

petals and bilateral symmetry, and the other an acute,
starburst flower shape with radial symmetry. Cubas et al.
found that the 2 varied only in the heritable methylation
status of a single gene (Lcyc), demonstrating that large-
scale morphological variance, eligible for natural selec-
tion, can occur solely as the result of epigenetic state.44

Similarly, the alligator weed (Alternatnthera philoxer-
oides) has a remarkable variety of anatomical configura-
tions, as it is able to dramatically restructure its root
system, stem diameter, and internode length given devel-
opment in a variable environment.44 Other examples of
environmental influence on morphology include species
of reptile and fish, where incubation temperatures alter
sex ratios of offspring.45 Perhaps of even more interest
are heritable epigenetic modifications46-48 in organisms
that segregate the germ line early in development. Meth-
ylation at a retrotransposon site within the Axin-fused
allele produces a distinct kinked-tail phenotype in mice,
which can be inherited both maternally and paternally.49

For a more detailed account of proposed models and
evolutionary significance of epigenetic heritability see
refs. 50, 51 and ref. 52.

In addition to genetic sequence, chromatin marking,
and environmental stimuli, it is becoming clear that bio-
logical pattern is regulated by another key set of pro-
cesses: physiological signaling among bioelectrical
networks.53 In this Perspective, we discuss recent data in
the frog and planaria model systems that shed light on
the question: how much of the difference among species’
morphologies comes from the physiological layer of
control?

Bioelectricity: A novel epigenetic layer
regulating pattern formation

Bioelectric networks (Fig. 2) consist of 2 basic compo-
nents.54,55 The first is ion channels (and pumps), which
set the resting potentials of cells; these implement bio-
electric circuits whose activity regulates the time-
dependent changes of spatial gradients of resting poten-
tial (Vmem) across anatomical areas. Downstream of
these bioelectric dynamics lie a number of targets,
including the movement of neurotransmitters like sero-
tonin,56-59 and changes in gene expression60 and chro-
matin state.61-63 Endogenous, and experimenter-induced
changes in Vmem implement intrinsic plasticity; recent
functional approaches showed that these dynamics
normally implement, and can be used to control, eye
induction, organ size, craniofacial patterning, neoplastic
transformation, axial polarity, and regenerative capac-
ity.64-71

An even more important element of bioelectric
networks consists of gap junctions (GJs, electrical
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synapses), which allow cells to share their voltage
with neighbors, as well as communicate via small
molecules such as neurotransmitters. Importantly, gap
junctions are themselves voltage-sensitive, allowing
them to serve as highly versatile gates for bioelectric
circuits that underlie plasticity and computation.72,73

Gap junction dependent patterns of cell:cell connec-
tivity represent synaptic plasticity – the basis of infor-
mation storage in the electrical networks of the brain
and in non-neural tissues. Disruption of GJ signaling
underlies numerous developmental disorders as well
as the patterning defect known as cancer.74

Brains capitalized on the transistor-like properties
of voltage-gated gap junctions (electrical synapses)
and ion channels for memory and integrated deci-
sion-making, in the control of animal behavior.

However, brains did not invent these tricks de novo:
they speed-optimized computational properties of
slower, “developmental” ionic signaling that cells were
using to organize embryogenesis, wound healing, and
adaptive physiology long before central nervous sys-
tems appeared.75-80 Evolution capitalized on the
unique suitability of bioelectric circuits for guiding
complex, flexible, robust outcomes early on; ion chan-
nels and neurotransmitter molecules (which move as
a result of bioelectric gradients) are present in all
somatic cell types, not just excitable nerve and mus-
cle. They are also present in unicellular organisms
and predate multicellularity.81-83 The extensive use of
rapid bioelectrical signaling in the CNS likely offers a
hint of more fundamental somatic functions from
which neural dynamics evolved.

Figure 2. Bioelectric networks and their modulation. Many tissues, not only the nervous system, maintain active electrical communica-
tion among cells. Developmental bioelectricity, as in neurons, relies on ion channels and pumps to produce resting potential gradients
across their cell membranes, and gap junctional channels to spread those potentials to neighboring cells. Signals within this network
are mediated by the transfer of current and small molecules such as neurotransmitters. Because many ion channels and gap junctions
are themselves voltage-sensitive, this system can support complex dynamics; the output of these dynamics includes changes in gene
expression and cell behavior, mediated by transduction machinery such as neurotransmitter flux. Experimental (and endogenous) mod-
ulation of these dynamics can occur via regulation of gap junctional connectivity within the network (targeting gap junctions to alter
plasticity of the electrical synapses), changes in ion channel activity (editing of resting potentials as a kind of intrinsic plasticity), or direct
effects on the resulting gradients of neurotransmitters. A wide variety of genetic, pharmacological, and optical tools are now available to
manipulate physiological networks in developmental or regenerative contexts in vivo. Graphics by Alexis Pietak.
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Mechanistically, bioelectric circuits in the brain and
body use the same, highly conserved set of molecules
and pathways. But they use them for very different pur-
poses. The brain harnesses bioelectricity for the control
of muscles, moving a body through 3-dimensional space.
Developmental bioelectricity controls cell functions such
as proliferation and differentiation,84,85 moving the con-
figuration of a body through morphospace, the abstract
mathematical space in which an organism’s shape is
defined. As the chromatin code helps set cell identity
and physiology, and physical forces are exploited by
genetic circuits to control morphogenesis, bioelectricity
enables the genome to utilize unique computational
capabilities and long-range information integration.86-90

Recently we posed the hypothesis that evolution exploits
plasticity of non-neural (body-wide) bioelectric networks
to process epigenetic information, as does the brain, but
whose output is pattern regulation.53,91 This hypothesis
makes a number of specific predictions which have been
borne out by recent results.

Switching species-specific head morphology in
planaria

The planarian flatworm is an excellent model system for
the study of the generation of form.92,93 Planarians have
extraordinary regenerative abilities, allowing them to
reproduce any tissue or organ system given traumatic
injury.94 In addition, they are amenable to a variety of
molecular biology techniques, and show a diverse array
of head shapes across species.95,96 Alteration of bioelec-
trical homeostasis in the planarian during regeneration
has been shown to lead to dramatic patterning defects,
including duplication of anterior polarity,97 altered scal-
ing of head structures,98 and most recently, alteration of
species-specific head shape.99 These data implicate bio-
electrical signaling in the maintenance of rational regen-
erative programs, and indicate an interesting modality
with which large-scale morphology may be perturbed
experimentally in the laboratory, or on evolutionary
timescales.

When the electrical coupling of large populations of
cells in the planarian species G. dorotocephala is tran-
siently perturbed using the non-mutagenic long chain
alcohol octanol, regenerating fragments grow heads that
resemble entirely different species of planarian (Fig. 3A–
D, Ai–Di). While the appropriate head morphology of G.
dorotocephala is triangular with pointed auricles, octa-
nol-treated fragments stochastically regenerate as several
discrete shapes belonging to other species. Observed
head shapes include those that are rounded, like S. medi-
terranea, triangular with no auricles like D. japonica, or

flattened with anterior auricles like P. felina,99 and
require multiple coordinated shape changes that are not
explained by simple scaling along 1 dimension (Supple-
ment 1). Importantly, this head shape change was not
only skin deep – it included coherent, multi-tissue ana-
tomical change, not only editing of the external mor-
phology. Immunostaining against synapsin and
phosphorylated histone 3 (a marker of proliferation)
revealed that morphology of the brain and the distribu-
tion of the adult stem cell population are also altered to
resemble that of the corresponding other species
(Fig. 3Aii–iv, Bii–iv, Cii–iv, Dii–iv). The significance of
shape alteration was validated using geometric morpho-
metrics, and the shape space defined by canonical variate
analysis (CVA) allowed for characterization of morpho-
logical transformations (Fig. 3E).

These data indicate that some of the difference among
planarian species could be due to the dynamics of signal-
ing among their bioelectric networks, revealing a new
epigenetic layer that could have important implications
for evolution. Indeed, the frequency of appearance of the
various planarian species’ heads from random bioelectric
network perturbation was proportional to the evolution-
ary distance among species, suggesting a relationship
between morphological speciation and modification of
bioelectrical dynamics. The evolutionary implications of
bioelectrical controls of patterning have been discussed
elsewhere,53 and offer rich opportunities for future study
of the bi-directional interplay between mutations of ion
channel / gap junction genes and intrinsic (self-
organizing) dynamics of bioelectric circuits.100-103 One
possibility is that the frameworks used to analyze evolu-
tionary dynamics of memory and behavior such as Bald-
win-like effects46,104 (also mediated by a set of bioelectric
circuits, those in the CNS) could be fruitfully applied to
pattern regulation in embryogenesis and regeneration,
and the variability of developmental outcomes from a
specific genome.105,106

The voltage reporter dye DiBAC4(3) was used to
show that bioelectric coupling among cells in worms
with inappropriate head morphologies is altered long
after octanol is washed out of the body of the worm,
revealing long-term changes to the physiological net-
work among cells (plasticity akin to the synaptic
plasticity observed in electrical synapses in the
CNS72,99). Efforts to build quantitative models of
specific head shape outcomes stored in stable bioe-
lectrically-mediated pattern memories in tissue are
ongoing in our lab. Importantly, unlike the perma-
nent morphological change (double headedness)
induced in D. japonica,53,107 in the time required for
complete cellular turnover in the planarian (roughly
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Figure 3. Changes to species-specific head shape in planaria. Physiological determination of species-specific head anatomy in the pla-
narian flatworm. Transient exposure to octanol after amputation in G. dorotocephala results in regeneration of head anatomies resem-
bling other species of planarian. Brain shape and distribution of neoblasts is also altered. Shape change can be quantified using
geometric morphometrics, and used to produce a shape space accounting for much of the variation in shape between species. (A) Wild
type G. dorotocephala morphology. (Ai) pseudo G. dorotocephala morphotype after octanol treatment. (Aii) brain morphology of pseudo
G. dorocephala morphology by anti-synapsin immunostaining. (Aiii) neoblast distribution of pseudo G. dorotocephala morphology by
anti-phosphorylated histone 3 immunostaining. (Aiv) wild type G. dorotocephala brain morphology and neoblast distribution. (B) Wild
type D. japonica morphology. (Bi) pseudo D. japonica morphotype after octanol treatment. (Bii) brain morphology of pseudo D. japonica
morphology by anti-synapsin immunostaining. (Biii) neoblast distribution of pseudo D. japonica morphology by anti-phosphorylated his-
tone 3 immunostaining. (Biv) wild type D. japonica brain morphology and neoblast distribution. (C) Wild type S. mediterranea morphol-
ogy. (Ci) pseudo S. mediterranea morphotype after octanol treatment. (Cii) brain morphology of pseudo S. mediterranea morphology by
anti-synapsin immunostaining. (Ciii) neoblast distribution of pseudo S. mediterranea morphology by anti-phosphorylated histone 3
immunostaining. (Civ) wild type S. mediterranea brain morphology and neoblast distribution. (D) wild type P. felina morphology. (Di)
pseudo P. felina morphotype after octanol treatment. (E) CVA analysis of wild type morphologies and pseudo morphologies, with mor-
phometric landmarks shown on a wild type G. dorotocephala head. Figures used with permission from ref. 163.
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30 days), altered head shapes in G. dorotocephala are
remodeled back to the species-appropriate morphol-
ogy, along linear pathways in the shape space
defined by CVA.99

The output of bioelectric circuits are spatially-extended
instructive signals for cell behaviors such as proliferation,
differentiation, and apoptosis.54,108 Conceptually, we sug-
gest109 to represent the head shape morphologies as stable

Figure 4. Morphogenetic state spaces. A conceptual model of shape change driven by physiological network dynamics. Planaria regen-
eration parallels classical neural network behavior; both can be described in terms of free energy landscapes with multiple attractor
states. (A) Behavior of a classical Hopfield neural network trained to reproduce 3 types of patterns, in this case shapes of the letters ‘F’,
‘H’, or ‘G’, which are the 3 stable states of the network’s free energy landscape. The state of the Hopfield network’s nodes directly relate
to the brightness of pixels on a display, generating output. Perturbation of the network from a stable state (red arrow) by deleting (dam-
aging) part of the pattern is akin to moving a ball to an unstable point on the free energy landscape, and leads to regeneration of the
closest learned attractor state (blue arrow). In this, such networks’ well-known ability to implement memory is analogous to regenerat-
ing organisms restoring a specific target morphology upon damage. (B) The parallel concept of planaria regeneration into head shapes
of one of 3 different species, which are attractor states of the free energy landscape. Outcome morphology is driven by the dynamic out-
puts of physiological cellular network. Amputation (red arrow) is akin to moving the system to an unstable point on the free energy
landscape. Normal regeneration would return the system to its main attractor, but altering cell network dynamics via gap junction
blockade allows for regenerative transitions (blue arrow) to alternative local minima, corresponding to morphospace regions normally
occupied by P. felina and S. mediterranea worms. In time, remodeling (green arrow) transfers these morphologies to the global mini-
mum of the wild-type state (G. dorotocephala). (C) Morphospaces are conceptual structures within which distances along specific metrics
can represent the differences among species’ morphologies. This panel illustrates how variants in the shape of a structure (skull shapes
in this case) can be represented in a virtual space describing several orthogonal control parameters. We suggest that the physiologi-
cally-induced conversion of an animal with a normal genome into a different species-specific morphology could be modeled by an
appropriate bioelectric circuit model whose measured states control relevant parameters forming the axes of a morphospace. Such
spaces often include stable attractors corresponding to anatomical configurations that stable to small perturbations of the key parame-
ters. (D) It is possible that the global coordinate axes that facilitate the Thompson transformations are mediated by bioelectric field
properties across the organism. Images used with permission as follows: A,B,163 C,113 D.115
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attractors in the state space of the physiological network
guiding cell behavior in vivo (Fig. 4A and B). This has the
advantage that a significant body of work exists in the
computational neuroscience and artificial neural network
fields, explaining the dynamics of pattern memories in such
networks.110-112 Each head shape corresponds to a distinct
low-energy state of the bioelectric circuit. Amputation tem-
porarily raises the “energy” of the system, which normally
relaxes into the standard species-specific shape attractor.
However, perturbing the connectivity in the circuit can
cause it to instead settle into a different attractor (Fig. 4B).
We are currently working on deriving quantitative models
of this process that will explain why the above-mentioned
shapes are transient (belong to only local minima) while
other states (the default head shape, and the 2-head

morphology described below) represent permanent, or very
deep, minima.

The conversion among different species-specific shapes
is formalized in the notion of morphospace18,113,114

(Fig. 4C), where specific outcomes of some system (the key
canonical variates) can explain a range of observed mor-
phologies. A very early line of thought in this direction was
made by D’Arcy Thompson,115,116 who showed that the
bodyplans of distinct species can be converted to those of
other species via simple geometric transformations
(Fig. 4D). Biochemical gradients have been suggested for the
mechanism implementing such spatial axes,117 and it is also
tempting to speculate that these coordinates can also be pro-
vided by bioelectrical aspects of large-scale physiological
networks.118,119 Specification and empirical validation of a

Figure 5. Unexplored regions of morphospace reached by editing bioelectric circuits. Briefly altering bioelectric circuit dynamics, despite
the presence of a normal genome, can result in drastic alterations of the bodyplan, to regions not currently occupied by extant species.
D. japonica worms treated with disruptors of gap junctional connectivity or modulators of ion channel-depenedent bioelectric signaling
can acquire compound (A), spiky (B), or cup-shaped (C) morphologies instead of the genome-default flat architecture of the planarian.
The specimen in panel D has been stained with an antibody to reveal the central nervous system, and cleared to highlight the pocket-
like morphology. In some cases, these edits to the normal target morphology can be permanent (E): a flatworm middle fragment that
regenerates 2 heads after a brief reduction of bioelectrical coupling among its cells will continue to regenerate as 2-headed in subse-
quent cuts made in plain water. Even if the “reprogrammed” head tissue is removed, the target morphology information in other frag-
ments of the body have been physiologically altered so that a 2-headed form results. This new worm architecture has distinct
behavioral and anatomical structures and is stable across the most common mode of reproduction in this species (fission + regenera-
tion), stretching the definition of speciation. (F) Changes of head shape (red arrowhead) and number (yellow arrow) can occur in the
same animal, as can changes in head size (G, red arrow). Editing of large-scale bodyplan can be induced in vertebrate models as well,
inducing ectopic eye growth out of gut tissue (red arrow), and ectopic limb growth out of the mouth (I, red arrow). Images used with
permission as follows: E,53 G,124 H.67 Photo in panel I courtesy of Erin Switzer.
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quantitative model of a bioelectric circuit and the morpho-
logical consequences of its stable modes represents one of
the most exciting prospects in this field. A full understand-
ing must also involve explanation of the stochastic nature of
this process, perhaps couched in the language of dynamical
systems theory,120-123 to understand the origin of variability.
The study of deterministic chaos has long helped analyze
many systems where very small initial differences (e.g.,
physiological noise) can be amplified by feedback loops into
distinct large-scale outcomes in a stochastic manner. Such
feedback loops are certainly present in bioelectric regulation
of organ-level patterning, such as between Vmem and the
gene Rx1 in eye induction67 or Vmem and the gene Notch in
brain patterning.68

Interestingly, while perturbing the topology of the physi-
ological network results in head shapes of several extant
species (Fig. 3), the same techniques can result in animals

that correspond to regions of the morphospace18,113,114 not
exploited by evolution (at least in currently-known var-
iants). For example, planaria can be deviated from their
normally flat body architecture to give rise to geometrically
very distinct shapes, such as pockets (Fig. 5A–D). Another
example is revealed in D. japonica, where a 2-headed form
can be produced which is stable – further cycles of amputa-
tion (in plain water) of the ectopic head result in 2-headed
worms from normal gut fragments, revealing a permanent
change of the encoded target morphology.107 What is to be
made of the fact that GJ inhibition induces a change in
head number in D. japonica (Fig. 5E) but a change in head
shape in G. dorotocephala (Fig. 3)? One possibility is that
different species of planaria (which in this case differ by an
estimated 100 million years) utilize the outputs of their bio-
electric networks for different purposes (determination of
head number in D. japonica, and of head shape in G. doro-

Figure 6. Altering neurotransmitter signaling induces inter-spe-
cies shape changes in Xenopus tadpoles. (A) Treatment with the
b-adrenergic agonist Cimaterol (CIM) stochastically induced 4 dis-
tinct head anatomies. Embryos were exposed to CIM from st. 10-
45, sacrificed at st. 47 and stained with Alcian blue. (i) Wild-type
Xenopus tadpole with major ventral craniofacial cartilages labeled
on one side of the face. Meckel’s cartilage (m) is outlined in Pink,
ceratohyal cartilage (c) is outlined in green, and the branchial
arches (ba) are outlined with yellow. (ii) Tadpole with malformed
jaw, but otherwise normal craniofacial morphology. (iii) Tadpole
with horizontal or “flat” branchial arches and ceratohyal cartiages.
(iv) Tadpole whose head anatomy visually resembles that of Rana
frogs. (v) Tadpole whose head anatomy resembles that of frogs
belonging to the family Microhylidae. (B) Comparison of Pseudo
Rana head morphology to that of wild-type Rana species. (i)
Graphical output for Canonical Variate analysis of shape data in
wild-type and experimentally-derived craniofacial morphologies,
showing confidence ellipses for means at an 0.9 probability. Each
point represents one individual’s face shape data. Data for wild-
type Rana frogs were derived from anatomical diagrams of Rana
temporaria,130 Rana dalmatina,132 and Rana palustris.131 (ii) ven-
tral view of alcian-blue stained Pseudo rana tadpole with land-
marks (black dots) used for morphometric analysis. (iii)
Anatomical diagram of ventral craniofacial skeleton of Rana tem-
poraria tadpole. For both ii and iii, protruding nasal cartilages are
indicated with red arrows, Meckel’s cartilages are outlined in
pink, and branchial arches are outlined in yellow. (C) Comparison
of Pseudo Microhylidae head morphology to that of wild-type
Microhylidae species. (i) Graphical output for Canonical Variate
analysis of shape data in wild-type and experimentally-derived
craniofacial morphologies, showing confidence ellipses for means
at an 0.9 probability. Each point represents one individual’s face
shape data. Data for wild-type Microhylidae frogs were derived
from anatomical diagrams of Microhyla ornata,133 Gastrophryne
carolinensis,134 and Dermatonotus muelleri.135 (ii) ventral view of
alcian-blue stained Pseudo Microhylidae tadpole with landmarks
(black dots) used for morphometric analysis. (iii) Anatomical dia-
gram of ventral craniofacial skeleton of a Microhyla ornata tad-
pole. For both ii and iii, ceratohyal cartilages are outlined in
green, and branchial arches are outlined in yellow.
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tocephala). However, this is unlikely because worms
(Fig. 5F) can be created which have both an abnormal
number of heads and a different species’ head shape. In S.
mediterranea, head size (Fig. 5G) is regulated by distribu-
tion of voltage gradients,124 echoing the bioelectric control
of brain size in Xenopus68 and tail size in zebrafish.70 In
Xenopus, similar modulation of resting potential (intrinsic
plasticity, as distinct from the synaptic plasticity edited by
gap junctional modulators), can produce aberrant forms
possessing ectopic eyes67 (Fig. 5H) or limbs (Fig. 5I). One
possible implication of these data is that, once predictive,
quantitative, biophysical models that link bioelectric circuit
modes to anatomical outcomes are developed, it would be
possible to approach cell groups as “universal constructors”,
inducing pattern formation that has never before appeared
in biological evolution, for purposes of creating synthetic
organisms for specific functions.2,125-127

Frog embryogenesis and neurotransmitter
controls

Continuing the theme of plasticity in pattern regulation, it
was recently shown that frog development does not merely
utilize a hardwired set of deformations that convert a tad-
pole face into the very different frog face. Rather, it includes
a robust and plastic system that can make up for deformed
tadpole anatomies (which begin the remodeling process in
an abnormal starting state) and correct them tomake largely
normal froglets.128 The best-known system that is able to
reliably reach specific goal states fromdiverse starting condi-
tions is the brain, where goal-satisfaction circuits make use
of bioelectrical networks (composed of neural cells and
non-spiking astrocytes) and the flow of neurotransmitter
signals to implement flexible decision-making. We recently
began to examine the roles of these neurotransmitters dur-
ing frog development. In a pharmacological survey screen,
we found that treatment of embryos prior to the mature
development of the nervous system with drugs modulating
catecholamine and glutamatergic signaling induced a wide
variety of alterations in craniofacial, eye, muscle, visceral
organ, and pigment patterns.129

Interestingly, we identified several neurotransmitter
endpoints that when manipulated pharmacologically,
caused the morphology of the head and tail to resemble
those of other species. The b-adrenergic agonist Cima-
terol altered the shape and placement of the craniofacial
cartilages, stochastically inducing 4 distinct head anato-
mies (Fig. 6A). One such anatomy (which we label as
“Pseudo-Rana” below) resembled the larval skull of frogs
belonging to the genus Rana due to proboscis-like nasal
cartilages, inset Meckel’s cartilages, and compressed
branchial arches (Fig. 6B). Another (which we term
“Pseudo-Microhylidae”) resembled the head anatomy

seen in tadpoles belonging to the Microhylid family of
frogs due to the dramatic arching of its ceratohyal carti-
lages and the steep downward slant of its branchial
arches (Fig. 6C).

Geometric morphometrics was used to compare experi-
mentally-derived head morphologies to wild-type Xenopus,
as well as compare “pseudo” head morphologies to the cra-
niofacial anatomy of frogs belonging to the genus or family
that they resemble. Principal Component analysis and
Canonical Variate analysis (CVA) were run on landmark
data taken from alcian-blue images of control and experi-
mental Xenopus tadpoles as well as anatomical diagrams of
different frog species (Fig. 6Bi, 6Ci). The Rana species ana-
lyzed included Rana temporaria,130 Rana palustris,131 and
Rana dalmatina.132 In the Microhylid family of frogs, we
analyzed Microhyla ornata,133 Gastrophryne carolinensis,134

andDermatonotusMuelleri.135

In our CVA using nasal, branchial arch, and Meckel’s
cartilage landmarks, the Pseudo-Rana clustered dramati-
cally closer in morphospace to true rana than wild-type
Xenopus on both the CV1 and CV2 axes (Fig. 6B). Move-
ment along the CV1 axis represents anterior movement
of the inner branchial arch landmarks and posterior
movement of the outer branchial arch landmarks. Move-
ment along the CV2 axis represents movement of the
Meckel’s cartilages toward the midline, movement of the
inner branchial arch landmarks away from the midline,
and anterior projection of the nasal cartilage. We can
therefore confirm that out Pseudo-Rana tadpoles were
indeed more anatomically similar to true Rana tadpoles
than to wild-type Xenopus due to the visual features we
observed. In our CVA using branchial arch and cera-
tohyal landmarks, we found that our Pseudo-Microhyli-
dae clustered dramatically closer to true Microhylids
than to wild-type Xenopus along CV1 (Fig. 6C). On
CV2, pseudo and true Microhylidae diverged equidis-
tantly from wild-type Xenopus. In this analysis, move-
ment along CV2 represents compression of the
ceratohyal cartilages toward the midline and movement
of the outer branchial arch landmarks away from the
midline. Movement along CV1, however, represents
anterior movement and bunching of the inner branchial
arch landmarks, posterior movement and bunching of
the outer branchial arch landmarks, and posterior move-
ment of the outer-most ceratohyal cartilage landmarks.
Although pseudo and true Microhylidae diverge on CV2,
their locations along CV1 account for the easily visible
traits that make them appear Microhylidae-like and dif-
ferent from wild-type, such as notably arched ceratohyal
cartilages and steep downward-sloping branchial arches.
Therefore, we can still confirm that Pseudo Microhylidae
are anatomically closer to true Microhylids than they are
to untreated Xenopus.
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In addition to the craniofacial alterations caused by
Cimaterol, we found another interesting inter-species
phenotype during our drug screen. Treatment with
the noncompetitive NMDA antagonist Norketamine
induced the development of a tail that was morphologi-
cally similar to that of a zebrafish (Fig. 6D). As in zebra-
fish, the portion of the tail containing spinal cord and
muscle was truncated and did not continue to the poste-
rior most edge of the tailfin as it does in wild-type Xeno-
pus. In addition, the tailfin was rounded as opposed to
the normal pointed shape of a Xenopus tail. These data
implicate pre-nervous (and non-neural) neurotransmit-
ter signaling as a key functional player in diverse aspects
of vertebrate embryonic development. Echoing the
above-mentioned work, neurotransmitters have recently
been found to modulate patterning in planaria,136 the
left-right axis in frog and chick,56,57 cleavage and gastru-
lation in the sea urchin,137,138 and craniofacial develop-
ment in frogs and rodents.139,140,141,142

More broadly however, these data are consistent
with the role of neurotransmitters as chemical cues
that participate in an active and ongoing interplay
with the bioelectric signals in the brain. Neurotrans-
mitters are traditionally known to act as downstream
effectors of bioelectricity, yet they also have the power
to alter electrical communication between cells by cou-
pling to signaling cascades capable of altering the con-
nectivity of gap junctions. For example, glutamate (via
the NMDA receptor143,144) and serotonin (which stim-
ulates IP3 mediated calcium release145) raise intracellu-
lar calcium concentration, triggering CamKII-mediated
phosphorylation of gap junction proteins and altering
the permeability of electrical synapses. Other neuro-
transmitters couple to signaling cascades involving
cyclic nucleotides. For example, both nitric oxide
(NO) and histamine modulate gap junction coupling
via cGMP signaling.146,147 Similarly, dopamine and
noradrenaline make gap junctions less permeable by
triggering cAMP-dependent PKA phosphorylation of
connexins.148,149 The bi-directional relationship
between neurotransmitters and GJs enable yet another
set of feedback loops. Synthesizing the frog and pla-
naria data described above and elsewhere,89,108,150 it
appears that species-specific shapes can be set, and re-
set, by modulating physiological network topology,
specific bioelectric states, and the interconnected neu-
rotransmitter pathways that often mediate between
electrical activity and cell functions.56,59,138,151,152

Conclusion

Recent work has shown that species-specific shape is
derived not only from regulatory gene loci and

chromatin marking. Large-scale anatomical structure is
also a function of physiological signaling among many
cell types, and significant (coordinated) changes in mor-
phology can be induced by altering the topology or func-
tion of physiological circuits. In some cases, these
dynamics can be used to select among morphologies of
existing species, although entirely novel forms can also
result. Interestingly, manipulation of physiological sig-
nals results in a much wider overall range of patterning
outcomes (Fig. 5) than has been seen in genetic screens
targeting individual gene products.153-156 This new set of
inputs into anatomical structure has several important
implications for evolution.

First, these data highlight the importance of truly epi-
genetic layers of influence over organism anatomy.
While ion channel and gap junction proteins are speci-
fied in the genome, bioelectric circuits have their own
unique and complex dynamics that derive from the fact
that ion channels and GJs determine cell voltage but are
also themselves regulated by voltage gradients. These
feedback loops and the resulting electric circuit state
transitions over time are not predictable from the rules
governing genetic sequence, transcriptional networks, or
chromatin state53 because channels and GJs open and
close post-translationally, implementing functional sig-
naling that is invisible to profiling at transcriptional or
translational levels. Divergence between genetic state and
bioelectric state can be readily seen, as 2 cells with pre-
cisely the same complement of ion channels (i.e., identi-
cal on any molecular-genetic profile) can be in very
different physiological states depending on whether their
channels are open or closed. The functional signaling
properties of physiological networks are determined by
the electrical activity, not the mere presence or absence
of specific molecules. This implies a departure from the
standard molecular biological paradigm, where cell state
is thought to be derivable by proteomic and transcrip-
tomic profiling. Bioelectric information can only be read
out in the living state (not in fixed, biochemically-
analyzed tissue). This is analogous to the content of com-
puter memory, which resides in the flow of energy
through the circuit (and is not captured by a full account
of the atoms making up the transistor hardware), and to
the semantic content of a mature brain, which is neither
visible from nor directly determined by the genome.
These facts have clear implications for future efforts to
fully profile and re-write the signaling that ultimately
determines anatomical structure and its modification.

Second, bioelectric networks facilitate robustness of
physiological states and the patterning they regulate (via
negative feedback loops and long-range state sensing).
Morphogenetic functions guided by bioelectric circuits
are also robust to mutation in channels and their
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transcriptional regulation. Multiple ion channels often
contribute to the same Vmem state, with extensive com-
pensation by other channel types (which is one factor
confounding discovery of these circuits by single gene
mutation screens). Moreover, bioelectric circuit modes
show significant stability to some perturbations.103 Thus,
individual channel involvement can diverge evolution-
arily, as long as the overall signaling dynamic remains.

Third, bioelectric states as control points tend to be
powerful “master regulators”, allowing the initiation of
self-limiting patterning modules as subroutines from a
low information content input (trigger);66,157 this is due
to the existence of positive feedback loops, which sustain
and amplify bioelectric states once a threshold has been
surpassed by a transient bioelectric stimulus (exploited
also by action potentials in brain circuits). Such modu-
larity is well known to improve evolvability.158-160 All of
these factors are likely to be exploited by evolution in its
exploration of shape spaces. Fourth, these data suggest a
complementary view to the usual perspective in which
the DNA is the software implemented by a cell’s hard-
ware. An alternative view is that the DNA specifies the
hardware (the complement of channels, neurotransmit-
ters, and GJ proteins), while the resulting bioelectric
activity of these circuits (with spontaneous symmetry-
breaking, self-organization, and other complex dynam-
ics) is the software. As in computer science, and as
observed in the appearance of distinct animal shapes
from the same genome (Figs. 3 and 5), many different
types of software can be implemented on the same genet-
ically-specified hardware.

The study of ways in which evolution exploited the
computational properties of electric cell networks outside
of the central nervous system is an exciting, emerging
area of developmental biology. One corollary to this is the
possible role of commensal species in determining growth
and form, not only physiology. For example, bacteria are
known to make compounds that modulate gap junctions
and ion channels;161 thus, it is possible that factors pro-
duced by other species living within a host organism’s
body can serve as an additional input to the organism’s
pattern by editing or altering its endogenous bioelectrical
circuits This adds a layer of complexity to the typical
“evo-devo” story, but also provides new, tractable, potent
control points to be exploited by biomedicine or synthetic
bioengineering through the use of novel vectors for bio-
electric modulation of host tissue.162

The list of the molecular signals that propagate
through physiological networks is likely to grow rapidly
in the following years. However, several players (current,
calcium, neurotransmitters) are already implicated. The
molecular and algorithmic analogies between how
somatic tissues and the brain utilize these same

components are a fertile area for novel inquiry, and
remain to be tested in specific contexts. It is likely that a
mature understanding of the unique properties of bio-
electrical signaling, and their integration into the molec-
ular toolkits of developmental biology and synthetic
bioengineering, will have transformative effects in a
number of areas. In addition to a fuller appreciation of
the interplay between genomes and physical forces20 in
evolution and development, the increased control over
growth and form is sure to have numerous practical
applications in biomedicine and beyond.

Glossary of unusual terms

Ectopic – in the case of an organ, located outside the area
of the body where it develops during normal embryogenesis.

Target Morphology – the anatomical configuration
toward which normal embryogenesis and regeneration
coordinate cell behavior; the pattern which, once reached,
makes further growth and remodeling stop. Living organ-
isms seek to maintain target morphology against cell turn-
over, aging, cancer, and injury as a kind of pattern
homeostasis.

Plasticity – flexibility that allows past events to alter
future behavior of a system. Physiological plasticity enables
bioelectric circuits to retain state memory or respond adap-
tively to future physiological inputs. Anatomical plasticity
occurs when animal bodies remodel or regenerate despite
diverse types of damage, reaching the same target mor-
phology state from different starting configurations. The
ability to respond to unpredictable stimuli with coherent
repair programs is contrasted with hardwired responses.

Gap Junctions – Protein channels that enable cell-cell
communication by directly connecting the cytoplasm of
2 adjacent cells. This allows ions and small molecules to
flow from one cell to another as dictated by electrochem-
ical gradients between the cells. Some gap junction pro-
teins confer gating by electric and chemical signals, and
thus both determine and are themselves regulated by
bioelectric state. These electrical synapses are thus versa-
tile elements that underlie physiological plasticity in neu-
ral and somatic circuits.

Axial polarity – consistent differences along a major
body axis (dorsal-ventral, anterior-posterior, or left-
right) of the body. Anatomical and histological polarity
are preceded by, and established by, bioelectric and
chemical gradients which control large-scale pattern.

Neoplastic – a state in which cells begin to ignore the
normally tight patterning cues of the body and begin to
change toward a “unicellular” phenotype. This develop-
mental disorder is part of the process of carcinogenesis,
where cells change shape, overproliferate, and eventually
become highly motile and invade distant sites.
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Tensegrity – organization of structure consisting of
discrete un-stretchable components situated in a contin-
uous web of tension that defines the overall shape of the
structure. Tensegrity is one example of essentially physi-
cal (non-genetic) regulators of morphogenesis.

Morphospace – an abstract mathematical space in
which shape is defined by independent shape metrics
along each orthogonal axis. A point in the space repre-
sents one possible shape configuration for a biological
structure, which may or may not describe an extant ani-
mal species. Movement along an axis of the space repre-
sents a particular geometric transformation.

Baldwin effect – a mechanism by which learned
behavior can affect evolution. Systems which can learn
from experience can thereby acquire adaptive states
which facilitate evolution to novel fitness peaks. For
example, non-genomic (physiological) changes to bio-
electric circuits can result in new animal morphologies,
which could eventually be canalized into genomic
changes by selection and mutation (much as new pheno-
types can eventually evolve when animals learn specific
behaviors and interact in novel ways with their niche).

Dynamical Systems Theory – a set of mathematical
approaches for learning to understand and rationally
manipulate the behavior of complex systems. Often such
systems feature recursive (feedback) components, result-
ing in surprising and rich behaviors.
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