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The Hill muscle model can be used to estimate the human joint angles during
continuous movement. However, adopting this model requires the knowledge of
many parameters, such as the length and speed of contraction of muscle fibers, which
are liable to change with different individuals, leading to errors in estimation. This study
established the backpropagation neural network model based on surface
electromyography (sEMG) features and human movement angle. First, the function
of muscles in joint rotation is defined, and then, sensors are placed on muscle tissues
to gain sEMG, and then, a relation model between the surface sEMG features and the
joint angle is constructed. As integrated electromyography information cannot be well
reflected through a single electromyography feature, a feature extraction method
combining the time domain, frequency domain, and time–frequency domain was
proposed. As the degree of freedom (DOF) of the pronation–supination movement
was controlled by several muscles, it was difficult to make an angle prediction. A
method of correcting the estimation error based on the Kalman filter was raised to
cope with this problem. An exoskeleton robot with one DOF was designed and put into
the tracking experiment. The results show that the proposed model was able to
enhance the estimation of the joint angle during continuous pronation–supination
movements.
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1 INTRODUCTION

In the analysis of human motion, one of the most challenging issues is related to the possibility of
estimating the joint kinematics during the execution of the continuous movement.

The current research (Han et al., 2015; Li et al., 2017) on the continuous movement estimation of
limbs mainly focuses on using various surface electromyography (sEMG) features to estimate the
joint angle, and there are two ways to achieve it. The first is to establish an articulation dynamics
model with muscle physiology involved, which takes sEMG as the input and then calculates joint
torque; the second is to set the regression relationship of sEMG and the articulation movement angle
(Gijsberts et al., 2014; Hahne et al., 2014; Kuang et al., 2017; Long et al., 2017; Wang et al., 2017;
Zhang et al., 2017).
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The Hill model is one of the existing biomechanical models
used frequently by researchers. In 1938, Hill used the frog’s
sartorius muscle as an experimental sample and observed the
relationship between the muscle contraction force and muscle
contraction speed, known as the Hill muscle model. The model
was simplified into three components: contraction, series
elasticity, and parallel elasticity. This is the first model to have
successfully described the changes of muscle contraction and is
gradually developed as a normal way of predicting the joint angle
(Huang et al., 2020; Xi et al., 2021). For example, Cavallaro et al.
(2006) designed an upper limb exoskeleton robot system and
used the improved Hill model to conduct continuous movement
estimation, and they proposed a 28-channel signal acquisition
instrument to obtain sEMG, realizing the continuous angle
estimation of the upper limb. Pang et al. (Pang et al., 2013)
established the Hill model of finger flexion and finger extension
through acquired sEMG of the superficial flexor and extensor
muscles, and then, they processed sEMG using the Kalman filter.
The experiment was conducted on five subjects, suggesting that
the Hill model they designed could complete the finger flexion
angle estimation.

Diverse machine learning algorithms are utilized to establish
the relationship between sEMG and the joint angle (Chen et al.,
2021; Padhy 2021; Xue et al., 2021), whose process is easy and no
complex calculations are involved. For example, Xiao et al. (Xiao
et al., 2017) used the average absolute value, waveform length,
zero-crossing points, and the number of slope sign changes to
extract time-domain features, and they proposed a gray feature-
weighted support vector machine to construct models of sEMG
and elbow joint angles. Ding et al. (2017) divided sEMG into
redundant and non-redundant sub-vectors, established a state-
space motion model, and built a closed-loop correction algorithm
to predict the upper limb elbow joint angle.

The elbowmovement is mainly powered by biceps and triceps.
The sEMG strength and quality gained from the biceps and
triceps are better than that of the upper limb muscle. Existing
research on the upper limb movement angle mainly focuses on
the elbow joint. Gui et al. (Qizheng 2016) proposed an upper limb
joint angle estimation method based on the support vector
regression and muscle coordination model. The experimental
results indicated that the elbow joint movement angle estimation
showed higher accuracy. Raj et al. (Raj and Sivanandan 2017)
placed EMG sensor electrodes on users’ biceps to acquire sEMG.
Three different models were utilized to estimate the elbow joint’s
angular displacement and velocity during continuous flexion and
extension. The test results suggested that the adaptive neuro-
fuzzy inference system showed the best accuracy among the three
models. Sommer et al. (2018) used 3-channel EMG sensors to
record biceps, triceps, and radial muscle sEMG and established an
external input autoregressive model to predict the elbow
continuous movement angle. Li et al. (2018) utilized 4-channel
EMG sensors to obtain sEMG of subjects’ elbows. They used
sEMG as the input and the joint angle as the output, and a
continuous movement estimation model of the elbow joint was
established. Xiao et al. (2018) obtained five time-domain features
of sEMG from biceps and triceps, including the average absolute
value, waveform length, zero-crossing time, number of changes in

slope sign, and standard deviation. The random forest was
utilized to predict the angle of the elbow joint. The results
suggested that when the angular velocity of the joint rotation
was 15–180.0°/s, more accuracy could be obtained.

Existing studies employed muscle physiology to establish a
joint movement model with sEMG as its input. However, this
model has its shortcomings: the difficulty in getting the
knowledge of many physiological parameters and the
complicated parameters. Thus, some studies sought to
optimize parameters and achieved good results. For example,
Ramos and Meggiolaro (2014) optimized the Hill parameters
through a genetic algorithm and established an improved human
elbow joint movement angle estimation model. Nevertheless, it
introduced a new problem, namely, the selection and applicability
of parameter optimization algorithms. Other research works
(Xiao et al., 2017; Li et al., 2018) established the relationship
model of the machine learning algorithm of sEMG and the joint
angle, which focuses mainly on the upper and lower limbs, and
apart from the elbow joint, other parts of upper limbs are less
involved. The pronation–supination movement is controlled by
multiple groups of muscles, so it is difficult to estimate the action
by using an established relationship model; hence research on
them is scarce.

In this study, the movement intentions of the upper limbs of
one degree of freedom (DOF) were identified and tracked
continuously by the exoskeleton robot. First, the study
analyzed the preprocessing method of sEMG. We extracted
features from the time domain, frequency domain, and
time–frequency domain to obtain comprehensive signal
information. After analyzing the structure of the upper limb,
we designed an exoskeleton robot with one DOF. The
backpropagation (BP) neural network model of sEMG features
and the joint angle was constructed based on their relationship.
As the DOF of the pronation–supination movement was
controlled by several muscles, it was difficult to make an angle
prediction. Hence, a method of correcting the estimation error
based on the Kalman filter was raised. One DOF tracking test was
performed to verify to what extent the established BP neural

FIGURE 1 | Circumferential electromyography equipment.
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network model is effective in the recognizing movement
intention.

2 METHODS AND MATERIALS

2.1 Surface Electromyography Acquisition
The 8-channel myoelectric ring (Dting-One) produced by Beech
Innovation Company was employed to obtain sEMG, as shown in
Figure 1. The signals received from every channel were amplified
700 times and then transmitted by Bluetooth to the computer. In
order to improve the acquisition phase, the Bluetooth channel
was bypassed by directly drawing five signals through wired
connections so as to increase the sampling frequency from 100
to 1,000 Hz; the five signals were directly associated with five of
the main forearm muscles, as hereinafter reported. The signals’
processing and analysis were performed offline.

The collected data needed preprocessing so as to extract
features. The procedures included amplification, de-biasing,
the bandpass filter, and the Kalman filter. Since the output
signals contained 2.5 V bias voltages, it was necessary to
subtract 2.5 V from the obtained signals to eliminate the
effect. The filter method adopted was the finite impulse
response digital bandpass filter. According to the studies
(Baocheng Wang et al., 2014; Long et al., 2016), the scope was
20–200 Hz, and a notch filter was performed. The notch is set
between 48 and 52 Hz to avoid the interference of the 50 Hz
power frequency. The lower armmuscles are mainly composed of
brachioradialis, flexor carpi ulnar, flexor carpi radialis, teres
pronator, extensor carpi radialis longus, extensor carpi ulnar,
polpolissimus brevis, pronator, extensor index finger, extensor
digitus, and extensor digitus little. The brachioradialis muscle
mainly flexes the elbow, rotates the forearm in and out, and
maintains the median position during proximal fixation; the
flexor carpi radialis is mainly used for flexion of the radial
wrist joint, participating in wrist abduction, assisting elbow
flexion and forearm internal rotation; the pronator teres
muscle is mainly used to rotate the forearm inward to assist
elbow flexion. Musculus extensor carpi radialis longus is mainly
used to extend the wrist joint near fixation and participate in
radiocarpal abduction and elbow extension and rotation; the
pronator teres muscle is mainly involved in arm backrotation.

According to the relationship between muscles and lateral
movement, the electrode placement was pronator teres
muscles, flexor carpi radialis, musculus extensor carpi radialis
longus, musculus supinator, and brachioradialis, as shown in
Figure 2.

2.2 Features
People could recognize the delay when the time is longer than
250 ms, so the data threshold of 250 ms was used as a set to get
features. Besides, it was also critical to choose appropriate features
to ensure classification accuracy. (Phinyomark et al., 2012)
discussed the significance of selecting appropriate extraction
feature methods. This study used mean absolute value (MAV),
discrete Fourier transform (DFT), and wavelet transform (WT) as
features (Yang et al., 2014).

(1) MAV

MAV � 1
N

∑N
n�1

|x(n)| (1)

where N is the number of the sample, and x(n) are signals.

(2) DFT

The Fourier transform converts signals to the frequency
domain. SEMG collected are discrete, so DFT is needed for
x(n). The transformation formulas are defined as

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X(k) � ∑N−1

n�0
x(n)Wnk

N

x(n) � 1
N

∑N−1

k�0
X(k)W−nk

N

(2)

where WN � e−j2πN and N is the number of samples.

(3) WT

For the signals x(t), the wavelet transformation is obtained as

Wf(a, b) � 1��
a

√ ∫∞

−∞
x(t)ψa,b(t − b

a
)dt (3)

where 1�
a

√ ψa,b(t−ba ) is the selected wavelet sequence, a is the scaling
factor, b is the translation factor, and a, b ∈ R and a≠0.

2.3 The Continuous Motion Estimation
Model
There was a close relationship between the sEMG and the joint
angles during the execution of specific movements (Ding et al.,
2017; Bergil et al., 2021; Makaram et al., 2021). Choosing the
appropriate feature extraction method and machine learning
algorithm was imperative for the human body motion angle
estimation. Compared with KNN, LDA, and other processes
(Liao et al., 2020), the BP neural network was appropriate to

FIGURE 2 | Selected muscle lateral freedom of the forearm movement.
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the case where the amount of classification data was small, and
the classification results were extensive. Due to the limited
training data in this study, a BP neural network model of
sEMG features and motion angles was established to realize
the human motion angles estimation. The model’s input
signals were the features of sEMG, and the output signals were
the movement angle of the upper limb.

The input layers of the BP estimation model contain fifteen
neurons, the hidden layers six neurons, and output layers one
neuron. The transfer functions of the hidden and output layers
were tansig and purelin, respectively; the training number,
training speed, and target error were 10,000, 0.01, and 0.001
(Chen et al., 2018). The training result of an individual is shown
in Figure 3, from which we can see that the performance of the
BP model is satisfying by using the corresponding parameters.

2.4 Kalman Filter
SEMG was utilized to predict the joint movement angle, but with
its strong nonlinearity and the angle estimation of the
pronation–supination movement controlled by many different
muscles, the estimation results had a significant error. The
nonlinear Kalman filter was employed to modify the
estimation result.

The essence of the Kalman filter is to estimate the system’s
operating statement based on the data obtained in the past and
realize the estimation and correction functions. The discrete
nonlinear control model is obtained as

xk � f k−1(xk−1, uk−1,wk−1) (4)

zk � hh(xk, vk) (5)

where k and k-1 are two consecutive moments, μk−1 ∈ Rr is the
input matrix of the system at time k-1, xk is the state of the system
at time k, and wk ∈ Rp and vk ∈ Rq are Gaussian white noise, and
there is no correlation between the two.

The statistical relationship between wk and vk is given as

⎧⎪⎪⎨⎪⎪⎩
E(wk) � qk,Cov(wk,wj) � Qkδkj
E(vk) � rk,Cov(vk, vj) � Rkδkj
Cov(wk, vj) � 0

(6)

where Rk is a symmetric positive definite matrix, and Qk is a
symmetric non-negative definite matrix.

The initial state x0 is independent of wk and vk. The mean and
the covariance matrix of x0 are given by

{ x̂0 � E(x0)
P0 � Cov(x0, x0) � E[(x0 − x̂0)(x0 − x̂0)T] (7)

The nonlinear control model fk-1 (·) is expanded into a Taylor
series based on the filtered value x̂k−1, and the second and higher
orders are omitted, and xk is obtained as

xk ≈ f k−1(x̂k−1, uk−1, qk−1) + zf
zx̂k−1

(xk−1 − x̂k−1)

+ zf
zwk−1

(wk−1 − qk−1), (8)

where fk-1 (·), xk-1, and wk-1 are given, respectively.

f k−1(·) � [f1
k−1(·) f2

k−1(·) / fn
k−1(·)]T;

xk−1 � [ x1
k−1 x2

k−1 / xn
k−1 ]T;

wk−1 � [w1
k−1 w2

k−1 / wp
k−1 ]T;

zf
zx̂k−1

� zf k−1(xk−1, uk−1,wk−1)
zxk−1

∣∣∣∣∣∣∣ xk−1�x̂k−1
wk−1�qk−1

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zf1
k−1(·)

zx1
k−1

zf1
k−1(·)

zx2
k−1

/
zf1

k−1(·)
zxn

k−1

zf2
k−1(·)

zx1
k−1

zf2
k−1(·)

zx2
k−1

/
zf2

k−1(·)
zxn

k−1

..

. ..
. ..

.

zfn
k−1(·)

zx1
k−1

zfn
k−1(·)

zx2
k−1

/
zfn

k−1(·)
zxn

k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xk−1�x̂k−1
wk−1�qk−1

;

zf
zwk−1

� zf k−1(xk−1, uk−1,wk−1)
zwk−1

∣∣∣∣∣∣∣ xk−1�x̂k−1
wk−1�qk−1

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zf1
k−1(·)

zw1
k−1

zf1
k−1(·)

zw2
k−1

/
zf1

k−1(·)
zw

p
k−1

zf2
k−1(·)

zw1
k−1

zf2
k−1(·)

zw2
k−1

/
zf2

k−1(·)
zwp

k−1

..

. ..
. ..

.

zfn
k−1(·)

zw1
k−1

zfn
k−1(·)
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k−1

/
zfn

k−1(·)
zw

p
k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xk−1�x̂k−1
wk−1�qk−1

.

Suppose zf
zx̂k−1 � Φk, k−1, zf

zwk−1 � Γk,k−1, and fk−1(x̂k−1, uk−1, qk−1)−
zf

zx̂k−1 x̂k−1 � Uk−1, then the first order linearization of the state
function of the nonlinear model can be transformed into

xk ≈ Φk,k−1xk−1 + Uk−1 + Γk,k−1(wk−1 − qk−1). (9)

After expanding the nonlinear measurement function hk (·)
around the filter value x̂k|k−1 and omitting the Taylor series of the
second and higher orders, the function zk is explained as

FIGURE 3 | Result of the BP model.
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zk ≈ hk(x̂k|k−1, rk) + zh
zx̂k|k−1

(xk − x̂k|k−1) + zh
zvk

(vk − γk), (10)

where hk (·) and vk are obtained by

hk(·) � [h1k(·) h2k(·) / hmk (·)]T;
vk � [ v1k v2k / vqk ]T;

zh
zx̂k|k−1

� zhk(xk, vk)
zxk

∣∣∣∣∣∣∣ xk�x̂k|k−1
vk�rk

�
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.

Suppose zh
zx̂k|k−1 � Hk, hk(x̂k|k−1, rk) − zh

zx̂k|k−1 x̂k|k−1 � yk, and
zh
zvk

� Λk, then the first order linearization of the
measurement function of the nonlinear system model is

zk ≈ Hkxk + yk + Λk(vk − rk). (11)

The methods used to process the obtained angles are as
follows: use eqs 9, 11 to convert the state model from
nonlinear to linear, and then, use the basic linear equations of
the discrete system for the Kalman filter.

2.5 The Range of the Angle
The exoskeleton robot of upper limbs has many DOFs, but it was
not easy to foresee movements of all DOFs. The DOF of the
pronation–supination movement was controlled by multiple
muscles, so obtaining the most effective muscle combination
was difficult. Moreover, the sEMG obtained was relatively
weak and susceptible to external interference; thus, the angle
estimation was complex. Existing studies, such as those by
(Huang et al., 2020; Xi et al., 2021), are less involved in the
DOF of the pronation–supination movement. This study took the
DOF of the pronation–supination movement as the research
object to expand the application range of the continuous
movement estimation.

An exoskeleton robot of the upper limb was used to verify the
angle estimation accuracy and observe the error between the
estimation and the human motion angle. Before the structure of
the exoskeleton robot was defined, the human physiological
structure was studied to determine the appropriate range of
the DOF. The movement range could be gained according to
ergonomic characteristics to ensure the safety of the exoskeleton
robot during operation. The limit for the pronation–supination
movement was -90–90.0°. At the same time, we defined that the
center of the palm back to the ground was called 0° (see in
Figure 4 supination), and the opposite was 180.0°. Themovement
begin the posion supination and ended the posiont pronation The
angle definition of the DOF is illustrated in Figure 4.

The absolute error Δ and relative error δ of the joint rotation
angle are respectively

Δ � |x2 − x1| (12)

δ � |x2 − x1|
x1

× 100% (13)

where x1 is the human body joint angle, and x2 is the exoskeleton
robot angle. Two 9-axis attitude sensors (WT901C) are used to
measure the x1 and x2.

2.6 Design Theory of One Degree of
Freedom Exoskeleton Robot
To verify the effect of the continuous movement estimation on
the exoskeleton robot control, we designed an exoskeleton robot
with one DOF after a comprehensive consideration of the
physiological structure of different upper limbs. In the
designing process, we mainly considered the following key
measures.

2.6.1 Exoskeleton Robot Skeleton Design
The exoskeleton robot needed to be fixed on the subject’s upper
limb and must be designed with a suitable clamping mechanism
so that it could be fixed to the forearm. The overall structural
design should be as light as possible and meet mechanical
requirements. Aluminum alloy 6061 is a high-quality, low-
density material produced by heat treatment and pre-
stretching, which has several strengths: good processing
performance with no deformation after processing, excellent

FIGURE 4 | Pronation–supination movement angle.
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anti-oxidation ability, and high toughness. Therefore, 6061 was
chosen as the primary structural material. A porous structure was
adopted without affecting the structural strength to make the
overall structure as light as possible. The installation position of
all motors was also carefully considered.

2.6.2 Angle Sensor
The appropriate sensor should be chosen to measure the angle of
one DOF. The exoskeleton robot’s pronation–supination
movement angle was measured by a 9-axis attitude sensor
(WT901C) with high accuracy and easy installation. The 9-
axis attitude sensor was Shenzhen Weite Intelligent
Company’s module, and the sampling frequency was 100 Hz,
the sampling accuracy was 0.1°, and the sensor had the Kalman
filter function. The data of 9 axes were three angular
accelerations, three angular velocities, and three angles.

A three-dimensional model of the upper limb exoskeleton
robot was designed considering the different size of subjects’
upper limbs (see Figure 5). The physical model of the one DOF
upper limb exoskeleton robot was completed, as shown in
Figure 6.

2.6.3 Realization of the Exoskeleton Degree of
Freedom
The process in which the exoskeleton drives the human forearm to
realize pronation and supination DOF is as follows: the forearm is
fixed to the transverse support structure (see Figure 6) through
bandages, and the palm passes through the big gear hole and holds
the handle support (see in Figure 5). The small gear drives the big
gear to rotate and then realizes the forearm rotation.

2.7 Experimental Paradigm
One DOF was designed for the upper limb exoskeleton robot,
which was then utilized to perform a tracking test. Then, a
relationship model between sEMG features and the upper limb
movement angle was set up. The participants in different trials
vary from 5 to 20 according to the studies in (Pang et al., 2013;
Geng et al., 2016; Wu and Chen 2021). The number of subjects in
this trial was eight (including seven males, one female), aging

between 23 and 32 years old, and six right-hands and two left-
hands were included. Before attaching the EMG sensor, the
electrode sticking site is kept clean and moist; an informed
consent is signed; at least 2-min rest is needed between each
group of movements in the trial to avoid the influence of muscle
fatigue on the quality of sEMG. It was approved by the Medical
and Experimental Animal Ethics Committee of Northwestern
Polytechnical University.

The exoskeleton robot was fixed on the upper limb of a
participant. The angle of the pronation–supination movement
and the rotation angle of the exoskeleton robot’s wrist ring are
measured by two attitude sensors. The attitude sensor lay flat on an
individual’s palm, and the x-axis was collinear with the forearm
(the individual was the subject). By analyzing the change, the
pronation–supination movement angle could be obtained.
Another attitude sensor was put on the wrist of the robot. The
x-axis was collinear with the exoskeleton robot’s forearm, and the
x-axis angle change was analyzed to obtain the rotation angle of the
robot’s wrist ring. We could get lateral DOF’s tracking effect by
comparing the differences between angles.

During the test, the subject sat in a chair, keeping the body
upright and looking straight ahead, and the angle between the upper
arm and the forearm was 90.0°. Initially, the subject’s palm was
parallel to the horizontal plane, and the palm was upward, and then
rotated 180.0° until the palm was downward. The whole process
lasted 5.0 s and tried to ensure a constant speed rotation, and other
joints were kept as immobile as possible. During the participant’s
forearm rotation with the exoskeleton robot, the DOF of the other
joints should be kept as immobile as possible except for the lateral
freedom of the movement. The subject’s forearm was rotated 180.0°

laterally. The subject’s sEMG was employed as training data, and
participants’ signals were used as test data. Extracted features from
the data and imported them into the BP neural network to generate
an angle estimation model and used it to predict the lateral rotation
angle of humans. Every subject received tests five times, and the
results from five tests were averaged. The experimental flow is
shown in Figure 7. First, the sEMG was obtained from the
subjects and preprocessed. Then, the signals’ feature was
extracted, and finally, features were imported into BP for

FIGURE 5 | 3D drawing of hand support structure. FIGURE 6 | Physical model of the exoskeleton robot.
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prediction. The predicted results are imported into the
computer to drive the exoskeleton, and the tracking error is
obtained according to the angle obtained from the exoskeleton
and the actual rotation angle of the human body.

3 RESULTS

Tracking results of eight subjects’mean are shown in Figure 8. The
standard deviation of the whole process is 7.8°. One of the subjects’
tracking results are given in Figure 9 and Figure 10. The red
dashed line represents the exoskeleton robot’s lateral angle; the
solid blue line represents the rotation angle of the human body
lateral movement obtained from the attitude sensor. The difference
reflects the tracking error. It can be seen from Figures 8–10 that

both the tracking effect of the average and the tracking effect of
some individuals is accurate, and there is no significant fluctuation.

We analyzed the error of the obtained tracking results using eq.
12, and the absolute error curve we obtained is shown in Figure 11.
Themovement time length was normalized between 0 and 100%. It
can be seen that the error fluctuates around 15.0° during the entire
period, and the average absolute error is about 17.6°.

Using eq. 13 to analyze the error results, to avoid the lateral
forearm angle being too small, and causing a significant relative
error, it took 1–5.0 s to explore it. The movement time length was
normalized between 0 and 100%.

The results are presented in Figure 12. The error at the
beginning is relatively large and finally stabilizes at about
15.0%, and the average value of the relative error is about 23.3%.

FIGURE 7 | Experimental flow of controlling the exoskeleton robot.

FIGURE 8 | Tracking result of pronation–supination movement DOF. FIGURE 9 | Subject 1 tracking results of pronation–supination
movement DOF.
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4 DISCUSSION AND CONCLUSION

4.1 Discussion
This study employed the neural network model as an alternative
strategy to the Hill muscle model, which requires optimizing
many different parameters. The designed BP estimation model
could realize the forearm’s angle estimation: different subjects
were selected to test the developed estimation model’s
performance; then the average absolute and relative errors of
results were obtained. The average relative error and the average
absolute error was about 23.3% and 17.6°, respectively. The
Kalman filter model is a good method to correct the predicted
value. The results show that the proposed method also achieves
good experimental results.

Scholars had conducted extensive research on the estimation
of continuous movement of the human body. For example, (Han
et al., 2015) selected the Hill muscle model to predict the
continuous movement angle, which greatly improved the
estimation accuracy of the upper limb motion. Jimson et al.
(Vogel et al., 2013) proposed an activation model that
parameterizes the electromechanical delay artificial neural
network by extracting sEMG, estimating finger joints’ angle,
and using the estimation results to drive the right-hand index
finger exoskeleton robot to evaluate the effect. The Kalman filter
estimates the current state based on the state of the last moment
and estimates the optimal state through the correction of the
estimated state and the observed state at the current moment, to
obtain the optimal solution and realize the correction of the whole
prediction process. Ang et al. (Pang et al., 2013) used the Kalman
filter to process surface EMG signals and conducted experiments
on five subjects. The results showed that the designed Hill muscle
model could predict the angle of fingers when they naturally bent.
In this study, the Kalman filter was used to modify the predicted
value to improve the prediction accuracy of the
pronation–supination movement DOF, and the BP neural
network model was used to estimate the rotation angle of the
human forearm, which expanded the freedom range of the upper
limb continuous movement estimation, and improved the
accuracy of the human–machine collaborative control process
of the upper limb exoskeleton robot.

The rotation angle of the pronation–supination movement
DOF was 0–180.0°. In future work, our estimation method
needs to be improved to enhance accuracy, and the signals’
processing and analysis will be performed online. Figure 8
shows that despite the errors, the DOF is in line with the
increasing trend of the actual angle, indicating that the errors
do not affect the exoskeleton robot’s standard control.

5 CONCLUSION

This study presented the signals’ preprocessing and feature
extraction, established the relationship model of sEMG and
joint movement angle to realize the continuous movement
estimation, and employed a designed exoskeleton robot to
verify the model’s accuracy.

FIGURE 10 | Subject 2 tracking results of pronation–supination
movement DOF.

FIGURE 11 | Absolute error curve of pronation–supination
movement DOF.

FIGURE 12 | Relative error curve of pronation–supination
movement DOF.
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