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Nano-selenium (nano-Se) has been extensively explored as a biostimulant for

improving the quality of grain crops. However, there are few reports about

the e�ect on the medicinal components of Chinese herbal medicine cultured

with nano-Se. Here, we sprayed nano-Se during the cultivation of Panax

notoginseng (SePN), and measured the changes of medicinal components

compared with conventional Panax notoginseng (PN). Furthermore, we

identified a more pronounced e�ect of SePN on reducing obesity in

animals comparedwith PN. Bymeasuring antioxidant capacity, histopathology,

gene expression related to glycolipid metabolism, and gut microbiota

composition, we propose a potential mechanism for SePN to improve

animal health. Compared with the control groups, foliar spraying of nano-

Se increased saponins contents (Rb2, Rb3, Rc, F2, Rb2, and Rf) in the

roots of Panax notoginseng, the content of Rb2 increased by 3.9 times

particularly. Interestingly, animal studies indicated that taking selenium-rich

Panax notoginseng (SePN) can further ameliorate liver antioxidation (SOD,

MDA, and GSH) and enzyme activities involved in glycolipid metabolism

(ATGL and PFK). It also relieved inflammation and regulated the expression

of genes (MCAD, PPAR-α, and PCSK9) related to fatty acid oxidation. The

abundance ratio of Firmicutes/Bacteroides and beneficial bacteria abundance

(Bifidobacterium, Butyricimonas, and Parasutterella) in gut microbiota were

improved relative to the control. In summary, the application of nano-Se on

PNmay e�ectively raise the content of Panax notoginseng saponins (PNS) and

immensely lower the risk of metabolic disorders of glycolipids.
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Introduction

At present, more than 600 million individuals are obese,

accounting for 39% of the world’s adult population (1). Obesity

raises the risk of a variety of diseases, including insulin

resistance, cardiovascular disease, liver disease, and cancer (2).

Obesity is frequently assumed to be caused by a high-fat and

high-calorie food supply (3). People progressively recognize

the harm of the high-fat diet (HFD) and the importance of a

scientific diet, therefore they focus on enhancing bodily function

through the use of functional foods (4, 5). Currently, Chinese

herbs such as Panax ginseng, Panax notoginseng, and Chinese

yam have been experimentally validated for reducing the risk of

cardiovascular disease in animal studies (6–8).

Panax notoginseng (PN) is a perennial Chinese herbal

medicine with Panax notoginseng saponins (PNS) as its

principal functional component. PNS are useful for hemostasis,

anti-inflammation, analgesia, and the prevention of cardio-

cerebrovascular diseases (9). PNS can dramatically up-regulate

the expression of fatty acid β-oxidation related factor mRNA

(MCAD, LCAD) to intervene with cardiomyocyte hypertrophy

by regulating energy metabolism in the field by lowering blood

sugar and blood lipids (10). PNS has also been demonstrated to

boost the expression of CPT-1A in T cells, increasing their fatty

acid oxidation metabolism, and promoting the differentiation

of mice CD+

4 T cells into Treg cells (11). In a nutshell, PN

which can reduce blood sugar and blood lipid levels should

be investigated further. However, Chinese herbal medicine is

vulnerable to abiotic (heavy metals, drought, flooding, climate

change, pesticides) and biotic stress (insects and pathogenic

bacteria), which affects the composition and production of

medicinal components (12).

Exogenous hormones such as jasmonic acid, salicylic acid,

and melatonin have been shown in several studies to effectively

alleviate the deleterious effects of biotic and abiotic stress on PN,

as well as boost PN biomass and antioxidant capacity (13–15).

However, there are few investigations on the intervention of Se

with a strong antioxidant capacity of the medicinal components

of the PN. Se exerts biological benefits as a component of

the antioxidant enzyme glutathione peroxidase (GPX) (16).

Foliar Se treatment reduced oxidative stress damage while also

increasing grain yield and Se contents (17). Maassoumi et

al. (19) found that Se can up-regulate triterpenoid saponins,

soluble sugar, amino acids, and exopolysaccharides contents in

Astragalus (18). Compared with inorganic and organic Se, nano-

Se has high bio-availability, superior stability, minimal toxicity,

and great free radical scavenging capabilities. Studies showed

that nano-Se may be utilized as biofortifiers and stimulators,

and its effect on plant antioxidant metabolism was related to

primary and secondary metabolites (20). Our previous studies

demonstrated that foliar application of nano-Se regulated

hormone pathway, phenylpropane pathway, volatile organic

compounds, antioxidants enzymes, and secondary metabolites

to strengthen the quality and resistance in various crops (21–

23). Medical studies revealed that the protective mechanism

of Se on the human body includes inhibition of oxidative

stress, endothelial dysfunction, protection of vascular cells from

apoptosis, calcification, and regulation of inflammation (24).

Long-term Se deficiency in the human body can harm the

cardiovascular system and lead to myocardial infarction (25).

However, few researchers have studied the mechanism of how

nano-Se improves the quality of traditional Chinese medicine

PN and the level of glycolipid metabolism after ingesting nano-

Se-cultivated PN.

Hence, the saponins contents, physiological and biochemical

indexes, antioxidant capacities, enzymes activities, gene

expression, pathological analysis, and gut microbiota connected

with glycolipid metabolism were targeted determination to

explore nano-Se foliar applications in PN acts the effect on

glycolipid metabolism in mice.

Materials and methods

Synthesis and characterization of
nano-se

The synthesis method refers to the previous research (26).

The 1% chitosan solution was prepared for the pre-solution, and

then 20mM of selenium dioxide solution (i.e., selenite solution)

was slowly added to 20mL of the pre-solution. The nanoscale

dispersed selenite colloidal solution was obtained by continuous

stirring at 500 rpm and 25◦C. Slowly add 4ml 1% ascorbic

acid solution and stir continuously at 25◦C at the speed of

500 rpm for 3 h until the solution color changes to transparent

red, which means that the synthesis of nanometer selenium

is over. For characterization data, please refer to our previous

article (22).

Cultivation and processing of SePN

The SePN plants were grown in Kunming, Yunnan

Province, China. The cultivation method is to select 1-year-

old PN seedlings. Nano-Se is sprayed once a month from

May to November, and root samples of PN were collected

in December. According to the recommended dosage of

PN in Chinese Pharmacopeia and the rule of body surface

area, the roots PN were ground into powder by a mill and

added into HFD to make the mass fraction of PN 6 g/Kg.

All reagents needed in the experiment were purchased from

commercial channels.
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Sample preparation of PN

The 0.1 g mashed PN powder was weighed in a 2ml

centrifuge tube. The saponin was extracted by adding the

1ml solution (70:30% V/V, methanol/water). The mixture was

shaken for the 2min on the VX-III multi-tube eddy current

meter (Beijing Tajin Science and Technology, Beijing, China)

and centrifuged for the 5min at 10,000 rpm. Then, 1ml

supernatant was transferred to a 2ml centrifuge tube containing

50mg C18. The tube was vortexed for 2min before being

centrifuged at 10,000 rpm for 5min. Finally, the supernatant was

filtered through a 0.22µm nylon filter and transferred into an

autosampler glass vial for the saponin measurement.

Relative quantification of saponins by
HPLC–MS/MS

The HPLC–MS/MS system comprised an Agilent Series

1,290 ultra-performance liquid chromatography system and

an Ultivo triple quadrupole mass spectrometer (Agilent

Technologies, Palo Alto, CA, USA). The chromatographic

separation was performed on a ZORBAX Eclipse Plus C18

chromatography column (2.1 × 50, 1.8µm, Agilent) using

a gradient elution of 0.1% formic acid in water (A) and

acetonitrile (B) at a flow rate of 0.4 mL/min. The gradient

profile was optimized as below, 0–10 min: 5–95% B, 10–

12 min: 95–5% B, and 12–15 min: 5% B. The column

temperature was maintained at 40 ◦C, and the injection volume

was 2 µL. The composition changes of PNS are shown in

Supplementary Table S1. The MRM parameters of each analytes

are listed in Supplementary Table S2.

Animals and treatment

Thirty 2-week-old C57 male mice were randomly divided

into three groups with 10 mice in each group. They were placed

in a stable environment with a temperature of 25 ± 2◦C, and

humidity of 50 ± 5% with 12 h light/12 h dark cycle. Mice were

fed with HFD mixed with PN/SePN and free drinking water for

8 weeks. Body weight and food intake were recorded every 7

days. The mice were fasted for 1 day after collecting their fecal

flora, and dissected after fasting to collect liver, heart and serum

samples. These samples were collected and stored in −80◦C.

All experimental operations were approved by the independent

Animal Ethical Committee of China Agricultural University.

Biochemical parameters assay of serum

Serum biochemical indexes include aspartate

aminotransferase (AST), alanine aminotransferase (ALT),

triglyceride (TG), glucose levels (GLU), total cholesterol (TC),

and high-density lipoprotein cholesterol (HDL-C). They were

measured using their respective assay kits (Nanjing Jiancheng

Bioengineering Institute, China).

Biochemical indexes assay of liver

The detection of superoxide dismutase (SOD),

malondialdehyde (MDA), and glutathione (GSH) can reflect

the oxidative stress indexes of the liver. Phosphofructokinase

(PFK), hydroxymethylglutaryl CoA reductase (HMG-CoAR),

and adipose triglyceride lipase (ATGL) were detected to reflect

the enzyme activity of liver lipid metabolism. These indexes

were measured by using the test kit of Nanjing Jiancheng

Bioengineering Research Institute (China).

Histopathological analysis of liver and
colon

A small piece of liver and colon tissue (about 50mg) was

fixed with a 4% formaldehyde solution. After being embedded

in dehydrated paraffin, the tissue was cut into 5mm slices and

then stained with hematoxylin-eosin. Histopathological images

were collected by Olympus BX51 imaging system (Olympus

Corporation, Japan) and analyzed by Image pro plus 6.0 software

(Media Cybernetics, USA).

Total RNA extraction and reverse
ranscription

Total RNA was extracted using Trizol-A+ reagent (Tiangen

Biotech Co., LTD., Beijing, China). The total RNA was reverse

transcribed into cDNA using the FastQuant RT kit (Tiangen

Biotech Co., LTD., Beijing, China). All cDNA was stored at

−20◦C for further testing.

RT-qPCR analysis

Analysis of reverse-transcribed data with Thermofisher

7,500 instrument. ThemRNA levels of genes were quantified and

normalized against the housekeeping gene β-actin, according

to the 2−11CT method (27). The sequence information of all

primers is listed in Supplementary Table S3.

Extraction and analysis of microbial DNA

Total genomic DNA samples were extracted using the

OMEGA Soil DNA Kit (M5635-02) (Omega Bio-Tek, Norcross,
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FIGURE 1

Body weight, diet and organ weight of mice. (A). Body weight after 9 weeks of feeding high-fat diet (Control), Panax notoginseng (PN), and

selenium-rich Panax notoginseng (SePN). (B). Dietary intake within 9 weeks. (C,D). Liver and heart weight after 9 weeks of feeding PN/SePN.

Data are expressed as the mean ± SD. *P < 0.05 compared with the control group (n = 9).

GA, USA), and stored at −20◦C before further analysis.

PCR amplification of the bacterial 16S rRNA genes V3–V4

region was performed using the forward primer 338F (5′-

ACTCCTACGGGAGGCAGCA-3′) and the reverse primer 806R

(5′-GGACTACHVGGGTWTCTAAT-3′). Amplification system

including 5×reaction buffer 5 µL, 5×GC buffer 5 µL, dNTP

(2.5mM) 2 µL, Forward primer (10 uM) 1 µL, Reverse

primer (10 uM) 1 µL, DNA Template 2 µL, ddH2O 8.75

µL, Q5 DNA Polymerase 0.25 µL. Amplification parameters

include initial denaturation 98◦C 2min, denaturation 98◦C

15 s, annealing 55◦C 30 s, extension 72◦C 30 s, final extension

72◦C 5min, 10◦C hold. 25-30 cycles dsDNA Assay Kit

(Invitrogen, Carlsbad, CA, USA). PCR amplicons were purified

and quantified with Vazyme VAHTSTM DNA Clean Beads

(Vazyme, Nanjing, China) and quantified using the Quant-

iT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA,

USA), respectively. Amplicons were pooled in equal amounts,

and pair-end 2×250 bp sequencing was performed using the

Illlumina NovaSeq platform with NovaSeq 6000 SP Reagent

Kit (500 cycles) at Shanghai Personal Biotechnology Co., Ltd

(Shanghai, China).

Statistical analyses

All results are represented as the mean ± SD. The graphical

illustrations were processed by Origin64 and GraphPad Prism

9 (OriginLab (MA), GraphPad (CA), USA), and the statistical

analyses were performed using SPSS v19.0 (IBM, USA). One-

way ANOVA and Tukey were used to test the significant

differences of variables among different groups. Significant

differences in gut microbiota between treatments were analyzed

using principal coordinates analysis (PCoA). QIIME2 (2019.4)

software was used to analyze the taxonomic composition.

Community composition difference was analyzed by the

LEfSe test.

Results

Body weight, diet and organ weight of
mice

Compared with the control group, there was a trend of

weight loss during the 7th and 9th weeks and no alteration in

Frontiers inNutrition 04 frontiersin.org

https://doi.org/10.3389/fnut.2022.973027
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Dong et al. 10.3389/fnut.2022.973027

FIGURE 2

Glucolipid metabolism physiological indexes in serum of mice. (A–C). The content of glucose (GLU), triglyceride (TG), and total cholesterol (TC)

in the serum. (D,E). The level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). (F). High-density lipoprotein cholesterol

(HDL-C). Data are expressed as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 compared with the control group (n = 5).

daily food intake. There was no significant difference between

the groups (Figures 1A,B). In addition, the heart weight of the

mice in the SePN group decreased significantly (Figure 1C), but

the liver weight did not change (Figure 1D).

Glucolipid metabolism physiological
indexes in serum of mice

We detected the physiological and biochemical indexes

related to glycolipid metabolism and found that ingesting SePN

could significantly reduce the GLU content of mice compared

with PN (Figure 2A). The same results were also reflected

in physiological and biochemical indicators related to lipid

metabolisms, such as TG and TC (Figures 2B,C). Furthermore,

the treatment groups (PN, SePN) did not reduce the level of ALT

and AST levels (Figures 2D,E). Taking SePN increased HDL-C

contents in serum to a higher extent (Figure 2F).

Antioxidant and enzymes activities of
glucolipid metabolism in the liver

After testing the antioxidant stress index of mouse liver,

we found that taking PN and SePN could alleviate the

oxidative damage caused by reactive oxygen species and reduce

MDA levels to some extent (Figure 3B). The treatment groups

significantly increased the activity of GSH, but there was no

difference between the treatment groups (Figure 3C). What’s

more, we detected some rate-limiting enzymes of glycolipid

metabolism, and we found that compared with the PN group,

ingesting SePN could reduce the activity of cholesterol synthase

to a certain extent (Figure 3D), increase the activity of ATGL

and PFK in glucolipid metabolism (Figures 3E,F). These results

showed that compared with PN, SePN could relieve liver injury

by improving the ability of antioxidant stress, and protecting the

function of glucolipid metabolism of the liver.

Representative images of H&E staining in
colon and liver sections

Compared with the H&E staining images of the control

group (Figure 4), SePN treatment groups could further increase

the number of goblet cells and relieve HFD-induced colon

inflammation. Meanwhile, the H&E staining image of the liver

indicated that the lymphocytes were infiltrated, activated, and

cavitated in the control groups, but the treatment groups could

significantly reduce the chronic inflammation hazardous effect

to the liver.
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FIGURE 3

Antioxidant and enzyme activities of glucolipid metabolism in the liver. (A) Liver superoxide dismutase (SOD) levels. (B) Liver malondialdehyde

(MDA) levels. (C) Liver glutathione (GSH) levels. (D–F) E�ects of PN/SePN on liver hydroxymethylglutaryl CoA reductase (HMG-CoAR), adipose

triglyceride lipase (ATGL), and phosphofructokinase (PFK). Data are expressed as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P <

0.0001 compared with the control group (n = 5).

Detection of the expression of lipid
metabolism related genes by RT-PCR

CPT1 is the key enzyme for the entrance of lipid into

mitochondria, and oxidative enzymes MCAD, and LCAD will

determine the lipid used for the TCA cycle in oxidation. We

found that SePN could increase the expression of CPT1 gene

by nearly two times (Figure 5A). Secondly, we detected the

expression of LCAD and MCAD, the other two key genes of

fatty acid β-oxidation, and found that the expression of MCAD

was enhanced, which meant that the ability of medium-chain

fatty acid β-oxidation metabolism was enhanced. However, it

had no significant effect on the expression level of LCAD,

which meant that SePN could specifically increase the activity

of fatty acid oxidase (Figures 5B,C). PPAR-α and PPAR-γ play

key roles in maintaining glucose and lipid homeostasis by

modulating gene expression. Our studies found that SePN

significantly up-regulated the expression of PPAR-α, but it had

no significant effect on PPAR-γ expression (Figures 5D,E). In

addition, SePN significantly down-regulated the expression of

PCSK9 (Figure 5F).

Changes of gut microbiota abundance in
mice

Sequencing analysis of 16S rRNA gene reveals effects

on the composition of gut microbiota. PCoA plots

indicated a significant difference in the composition of

the gut microbiome between the control and treatment

groups (Figure 6A). What’s more, population abundance

analysis was carried out at the phylum level. The results

showed that the gut microbiome was mainly composed of

Firmicutes, Bacteroidetes, and Actinobacteria (Figure 6B).

The treatment groups increased the relative abundance

of Bacteroidetes, which decreased the Actinobacteria

abundance and Firmicutes/Bacteroides abundance ratio.

To clarify the changes in microbes’ abundance among

different treatment groups, we performed the LEfSe to find

microbes with significant differences (Figure 6C). Notably,

in the SePN group, the most significant increase in the

abundance of Bacteroidetes, Butyrimionas, Bifidobacterium,

and Parasutterella, and reduce the abundance of Tenericutes

(Supplementary Figure S1).
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FIGURE 4

Representative images of H&E staining in colon and liver sections. We use green circles to indicate inflammatory cell infiltration and blue circles

to indicate cell vacuolation.

Discussion

Nano-selenium biofortification acts the accumulation

of Panax notoginseng saponins (Rb3, Rc, F2, Rb2, and Rf).

According to various research, these saponins have the potential

to alleviate cardiovascular and cerebrovascular disorders

induced by HFD (28–30). Studies showed that selenium

deficiency induces Keshan disease, which is characterized

by cardiac hypertrophy and increased heart weight (31).

We found that the heart weight of mice was reduced after

ingesting SePN, which is most likely due to the synergistic

effect of Se with saponins. The risk of cardiovascular and

cerebrovascular diseases is directly connected to blood

sugar and blood lipid contents. The TG, TC, HDL-C,

GLU, ALT, and AST levels in the mice serum can directly

reflect whether Panax notoginseng protects liver glycolipid

metabolism. Our studies discovered that in the treatment

groups, TG, TC, and GLU contents declined while HDL-C

rose, implying that blood viscosity decreased, but the blood

flow velocity improved, lowering the risk of hyperglycemia

and hyperlipidemia. However, the activities of ALT and

AST in serum did not change considerably, indicating

that taking SePN at the prescribed dose every day could

not successfully treat the liver impairment produced by

long-term HFD.

To further explore the effect of taking SePN on the

liver, we detected the related indexes of oxidative stress and

glycolipid metabolism. The results showed that the treatment

groups might increase the activity of GSH and decrease

MDA levels induced by lipid peroxidation, indicating that

SePN could protect liver function by improving antioxidation

ability. HMG-CoAR is involved in cholesterol synthesis and

LDL catabolism in serum. The level of HMG-CoAR in the

treatment groups decreased relatively, but the difference was

not statistically significant. It could be inferred that PNS

increased the HMG-CoAR activities, inhibited the cholesterol

synthesis metabolism of the liver, and promoted the catabolism

of LDL, which were beneficial to reduce cholesterol levels

in serum. Secondly, the increasing types of saponins (Rb2,

etc.) in SePN might not further inhibit cholesterol synthesis

metabolism. ATGL and PFK were used as rate-limiting enzymes

to chew through TG and GLU, respectively. Compared with

the control group, the enzyme activities of ATGL and PFK

decreased significantly in the treatment groups. SePN group

more efficiently promoted aerobic respiration of GLU and the

mobilization of fat. Furthermore, there was a significant positive

correlation between PNS contents and ATGL and PFK enzymes,

whichmeant PNS could activate the synthesis of ATGL and PFK.

The study examined the expression level of lipid

metabolism-related factors in the liver to further explore
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FIGURE 5

Detection of the expression of glucolipid metabolism related genes by RT-PCR. (A). The relative abundance of mRNA of CPT1. (B,C) The relative

abundance of mRNA of LCAD and MCAD. (D,E) mRNA relative abundance of PPAR-α and PPAR-γ . (F) The relative abundance of mRNA of

PCSK9. Data are expressed as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 and compared with the control groups (n = 3).

the changes in fatty acid metabolism function. CPT1 is a key

factor that promotes the transfer of fatty acids from cell fluid to

mitochondrial inner membrane for β-oxidation (32). Inhibition

of CPT1 expression can lead to lipid accumulation and insulin

resistance (33, 34). In the liver, peroxisome proliferators

activate receptors α and γ (PPAR-α, PPAR-γ ) to regulate the

homeostasis of lipid metabolism (35). Among them, PPAR-α is

involved in regulating the enzyme activity of gluconeogenesis,

lipoprotein synthesis and transport determines the capacity

of hepatic fatty acid oxidation in the liver (36). PPAR-γ plays

an important role in adipogenesis, lipid metabolism, insulin

sensitivity, and immune regulation (35). The activation of

PPAR-γ is adipogenic, and the increased expression of PPAR-γ

in the liver will lead to steatosis (37). MCAD and LCAD

catalyze the first step of fatty acid oxidation and determine the

lipid used for the TCA cycle (38, 39). Low-density lipoprotein

receptor (LDLR) can bind to LDL and reduce LDL contents

in serum (40). Subtilisin 9 (PCSK9) can negatively regulate

the expression of LDLR, resulting in hypercholesterolemia

(41). Our studies indicated that PNS could affect PPAR-α and

PCSK9-related pathways to reduce fatty acid and LDL levels,

and SePN would produce better results. Furthermore, studies

indicated that SePN with higher PNS contents could reduce

the accumulation of lipids and maintain normal glucolipid

metabolism by promoting the utilization of fatty acids, thus

reducing the contents of blood sugar and blood lipids.

HFD can significantly decrease the number of goblet cells

in the colon, which can secrete mucin to form a mucosal

barrier, protect epithelial cells, and reduce the risk of colonic

inflammation (42). Compared with PN, SePN could significantly

increase the number of goblet cells in the colon to resist

endogenous or exogenous stimulation and reduce lymphocyte

infiltration and vacuolization in the liver. Considering the

increase in antioxidant level, we believed that SePN could

protect the liver and reduce the chronic inflammation and

metabolic disorder caused by lipid peroxidation, and the

mechanisms might be due to the combined effect of high

accumulation of PNS and Se.

Furthermore, we further investigated the effects of SePN

on gut microbiota. HFD decreases Bacteroides levels while

increasing the amount of Firmicutes, which was a characteristic

of the gut microbiota of obese people, according to 16s rRNA

sequencing (43). The abundance of Bacteroides rose dramatically

after the treatment of PN and SePN therapy, but the abundance

of Actinobacteria declined comparatively. A lower Firmicutes

/ Bacteroides ratio indicates a lower risk of obesity (44).

Moreover, we used the LEfSe further analyze the differences

in gut microbiota composition among groups. Studies showed
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FIGURE 6

Changes of gut microbiota abundance in mice. (A) The principle coordinate analysis (PCoA) plot for the samples in the di�erent groups. (B) The

gut microbiota composition at the phylum level. (C) Taxa with significant di�erences between groups based on linear discriminant analysis (LDA)

e�ect size.

that Butyricimonas, which can produce butyric acid to improve

the inflammatory response (43, 45, 46), Bifidobacterium, which

produces acetic acid to regulate the induction of cholesterol

biosynthesis (43, 47), and Parasutterella, which is involved in

bile acid homeostasis maintenance and cholesterol metabolism

(43, 48), increased their abundance after taking SePN.

Compared with PN group, taking SePN increased the relative

abundance ofMuribaculaceae, Rikenellaceae, Erysipelotrichaceae

(Supplementary Figure S1). At present, studies showed that the

increase in the abundance of these microorganisms is negatively

correlated with the risk of disease induced by HFD (49–

52). Interestingly, some studies showed that dietary selenium

supplementation can improve their relative abundance (53,

54). Therefore, the increase of PNS and selenium content

jointly regulate the gut microbiota and reduce the negative

effects of HFD. These results confirmed that SePN had a

better role in regulating glycolipid metabolism and relieving

inflammatory reactions. There are significant changes in

glucolipid metabolism in mice juvenile to young adulthood.

These changes and the potential effects of selenium absorption

and transmission regulation of glucolipid metabolism in mice

need to be further studied.

Conclusion

In conclusion, we combined plant and animal experiments

together and hoped to fully demonstrate the meaning of the

nano-selenium biofortification on Chinese herbal medicine

Panax notoginseng by the target determination and 16S

rRNA gene sequence analysis. Our study indicated that

taking SePN instead of PN might boost antioxidant capacity,

glucolipid metabolism enzyme activities, PPARα and PCSK9

pathway regulation, and gut microbiota improvement linked

to glucolipid metabolism, lowering the risk of hyperglycemia,

hyperlipidemia, and inflammatory reactions induced by

the HFD.
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