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Abstract: Negative thermal expansion is an interesting and appealing phenomenon for various
scientific and engineering applications, while rarely occurring in natural materials. Here, using a
universal antichiral metamaterial model with bimetal beams or strips, a generic theory has been
developed to predict magnitude of the negative thermal expansion effect from model parameters.
Thermal expansivity of the metamaterial is written as an explicit function of temperature and only
three design parameters: relative node size, chirality angle, and a bimetal constant. Experimental
measurements follow theoretical predictions well, where thermal expansivity in the range of negative
0.0006–0.0041 ◦C−1 has been seen.

Keywords: thermomechanical metamaterial; mechanical metamaterial; negative thermal expansion;
negative expansivity; architectured material; bimetal strip; metamaterial design

1. Introduction and Material System Definition

Metamaterials is a term that defines modern engineered materials with extreme properties and
functionalities that are not available in natural materials. Veselago in 1967 [1] proved theoretically
that materials with both negative permeability and negative permittivity could demonstrate a
range of unprecedented properties varying from light source attraction to flat lens focusing. Later,
Pendry and Smith [2–4] expanded these concepts to advanced resolution imaging and wave guiding
technology [5–9]. The term metamaterials, though, was only first used by Walser in 2001 [10]. The prefix
meta stands for Greek beyond or after, implying availability of additional dimensions in the property
space of the metamaterials when compared to the usual materials. A major advancement seen in
more recent literature is a realization that the reverse or expanded properties can be realized in an
“effective” manner, from material responses only to certain excitation frequencies. Thus, a key concept
of frequency-dependent material property, varying from positive to negative or even complex values,
has emerged and flourished. This contrasted with the original idea of a negative material property
viewed in an objective manner, as a basic frequency-independent material constant [1] that is much
more difficult to achieve in practice. In particular, the concept of negative refractive index has also
been seen in wave mechanics and phononics, where it is associated with negative effective bulk
modulus and negative effective mass density, observed at certain frequency ranges of an incident
acoustical signal. Newly realized phenomena of shielding, bending, and focusing of sound waves
propagating through materials with those reverse effective properties could serve for many interesting
practical applications [11–14].

The notion of a mechanical metamaterial is the most recent and emerging in the field. The main
objective of research in the area of mechanical metamaterials is to demonstrate materials with exotic
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mechanical properties, such as Poisson’s ratio, Young’s modulus, as well as bulk and shear moduli.
The successes in the field of optics and acoustics, enabled by the material’s internal structure engineering,
have guided the theory and application of mechanical metamaterials. A common approach shared by
most authors in the field is to view the unusual mechanical properties as a result of a smart internal
structure of the metamaterial on a unit cell level [15–23]. A proper engineering design then may lead to
some extreme properties that are not available in the base materials used to fabricate those structures.
For example, Kolpakov [17] and Lakes [18,19] described latticeworks and polyform foam structures with
negative Poisson’s ratios [17] that would expand laterally when a longitudinal tensile force is applied.
This type of nonconvex microstructure can be interesting for aerospace and marine application because
of their light weight and good absorption properties [20,21]. Many interesting properties and behaviors
are realized from bistable unit cell designs in periodic metamaterials, including highly efficient energy
damping and trapping [22,23], negative stiffness [24], negative incremental compressibility [25–28],
and extensibility [29,30]. Other studies of materials with engineered internal structure showed
opportunities for a Saint-Venant’s edge effect reversal [31], strain energy control and redirection by
demand [32–34], loss of reciprocity of materials deformation [35], and the negative thermal expansion
phenomenon [36–40]. Harnessing these advanced behaviors could enable many exciting solutions in
architecture, energy systems, manufacturing industry, transportation, and other areas.

The main objective of this work is to provide a solid theoretical basis, backed up by
experimental measurements, for a class of antichiral thermomechanical metamaterials with negative
thermal expansion properties and continuous (nonsnapping) responses to thermal loads. A recent
review of chiral metamaterial architectures is provided in reference [40]. One example from the
literature, e.g., [38,40,41], is shown in Figure 1. Here, materials of the bimetal strips have a mismatch of
their thermal expansion coefficients, leading to a continuous thermal bending of the strips and an overall
size reduction of the material sample with temperature. A similar geometry was also discussed in the
context of a continuous negative bulk modulus, which can be realized from a hydrostatic mechanical
pressure applied to both sides of the composite strips whose materials have a mismatch of their elastic
properties [41]. In the present paper, though, we focus on thermal responses of the Figure 1 type
geometry. We also extend it to a generic antichiral geometry with arbitrary node shape/size, chirality
angle and bimetal constant, and study dependence of the negative thermal expansion characteristics of
these design parameters.Materials 2020, 13, x FOR PEER REVIEW 3 of 14 

 

 

Figure 1. Antichiral metamaterial architecture, enabling negative (effective) thermal expansion. 
Continuous elastic thermal buckling of the bimetal strips, shown as solid lines, leads to an overall 
contraction of the material sample with temperature. 
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Figure 2. Definition of the chirality angle θ0, as a variable system parameter, and special cases of this 
angle for metamaterials with solid nodes of square, triangular, and circular shapes. (a) arbitrary 𝜃, 
(b) 𝜃 = 45°, (c) 𝜃 = 60°, (d) 𝜃 = 90°. 

Figure 3 drawing explains that three geometrical parameters—the chirality angle θ0, the node 
radius R (distance from a node center to an endpoint of the free-standing part of a bimetal strip), and 
length L of the free-standing parts of the bimetal strip—fully define the material’s internal 
architecture. We also introduce a single state parameter, which is the angle of rotation of the nodes 
θ, see Figure 3, to describe a state of deformation of the material due to heating. This state of 
deformation is defined by thermal bending of the bimetal strips upon uniform temperature change 
of the material, ∆T, with respect to an initial temperature at which all the strips are straight. Curvature 
of a thermally buckled strip is known to be uniform, so that the entire free standing strip takes a 
circular arch shape [42]. Therefore, from Figure 3,  𝜃 = 𝐿2𝜌 (1) 

where 𝜌 is a uniform radius of curvature of the bimetal strips. It is interesting to note (e.g., from 
reference [42]) that dependence of the curvature on a temperature change is linear. Therefore, we 
suggest to introduce a system parameter, a, unique for a given bimetal strip, such that 𝑎∆𝑇 = 1/𝜌, 
and to write a linear constitutive relationship between the angle of deformation and temperature, 𝜃 = 𝐿2𝜌 = 𝑎𝐿∆𝑇2  (2) 

Figure 1. Antichiral metamaterial architecture, enabling negative (effective) thermal expansion.
Continuous elastic thermal buckling of the bimetal strips, shown as solid lines, leads to an overall
contraction of the material sample with temperature.

Our generic metamaterial model is comprised of multiple bimetal strips of equal length and
repeating solid nodes serving to connect the strips together. In practice, circular nodes with openings
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for strip insertion and fixture can be used to achieve an arbitrary chirality angle, θ0, see Figure 2a.
Alternatively, the strips can be attached to side surfaces of polygonal of circular nodes for a specific
value of the chirality angle (45◦, 60◦, or 90◦), see Figure 2. The chirality angle is therefore a variable
design parameter of this material system. It is generally defined as a minimal nonzero angle between a
vertical symmetry axis of the material and a line passing through the node center and an endpoint of
the free-standing part of a strip. Note that in all cases, portions of the bimetal strip in contact with
nodes are assumed to be rigidly attached to the nodes in a nonslip manner. The remaining portion of
the strips is free-standing, i.e., capable of a reversible mechanical buckling (bending) with heating or
cooling (see drawings in Figures 2 and 3).
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Figure 2. Definition of the chirality angle θ0, as a variable system parameter, and special cases of this
angle for metamaterials with solid nodes of square, triangular, and circular shapes. (a) arbitrary θ0,
(b) θ0 = 45◦, (c) θ0 = 60◦, (d) θ0 = 90◦.
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Figure 3. Three geometrical parameters of the metamaterial’s internal architecture (θ0, R, and L), and the
node rotation angle (θ), as a single parameter to describe a thermally induced state of deformation.
Here, ρ = L/θ is a radius of curvature of the thermally deformed strip.

Figure 3 drawing explains that three geometrical parameters—the chirality angle θ0, the node
radius R (distance from a node center to an endpoint of the free-standing part of a bimetal strip),
and length L of the free-standing parts of the bimetal strip—fully define the material’s internal
architecture. We also introduce a single state parameter, which is the angle of rotation of the nodes θ,
see Figure 3, to describe a state of deformation of the material due to heating. This state of deformation
is defined by thermal bending of the bimetal strips upon uniform temperature change of the material,
∆T, with respect to an initial temperature at which all the strips are straight. Curvature of a thermally
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buckled strip is known to be uniform, so that the entire free standing strip takes a circular arch
shape [42]. Therefore, from Figure 3,

θ =
L

2ρ
(1)

where ρ is a uniform radius of curvature of the bimetal strips. It is interesting to note
(e.g., from reference [42]) that dependence of the curvature on a temperature change is linear. Therefore,
we suggest to introduce a system parameter, a, unique for a given bimetal strip, such that a∆T = 1/ρ,
and to write a linear constitutive relationship between the angle of deformation and temperature,

θ =
L

2ρ
=

aL∆T
2

(2)

The coefficient a can be interpreted as a specific (per unit length) thermal bending coefficient of a
bimetal strip, which gives an amount of uniform bending deformation (in radians) per one-degree
temperature change. The dimensionality of a is

[
L−1T−1

]
, and its value depends on the cross-section

geometry of the bimetal strip, elastic and thermal expansion coefficients of the two metals, and their
joining fabrication method. Because of these multiple factors, the thermal bending coefficient,
a, in Equation (2) should generally be found experimentally, using its physical meaning. More details
are given Section 3.

2. Theoretical Analysis

In this section, we discuss a quantitative analysis method, definitions of thermal expansion
characteristics of the antichiral metamaterials, and predictions of their values from key structural
parameters, accompanied by practical design recommendations.

Some basic quantities that will be used in the analysis are the following. According to Figure 3,
an original distance between centers of two nodes, when the strips are straight, at ∆T = 0,

l0 = L + 2R cosθ0 (3)

Then, a deformed distance between centers of two nodes, after application of heat to the system,

lT =
LT

θ
sinθ+ 2RT cos(θ+ θ0) (4)

Here, LT is a changed length of the strip after temperature is applied, RT is a changed radius
of the nodes due to the temperature, θ is a node rotation angle, and θ0 is a constant chirality angle
as in Figure 2.

The values LT and RT can be written in a standard form using the usual coefficients of linear
thermal expansion of the strip material, αs (cumulative), and of the node material, αn,

LT = L(1 + αs∆T) (5)

RT = R(1 + αn∆T) (6)

These provide a distance between two nodes in a thermally deformed configuration,

lT = (1 + αs∆T)
L sinθ
θ

+ 2R(1 + αn∆T) cos(θ+ θ0), θ =
aL∆T

2
(7)

2.1. Thermal Strain Function

The quantities l0 and lT given by Equations (3) and (7) represent an original length and a deformed
length of a repeating unit cell of the metamaterial. Therefore, we can write the thermal strain as

εT =
lT − l0

l0
=

2θR(1 + αn∆T) cos(θ+ θ0) + L(1 + αs∆T) sinθ
θ(L + 2R cosθ0)

− 1 (8)
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The values of αn and αs are from 10−6 to 10−5 ◦C−1 in metal alloys, and we may often encounter a
situation when αs,n � aL for the metamaterials discussed here. If αs,n/aL < 10−3, the usual thermal
expansion will have a practically negligible effect on the thermal strain (8) behavior. In this case, internal
structural parameters of the metamaterial will dominate its effective thermal expansion properties.
Looking at Equation (8), we realize that the thermal strain depends only on a ratio R/L, rather than
separately on R and L. Moreover, the angle θ depends only on a product aL, and not separately on a
and L. Thus, the number of independent structural parameters is only three (θ0, r, and aL), see Table 1.

Table 1. Independent structural parameters of the antichiral metamaterial.

Chirality Angle (rad) Node Size Ratio Thermal Bending Coefficient (rad/◦C)

θ0 r = R
L A = aL

A final form of the thermal strain, as a function of only independent structural parameters and
temperature, reads

εT =
2θr(1 + αn∆T) cos(θ+ θ0) + (1 + αs∆T) sinθ

θ(1 + 2r cosθ0)
− 1, θ =

aL∆T
2

=
A∆T

2
(9)

In Figure 4, we show behavior of this function at some finite ratios r, and fixed a and R used in
the experiments that will be described later in Section 3. Figure 4 also shows a relative surface area
reduction of the metamaterial, AT/A0 = (εT + 1)2, where A0 = l20 and AT = l2T are initial and reduced
areas, respectively. This property could be interesting for autonomous safety systems applications of the
present metamaterials, for example, serving to reduce throughput of pipes and vents with temperature.Materials 2020, 13, x FOR PEER REVIEW 6 of 14 
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Figure 4. Behavior of the thermal strain (9) with temperature in antichiral thermomechanical
metamaterials of Figure 1 type. The thermal strain is always negative at positive ∆T, and its overall
behavior is nonlinear. Relative surface area reduction of a material sample, AT/A0 = (εT + 1)2,
is shown with dash lines. For these and all further data plots, αs,n ≈ 10−3aR/r, so that the curve
shapes are dominated by the metamaterial’s geometry, while the effect of natural thermal expansion
is negligible.
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2.2. Thermal Expansivity Function

The thermal strain (9) is a nonlinear function of temperature, even at ∆T ≈ 0. Therefore,
we introduce a thermal expansivity function, αT = αT(∆T), rather than a constant coefficient, as
a derivative,

αT = dεT
d(∆T)

=
2(1+∆Tαs)θ cosθ+4r∆Tαnθ cos(θ+θ0)−2 sinθ−4r(1+∆Tαn)θ2 sin(θ+θ0)

2∆Tθ(1+2r cosθ0)

(10)

Behavior of this function with temperature is shown in Figure 5. As can be seen, it can be
nonmonotonous, because of the sine and cosine functions involvement in the temperature dependence.
Also, the negative thermal expansivity is better pronounced at higher nodal size ratios, r, which occur
in the denominator of the Equation (10).Materials 2020, 13, x FOR PEER REVIEW 7 of 14 
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2.3. Thermal Hyperexpansivity

A derivative of the thermal expansivity function (10) with respect to temperature can be referred
to as thermal hyperexpansivity,

α′T = dαT
d(∆T)

= −
2θ cosθ+2r(1+∆Tαn)θ3 cos(θ+θ0)−2 sinθ+θ2 sinθ+∆Tθ2(αs sinθ+4rαn sin(θ+θ0))

(∆T)2θ(1+2r cosθ0)

(11)

Plots of this function versus temperature, for the same three nodal size ratios, as in the previous
plots of εT and αT, are shown in Figure 6.
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2.4. Initial Thermal Expansivity and Hyperexpansivity

Thermal expansivity of the antichiral metamaterial has a negative slope versus temperature at all
combinations of the system parameters (see Figure 5 for an illustration) and a temperature increase
further enhances magnitude of the negative thermal expansion effect. Therefore, for many practical
purposes, it is interesting to study dependence of the initial (at ∆T ≈ 0) values of the functions αT and
α′T on the system parameters. A combination of parameters at which these functions attain maximal
possible (by modulus) values could be viewed as recommendations for a practical material design.

If we employ a single parameter for the usual thermal expansion, αs = αn, recall that θ = aL∆T/2
and apply a power series decomposition of the thermal strain (9) at ∆T = 0 up to a quadratic term,

εT ≈ α0∆T+ α′0
(∆T)2

2

=
αs(1+2r cosθ0)−aLr sinθ0

1+2r cosθ0
∆T

−
(24αsr sinθ0+aL+6aLr cosθ0)aL

12+24r cosθ0

(∆T)2

2

(12)

we may interpret the coefficient α0 at the linear term as an initial thermal expansivity (at ∆T ≈ 0).
This characteristic can be written in an interesting shorter form, a sum of the natural thermal expansion
(αs), and a term depending only on the architectural design parameters (θ0, r and aL):

α0 = αs −
raL sinθ0

1 + 2r cosθ0
(13)

Obviously, the first term can be ignored, if αs � aL. A practical range of the chirality angle is
from 0o to 90◦, because values higher than 90◦ would require practically impossible connections to
accommodate overlapping bimetal strips. We assumed some fixed values of θ0 and aL, as were later
used in the experiments, and plotted α0 onto the contour maps of Figure 7. They reveal a monotonous
dependence of α0 on all the independent structural parameters of the metamaterial, so that a greater
negative thermal expansion effect at ∆T ≈ 0 should generally be expected at larger values of θ0, r,
and aL.
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parameters (θ0, r, and aL).

From the power series expansion of the thermal strain (12), we may also define an initial
hyperexpansivity of the antichiral metamaterial (at ∆T ≈ 0 and αs � aL),

α′0 = −
aL(aL + 6aLr cosθ0)

12 + 24r cosθ0
(14)

which is also monotonous with θ0, r, and aL, although a greater hyperexpansivity should be expected
at smaller chirality angles, see Figure 8.
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2.5. Maximal Rotation Angle -and Maximal Temperature

Continuous thermal deformation in the antichiral metamaterials discussed here might be restrained
in practice, because of a possible limiting configuration depicted in Figure 9. Here, two opposite bimetal
strips in a unit cell encounter each other due to an excessive thermal deformation. This situation is
unique for a particular metamaterial design {θ0, r, aL}, and it is described by a nodal rotation angle,
θm, a maximal angle of applicability of the theory discussed here.
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Figure 9. Occurrence of a maximal angle of nodal rotation, θm, in the antichiral thermomechanical
metamaterial of Figure 1 type.

This angle can be determined from a condition that the deformed distance (7) between two nodes
is equal to a double distance between the middle arch point of a bimetal strip, attached to these
nodes, and the base line passing through the centers of these nodes. The usual thermal expansion
has a negligible effect on the maximal angle value, when αs,αn � aL. These to lead a maximal angle
condition in the form,

sinθm

θm
+ 2r cos(θm + θ0) =

1− cosθm

θm
+ 2r sin(θm + θ0) (15)

The corresponding maximal operational temperature of the metamaterial is

∆Tm =
2θm

aL
(16)

The transcendental Equation (15) is not solvable in a closed form for θm. We solved is numerically
and mapped the solution on the Figure 10 contour plot. According to this mapping, lower node size
ratios maximize the critical angle θm. At moderate node size ratios of 0.05–0.15, designs with chirality
angles between 50–70◦ will lead to slightly lower values of θm than designs with other chirality angles.
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3. Experimental Validation

For the metamaterials prototyping, a bimetal strip stock (SBC 721-112) by Shivalik Bimetal Controls
Ltd has been utilized. Index 721 stands for an alloy of 72% Mn, 10% Ni, and 18% Cu, and 112 stands
for the Invar alloy of 36% Ni and 64% Fe. Since the thermal bending coefficient in (2) is not a standard
characteristic, we determined it experimentally. The follwoing value was found and used in Section 2
plots, when needed,

a = 0.24± 0.01
rad

m·◦C
(17)

Assembled samples had a nondeformed geometry with square nodes depicted in Figure 11,
where the chirality angle, θ0 = 45◦, and an equivalent nodal radius, R = 4.56 mm. Samples with three
different values of the free standing bimetal strip length were fabricated: L1 = 27.3 mm, L2 = 54.9 mm,
and L3 = 81.4 mm. These correspond to the node size ratios r1 = 0.167, r2 = 0.083, and r3 = 0.056.
Other parameters (a, θ0, R) were identical in all samples. The samples were heated in a mini
environmental chamber to a known uniform temperature ∆T, and their deformed geometry was
captured through a clear window with a high resolution camera. A digital image processing procedure
was applied to determine a change of nodal distance with temperature, interpreted in terms of the
thermal strain, εT = (l− l0)/l0. Some of the captured deformed shapes are shown in Figure 12.
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The measured thermal strain values matched the theoretical curves well, as can be seen from the
Figure 13 plot. Given a 4% uncertainty in the a-value measurement, Equation (17), plus an estimated
±0.01 systematic thermal strain error due to geometrical imperfections of the samples, this match
can be considered very good. This proves validity of the theoretical analysis approach discussed in
Sections 2.1–2.5. The observed thermal strain dependence on temperature corresponds to a thermal
expansivity, whose values can be best seen from the earlier Figure 5 plot. For the temperature range of
∆T from 0 ◦C to 130 ◦C, it is in the range of negative 0.0006–0.0041 ◦C−1. The initial thermal expansivity
(at ∆T ≈ 0 ◦C) is the range of negative 0.0006–0.0007 ◦C−1, depending on the value L.Materials 2020, 13, x FOR PEER REVIEW 12 of 14 
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4. Conclusions

Negative thermal expansion phenomenon is interesting and appealing for various scientific and
engineering applications; however, it rarely occurs in natural materials. In this paper, we have discussed
a universal antichiral thermomechanical metamaterial model with bimetal beams or strips connected
at solid nodes. A theoretical analysis approach has been developed to write thermal expansivity of
the metamaterial as an explicit function of temperature and only three design parameters: relative
node size, chirality angle, and a bimetal constant. Experimental measurements follow the theoretical
predictions well, where a thermal expansivity in the range of negative 0.0006–0.0041 ◦C−1 has been seen.

In the future, the limit case configuration depicted in Figure 9 could be considered as an initial
room temperature architecture, where the bimetal strips are joined to each other at their middle points.
This will possibly lead to a lower negative thermal expansion effect, but will enhance mechanical
properties of the metamaterial.
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