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Abstract

Both in humans and animal models, an acute increase in plasma insulin levels, typically following meals, leads to transient
depression of hepatic secretion of very low density lipoproteins (VLDL). One contributing mechanism for the decrease in
VLDL secretion is enhanced degradation of apolipoprotein B100 (apoB100), which is required for VLDL formation. Unlike the
degradation of nascent apoB100, which occurs in the endoplasmic reticulum (ER), insulin-stimulated apoB100 degradation
occurs post-ER and is inhibited by pan-phosphatidylinositol (PI)3-kinase inhibitors. It is unclear, however, which of the three
classes of PI3-kinases is required for insulin-stimulated apoB100 degradation, as well as the proteolytic machinery
underlying this response. Class III PI3-kinase is not activated by insulin, but the other two classes are. By using a class I-
specific inhibitor and siRNA to the major class II isoform in liver, we now show that it is class II PI3-kinase that is required for
insulin-stimulated apoB100 degradation in primary mouse hepatocytes. Because the insulin-stimulated process resembles
other examples of apoB100 post-ER proteolysis mediated by autophagy, we hypothesized that the effects of insulin in
autophagy-deficient mouse primary hepatocytes would be attenuated. Indeed, apoB100 degradation in response to insulin
was significantly impaired in two types of autophagy-deficient hepatocytes. Together, our data demonstrate that insulin-
stimulated apoB100 degradation in the liver requires both class II PI3-kinase activity and autophagy.
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Introduction

ApoB100 is required in the liver for the assembly and secretion

of very low density lipoproteins (VLDL), the precursors of low

density lipoproteins (LDL). Both VLDL and LDL are atherogenic,

and one of the statistically strongest risk factors for coronary artery

disease is the plasma level of apoB100 (e.g., [1]). The fundamental

importance of apoB100 to the biogenesis of VLDL and to

atherosclerosis has stimulated considerable investigations on its

metabolism. A major insight into apoB100 metabolism came in

the mid-1980s with pioneering studies by Dr. Roger Davis, who

used rat primary hepatocytes, and by Dr. Sven Olof-Olofsson,

who employed human HepG2 cells [2,3]. These investigators

showed that a substantial amount of newly synthesized protein was

subject to degradation. In contrast to most hepatic secretory

proteins, in which the amount of secreted protein is tightly linked

to the amount that is synthesized, variations in hepatic apoB100

and VLDL secretion were linked instead to the rate of apoB100

intracellular degradation (reviewed in [4]).

One of the metabolic signals that reduce VLDL secretion is

insulin. For example, during acute hyperinsulinemia, such as

occurs in the post-prandial state, hepatic VLDL triacylglyceride

(TG) production becomes transiently depressed in humans (e.g.,

[5]) and in rodent models (e.g., [6]). It was proposed that one basis

for this depression was insulin triggering a decrease in the amount

of apoB100 that was available for VLDL assembly. Indeed, it was

subsequently shown in model systems (typically, rodent primary

hepatocytes) that an acute exposure to portal vein insulin levels (to

simulate the post-prandial state) reduced cellular levels of

apoB100, an effect largely attributable to its degradation (e.g., [7]).

It is now appreciated that the degradation of pre-secretory

hepatic apoB100 occurs via at least two distinct pathways

(reviewed in [4,8]). One pathway is ER-associated degradation

(ERAD), which requires the ubiquitin-proteasome system. During

this process, nascent apoB100 that is insufficiently lipidated during

its translation and translocation is recognized by cytoplasmic and

ER lumenal molecular chaperones, which then deliver the protein

for ubiquitinylation and degradation. The second pathway has

been termed post-ER, pre-secretory proteolysis (PERPP), and was

first described in studies on the effects of fish oil fatty acids on

hepatic apoB100 and VLDL production [9]. In this case, and in

two other examples of apoB100 PERPP (human apoB100 mutant
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A31P and glucosamine-induced apoB100 degradation), evidence

has been presented to implicate autophagy as the culprit

responsible for the proteolytic process [10–12]. Because insulin-

induced apoB100 degradation is also a post-ER process [13], we

hypothesized that insulin also directs apoB100 for degradation via

autophagy.

In this report, we provide data using primary mouse hepatocytes

to support this hypothesis. Furthermore, because PI3-kinases can

regulate autophagy [14–16], and because insulin-mediated

apoB100 degradation is compromised by non-specific PI3-kinase

inhibitors, such as wortmannin (e.g., [17]), we also sought to

determine which specific PI3-kinase class triggered the autophagic

destruction of apoB100. By using a variety of methods, we have

established that the class II PI3-kinase mediates this event. Besides

providing new insights into the fundamental processes of VLDL

assembly and secretion, our data also provide a molecular basis for

the observed increase in apoB100 and VLDL production in

insulin-resistant individuals, and suggest future therapeutic

avenues to overcome the accompanying risk of cardiovascular

disease in these individuals.

Materials and Methods

Reagents
Protease inhibitor cocktail tablets were obtained from Roche

(Indianapolis, IN) or Sigma-Aldrich (St. Louis, MO). Protein A -

Sepharose was obtained from GE Healthcare (Uppsala, Sweden)

or Invitrogen (Frederick, MD). [35S]-methionine/cysteine protein

labeling mix was obtained from Perkin Elmer Life Sciences

(Waltham, MA). Goat anti-mouse apoB polyclonal antibody was a

gift of Dr. Kevin J. Williams (Department of Medicine, Temple

University) and was previously characterized [18]. The PI3-kinase

inhibitor wortmannin was purchased from Sigma-Aldrich (St.

Louis, MO). The class I-specific PI3-kinase inhibitor PIK-75 was

purchased from Cayman Chemical (Ann Arbor, MI). The insulin

was from Sigma-Aldrich (St. Louis, MO).

Animals and primary hepatocyte culture
All animal procedures were approved by the Institutional

Animal Care and Use Committee, NYU School of Medicine.

Mice deficient in APOBEC1 (Apobec12/2) on a C57BL6

background were provided by Dr. Janet Sparks (University of

Rochester) with permission from Dr. Nicholas Davidson (Wash-

ington University; [19]). Mice normally synthesize both apoB100

and apoB48 in their livers. The deletion of the apoB mRNA

editing enzyme 1 (APOBEC1), which generates a mRNA

encoding apoB48 from the apoB100 transcript, results in the

production of only apoB100, the form secreted by human liver

[20,21]. Atg5 is an essential autophagy factor [14]. Atg5-floxed

mice [22] were given to us by Dr. Steven Burden (NYU School of

Medicine) with permission from Dr. Noboru Mizushima (Tokyo

Medical and Dental University) and crossed with Alb-Cre mice

(mice with the Cre-recombinase gene driven by the albumin

promoter; Jackson Laboratory}) to generate liver specific Atg5-

deficient mice. The genotyping of the Atg5-floxed mice was

performed as previously described [23]. The genotyping of Alb-Cre

mice was performed according to the protocol described by the

Jackson Laboratory. In some experiments, hepatocytes were

isolated from mice with either the floxed or the deleted Atg5 allele

that were crossed with Apobec12/2 mice.

Mouse primary hepatocytes were prepared by perfusion of livers

with collagenase I (Worthington Biochemical) or Liberase TM

(Roche). Hepatocytes were maintained in Waymouth’s medium

(Waymouth’s MB 752/1, containing 1% streptomycin/penicillin,

1% L-glutamine, 0.2% BSA, and 0.1 nM insulin). After a 12–14 h

incubation, the primary hepatocytes were subjected to study

protocols.

Pulse-chase metabolic labeling experiments
Portal levels of post-prandial insulin can achieve concentrations

in excess of 100 nM. After pilot dose-response studies, protocols

were designed so that primary hepatocytes were treated with

100 nM of insulin. In some experiments, there was co-treatment

with wortmannin (100 nM) or the class I PI3-kinase specific

inhibitor PIK75 (100 nM; [24]). The various treatment media

were applied to the cells, which were then pulse-labeled with

240 mCi/ml [35S]-protein labeling mix for 15 min, and chased for

30 min and 120 min in non-radioactive medium with excess

methionine (1.5 mg/ml) and cysteine (0.5 mg/ml). The first chase

point was chosen according to the difference in apoB100

translation efficiency in different hepatic cells [10,25]. The

metabolic treatments were continued in the chase period. At the

end of the chase, cells and conditioned medium were collected.

[35S]-labeled apoB100 from cell lysate and conditioned medium

was immunoprecipitated, separated by 4% SDS-PAGE, and then

visualized using a phosphorImager (Trio Typhoon; Amersham,

GE healthcare), with quantification by densitometry of the

apoB100 bands. Total labeled apoB100 protein recovery was

normalized to the amount of total labeled protein that was

precipitated with trichloroacetic acid (TCA).

PI(3,4)P2 quantification
Cellular PI(3,4)P2 concentrations were measured by using anti-

PI(3,4)P2 mouse monoclonal antibody (Echelon Biosciences)

following manufacturer’s instructions. Briefly, cells were collected

in ice-cold 0.5 M TCA, and the pellet was washed in 5% TCA

with 1.0 mM EDTA. Neutral lipids and acidic lipids were

extracted sequentially by adding MeOH:CHCl3 (2:1) and

MeOH:CHCl3:12 M HCl (80:40:1), and acidic lipids were

collected by phase separation in 0.75 mL of CHCl3 and

1.35 mL of 0.1 M HCl. PI(3,4)P2 was quantified by dot blotting

using anti-PI(3,4)P2 mouse monoclonal antibody.

siRNA treatment of hepatic cells
For siRNA experiments, cells were treated for 48 h with

SiGenomeH pools (for control siRNAs or ones specific for mouse

PI3-kinase CII gamma or PI3-kinase CIII (Vps34); Dharmacon,

Thermo Fisher Scientific) and the DharmaFECT 4 transfection

reagent (Dharmacon, Thermo Fisher Scientific) according to the

manufacturer’s protocol. Pulse-chase experiments were performed

as described above. The efficiency of PI3-kinase knockdown in

mouse primary hepatocytes was assessed by a two step RT-PCR

protocol using the ABsolute Blue SYBR Green Mix from Thermo

Scientific and the following primers: ATTTCCTCACTGGTGG-

CATC (forward) and GAGCCTCGAGTCCTCATACG (reverse)

for PI3-kinase CII gamma, CGAGGGAGCAGGAACATCA

(forward) and TGTGCGGCATAGACAGTGAAC (reverse) for

PI3-kinase CII alpha, CCCTCGAACCTATACTTCTCGA-

TATG (forward) and TGGCCATTGGCAACAGTGT (reverse)

for PI3-kinase CII beta, and GGCACCCAGAGTGAGCAGTAC

(forward) and CAGGTGGAGGAAGGCTGTGT (reverse) for

PI3-kinase CIII .

LC3 Western Blot
Primary hepatocytes were prepared as described previously

[22]. Total protein was extracted using RIPA buffer (50 mM Tris,

pH 7.4, 150 mM sodium chloride, 0.25% sodium deoxycholate,
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1% Nonidet P-40) and 50 mg was used for Western Blot analysis

using rabbit polyclonal anti-LC3 antibody (dilution 1/500) from

Novus Biological. Mouse monoclonal anti-GAPDH antibody

(dilution 1/5000) was used as a loading control (Millipore).

Lipoprotein fractionation
Primary hepatocytes were radiolabeled with 100 mCi/ml [35S]-

Met/Cys for 4 h. Lipoproteins in the conditioned medium were

separated by cumulative rate flotation (density gradient) ultracen-

trifugation. Briefly, 4 ml of the sample, adjusted to d = 1.10 g/ml

with solid KBr, were overlaid with 3 ml of d = 1.065 g/ml KBr,

3 ml of d = 1.02 g/ml KBr, and 3 ml of d = 1.006 g/ml KBr in a

Beckman SW41 centrifuge tube. After centrifugation at 37,000

rpm for 18 h at 15uC, VLDL and the other lipoproteins were

collected from the top into 12 one-ml fractions. ApoB100 in

individual fractions or pooled fractions was immunoprecipitated,

resolved by SDS-PAGE, and visualized using a phosphorImager

(Trio Typhoon; Amersham, GE Healthcare), with quantification

by densitometry of the apoB100 bands.

Statistical analyses
All experiments were conducted in triplicate at least two times.

Data are typically expressed as the mean6SEM. Statistical

differences were analyzed using GraphPad Prism software

(GraphPad Software Inc., San Diego, CA) using an unpaired T

test. Data in which more than two groups were compared were

analyzed by ANOVA with post-hoc testing. A P value of less than

0.05 was considered significant and is indicated by *; p,0.01 is

indicated by **, and p,0.001 by ***. Where displayed, NS denotes

not significant.

Results

Roles of specific PI3-kinases in insulin-stimulated
apoB100 degradation in primary hepatocytes

Mouse and rat primary hepatocytes secrete both apoB100 and

apoB48-containing lipoproteins. In human liver, however, only

apoB100 is secreted (and is exclusively associated with VLDL)

because of the lack of the apoB mRNA editing activity that is

required for apoB48 production. Given the greater relevance of

apoB100 to human liver physiology, we wished to focus on this

isoform. The major form of apoB in rodent liver is normally

apoB48, and the sparseness of apoB100 hampers its accurate

detection. To overcome this limitation, we turned to mice deficient

in the apoB mRNA editing activity (Apobec-12/2;[19]), in which

mouse liver is ‘‘humanized’’ to produce only apoB100. Note that

the effects of insulin on apoB100 are independent of the presence

or the absence of hepatic apoB48 production (e.g., [7], [26], and

data below).

As shown in Figure 1A and 1B, we observed an increase in

apoB100 degradation (reflected by a decrease in apoB100

recovery) in cells treated with insulin that was dependent on

PI3-kinase activity, consistent with previous data [26]. Interest-

ingly, when the cells were treated with insulin and the pan PI3-

kinase inhibitor (wortmannin) or with wortmannin alone, apoB100

recovery rose. These combined results suggest that a PI3-kinase

regulates a degradative process that is both insulin-stimulated and

that occurs at a lower level during the basal turnover of apoB100.

Because wortmannin is a pan PI3-kinase inhibitor, we next

wished to establish which specific enzyme class mediated these

effects. Class III PI3K is not known to be a target of insulin

signaling [15], so we considered the other two classes. We began

by using an established class I-specific inhibitor, PIK75 [24]. As

shown in Figure 2A and 2B, PIK75 did not prevent apoB100

degradation stimulated by insulin; rather, we observed a trend

toward an enhancement of the insulin effect. Relevant to the

autophagy studies, below, this result is consistent with the finding

that class I PI-3 kinase activity is a negative regulator of autophagy

[14].

Like the class I enzymes, class II PI3-kinases have been shown

responsive to insulin stimuli [27], so we then assessed the role of

class II PI3-kinase on apoB100 degradation after insulin addition.

We first established that class II activity was stimulated by insulin

by measuring the production of one of its specific products,

PI(3,4)P2. As shown in Figure 3, we observed a strong and

transient increase of PI(3,4)P2 upon insulin stimulation, as

anticipated from published results [27].

Due to the absence of a specific inhibitor of the class II PI3-

kinase, we instead used siRNA to knock down the major PI3-

kinase class II isoform present in the liver [28–30], PI3-kinase class

II gamma, and examined the impact on the insulin response. The

siRNA directed against this class II isoform suppressed its RNA

levels by 90% (Figure 4A). Also, by using a functional assay to

measure its specific product, PI(3,4)P2 after insulin stimulation, we

observed nearly complete abolition of PI3-kinase class II gamma

activity in the silenced hepatocytes (Figure S1). Even though the

gamma isoform is highly related to the alpha and beta isoforms,

the targeted siRNA was without a significant effect on their

mRNA levels (Figure 4B and 4C), thus confirming the specificity of

Figure 1. Insulin-stimulated apoB100 degradation in mouse
primary hepatocytes is PI3-kinase- dependent. A) Primary
hepatocytes from Apobec12/2 mice (which only synthesize apoB100)
were incubated in media containing (INS) or lacking (CONT) insulin and/
or wortmannin (WORT) and were pulse labeled for 15 min with [35S]-
protein labeling mix and chased in non-radioactive medium for 30 and
120 min with the treatments maintained. ApoB100 was then immuno-
precipitated and separated by SDS-PAGE and quantified as described in
Materials and Methods. The histogram (mean6SEM) represents the
results from 2 independent experiments, each performed in triplicate.
B) Representative primary data of the experiments summarized in panel
A; ** indicates P,0.01.
doi:10.1371/journal.pone.0057590.g001
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the siRNA. Notably, as shown in Figure 4D and E, insulin-

stimulated apoB100 degradation was completely abrogated by

knocking down the gamma isoform of class II PI-3 kinase, thereby

demonstrating its key role in this process.

Insulin-stimulated apoB100 degradation requires
autophagy

Insulin stimulates a form of apoB100 degradation that is a pre-

secretory, but a post-ER process [13]. We previously showed that

omega-3 fatty acids (e.g., docosahexaenoic acid; DHA) stimulate

apoB100 degradation [31], also by a post-ER, pre-secretory

proteolysis process (PERPP; [9]. PERPP-mediated turnover of

apoB100 was subsequently found to be through the autophagy

pathway [10]. The broad similarities between insulin and DHA-

stimulated apoB100 degradation raised the issue of whether the

effect of insulin on apoB100 degradation also involved autophagy.

To directly test this hypothesis, experiments were conducted in

primary hepatocytes from Atg5-deficient mice [22]. Atg5 partic-

ipates in the early steps in the formation of autophagosomes [14].

To create mice with a liver-specific deficiency of Atg5 (designated

as Atg52/2 in Figure 5), we crossed mice having floxed alleles of

Atg5 with Alb-Cre mice expressing Cre-recombinase driven by the

albumin promoter [32]. Atg5-floxed mice were used as sources of

control hepatocytes (Atg5+/+ in Figure 5). Autophagic activity was

examined in the control and liver-specific Atg5-deficient mice by

assaying for the lipidation of the autophagosomal membrane

protein, LC3 to the form called LC3-II, which is associated with

autophagosomes [33]. As shown in Figure 5A, LC3-II was evident

only in the control (Atg5+/+) hepatocytes, and the amount

increased when lysosomal degradation was inhibited by NH4Cl

and E64D (‘‘+’’). This increase was expected because after

autophagosomes fuse with lysosomes, LC3-II is degraded. In

contrast, only the LC3 precursor (LC3-I) was evident in the Atg52/2

hepatocytes, regardless of whether lysosomal degradation had been

inhibited, indicating the lack of autophagosome formation. These

data confirm that the autophagy pathway is inactive in the Atg52/2

hepatocytes. We then assessed the impact of insulin-stimulated

apoB100 degradation in these cells. In the Atg5+/+ hepatocytes there

was the expected decrease in apoB100 recovery from insulin-treated

cells (Figure 5B). In contrast, in the Atg5-deficient hepatocytes,

insulin treatment had no effect on apoB100 recovery.

Independent confirmation for a role for autophagy in insulin-

stimulated apoB100 degradation came from studies of class III

PI3-kinase, which as noted earlier, is not a target of insulin [15].

Class III PI3-kinase (also called Vps34 or PIK3C3), however, plays

a critical general role in autophagy in most cell types [14],

including liver [34]. Therefore, if autophagy were involved in

insulin-stimulated apoB100 degradation, silencing of Vps34 should

have an effect on this process. This expectation was confirmed by

pulse-chase studies after siRNA knock down of Vps34 (Figure S2).

To establish that the loss of insulin-stimulated degradation of

apoB100 was associated with a general effect of the Vps34 knock

down on autophagy, we assessed the level of general autophagic

activity by measuring (by western blot) the active, lipidated form of

the autophagosome protein LC3 (LC3-II; [33]). As shown in

Figure S2, knock-down of Vps34, but not of PI3-kinase class II

gamma, increased the level of LC3-II, reflecting a reduction in

general autophagic activity [34].

Insulin-stimulated apoB100 effects have been reported to be

preferential for apoB100 normally associated with the more

Figure 2. Class I PI3-kinase activity is dispensable for insulin-
stimulated apoB100 degradation in mouse primary hepato-
cytes. A) Experiments were performed as in Figure 1, but in the
presence or absence of the class I specific PI3-kinase inhibitor, PIK75.
The histogram (mean6SEM) represents the results from 2 independent
experiments, each performed in triplicate. B) Representative primary
data of the experiments summarized in panel A.
doi:10.1371/journal.pone.0057590.g002

Figure 3. Insulin stimulates class II PI-3 kinase activity in mouse
primary hepatocytes. Primary hepatocytes from Apobec12/2 mice
were cultured in serum free conditions for 16 h before the addition of
insulin to a final concentration of 100 nM. At the indicated times, the
cells were harvested in ice cold 0.5 M TCA, and acidic lipids were
extracted. PI(3,4)P2 concentrations were measured by dot blotting
using anti-PI(3,4)P2 antibody (n = 3 at each time point). Data represent
the mean6SEM.
doi:10.1371/journal.pone.0057590.g003
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lipidated particles (e.g., VLDL [35]). Therefore, we performed a

gradient density analysis of lipoproteins secreted from primary

hepatocytes of Apobec12/2 mice that had been incubated in the

presence or absence of insulin. As expected, we observed that

insulin treatment decreased the recovery of apoB100 normally

associated with the largest (highly lipidated) particles (density

fraction 1.003; Figure 5C). In contrast, the effect of insulin

treatment on apoB100 depletion in the density fractions normally

containing these highly lipidated particles was lost in Apobec12/2

hepatocytes deficient in Atg5 (Figure 5D). Overall, these data

strongly suggest that apoB100 normally associated with highly

lipidated apoB-lipoproteins, including VLDL, is targeted for

insulin-stimulated degradation via the autophagic pathway.

Discussion

There are two major findings in this report on the mechanisms

underlying insulin-stimulated degradation of apoB100, namely,

that the process 1) requires autophagy, and, 2) depends on the

gamma isoform of the class II PI3-kinase. In addition, we provide

evidence that autophagy also contributes to basal apoB100

turnover, for which other classes of PI3-kinases may also play a

role.

We and others previously reported that autophagy is critical

during other examples of induced apoB100 post-ER, pre-secretory

proteolysis (PERPP). Notably, PERPP mediates the degradation of

apoB100 in the presence of fish oils or glucosamine [9,12], or

when the apolipoprotein contains a specific structural mutation

[11]. In these cases, there is sufficient lipidation for pre-VLDL

particles to form, but there is aberrant post-ER maturation to fully

lipidate VLDL. That autophagy is an important disposal process

for apoB100 in these examples is consistent with at least two lines

of reasoning. First, VLDL assembly is a prolonged process that

begins in the ER and continues post-ER through the intermediate

compartment and in the Golgi (reviewed in [36–38]). Thus, unlike

the majority of secretory proteins in which quality control is

exerted primarily at the ER level [39,40], the maturation of

apoB100-containing particles is subject to multiple checkpoints,

Figure 4. Insulin-stimulated apoB100 degradation in mouse primary hepatocytes is dependent on class II PI3-kinase gamma.
Primary hepatocytes from Apobec12/2 mice were transfected with control (scrambled) siRNA or class II PI3-kinase (PIK3C2c) specific siRNA. After a
total of 48 h after transfection, (A) PIK3C2c, (B) PIK3C2a, and (C) PIK3C2b mRNA levels were assessed by two-step qRT-PCR, and their abundance was
normalized to 28S rRNA. The histogram (mean6SEM) represents the results from 2 independent experiments, each one performed in triplicate. D)
Control or PIK3C2c siRNA transfected primary hepatocytes from Apobec12/2 mice were incubated in medium with (INS) or without (CONT) insulin,
pulse-labeled for 15 min with [35S]-protein labeling mix, and then chased for 30 and 120 min with the treatments maintained. Total apoB100
recovery and quantification were as in Figure 1. The histogram (mean6SEM) represents the results from 2 independent experiments, each one
performed in triplicate; ** and *** indicate P,0.01 and 0.001, respectively. E. Representative primary data of the experiments summarized in panel D.
doi:10.1371/journal.pone.0057590.g004
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including important steps beyond the ER. Second, the autophagic

process is specialized to degrade substrates of enormous size,

including whole organelles [14], and so it makes sense that

incompletely formed or abnormal VLDL particles (e.g., containing

aggregated apoB100; [10]) will need to employ a disposal route

that can accommodate substrates far bigger than typical secretory

proteins.

Despite the expanding evidence for autophagy being a final

common pathway for the degradation of apoB100 that has

progressed past the ER, it remains mysterious how apoB100 or its

associated lipoprotein particles are identified for disposal. During

autophagy, the molecular features underlying how specific

substrates are recognized are poorly defined [41]. As implied

above, we favor a scenario in which a failure to fully lipidate pre-

VLDL to the mature form in a post-ER compartment targets the

intermediate particles for autophagy. This is based on the finding

that during the fish oil and insulin-stimulated autophagic

degradation of apoB100, as well as the autophagic destruction of

A31P mutant apoB100, pre-VLDL particles are formed and reach

the Golgi, but VLDL maturation is impaired (V. Maitin, U.

Andreo, E. Fisher, unpublished results, [35], and [11], respective-

ly).

Another novel aspect of this study is the involvement of class II

PI3-kinase in insulin-stimulated apoB100 degradation, which

appears to be the first link of this class of PI3-kinases to autophagy.

We were led to investigate PI3-kinases because the pan-PI3-kinase

Figure 5. Effects of insulin on apoB100 degradation and VLDL-apoB100 secretion are blunted in autophagy-deficient mouse
primary hepatocytes. Primary hepatocytes were isolated from mice with floxed alleles of Atg5 (Atg5+/+) or Atg5f/f x Alb-Cre (Atg52/2) mice (i.e., mice
with hepatic deficiency of Atg5), and cultured in serum-free conditions for 16 h before insulin addition. A) A western-blot for LC3 was performed with
lysates of primary hepatocytes from Atg5+/+ or Atg52/2 mice; ‘‘(+)’’ represents the condition in which lysosomal degradation has been blocked
(20 mM NH4Cl + 10 mM E64D) to increase LC3 recovery and ‘‘(-)’’ represents untreated cells. When autophagy is active, LC3 (‘‘LC3-I’’) is lipidated to
form LC3-II. GAPDH was used as the loading control. B) Primary hepatocytes from Atg52/2 or Atg5+/+ mice were incubated in media with (INS) or
without insulin (CONT) and pulse-labeled for 15 min with [35S]-protein labeling mix, and were then chased for 30 and 120 min in non-radioactive
medium with the treatments maintained. Total apoB100 recovery and quantification were as in Figure 1. The histogram (mean6SEM) represents the
results from 2 independent experiments, each one performed in triplicate; ** indicates P,0.01. C) Primary hepatocytes from Apobec12/2 mice were
labeled with [35S]-protein labeling mix for 4 h in the presence (+ Insulin) or absence (2 Insulin) of 100 nM insulin. Conditional media samples were
collected and lipoproteins were separated by density gradient ultracentrifugation. ApoB100 in individual fractions was immunoprecipitated, resolved
by SDS-PAGE, and quantified by densitometry after bands were detected by a phosphorImager. The statistical significance of the comparisons
between the density profiles is based on 3 independent replicate experiments. D) An experiment similar to the one in panel C was performed, but
using Atg5-deficent primary hepatocytes prepared from Apobec12/2 mice.
doi:10.1371/journal.pone.0057590.g005
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inhibitor wortmannin had been shown to block insulin-stimulated

apoB100 degradation (e.g., [13][15]), as we also found (Figure 1).

As noted earlier, there are three major classes of PI3-kinases (see

[16] for a recent review). Class I contains the isoforms associated

with insulin-stimulated regulation of glucose metabolism, and has

been historically the pathway of interest in diabetes research.

Evidence against this class mediating insulin-stimulated apoB100

degradation, however, is that the signaling cascade initiated by

class I PI3-kinase inhibits autophagy through Akt-dependent

activation of mTOR [14]. Furthermore, it was shown that insulin-

mediated apoB100 degradation was Akt-independent [42].

Experimental confirmation for the lack of involvement of class I

PI3-kinase in insulin-stimulated apoB100 degradation was pro-

vided in the present study (Figure 2). Specifically, we found that a

class I-specific inhibitor did not block the insulin effect; instead,

apoB100 recovery tended to be decreased, most likely through

diminished mTOR activation, which resulted in increased

autophagy.

There is firm evidence that the action of class III PI3-kinase

increases general autophagy in most tissues (e.g., see [14]),

including liver [34]. Consistent with a role for autophagy in

insulin-stimulated apoB100 degradation, then, was our finding

that knocking down class III PI3-kinase prevented degradation

(Figure S2). The current understanding is that the product of the

PI3-kinase enzymatic reaction, PI(3)P, serves to promote the

formation of membrane-bound complexes that include the key

autophagy initiating factor beclin-1 [16]. There is no evidence,

however, that the activity of class III PI3-kinase is stimulated by

insulin [15,16]. In contrast, class II PI3-kinases are known to be

phosphorylated in response to insulin and other growth factors

[27]. There are three sub-classes of the class II isoform, namely

alpha, beta, and gamma. Gamma is the most abundant one in the

liver [28–30], explaining why we chose to manipulate the

expression of this isoform in the present studies.

Compared to classes I and III, relatively little is known about

the biological effects of the class II isoform. It is enriched in the

juxtanuclear Golgi in rat liver [29], and a proposed role for its

activity is to regulate vesicle traffic from the trans-Golgi network

[28]. Given that the insulin-stimulated effect on apoB100

degradation requires post-ER PI3-kinase dependent trafficking

[13], and that we have shown that fish oil-stimulated autophagy

requires trafficking from the Golgi [10], it is tempting to speculate

that a class II isoform mediates these transport events. It is unlikely

that insulin signaling through class II PI3-kinase is operating

through induction of Atg5 itself because in autophagy-competent

hepatocytes the level of Atg5 was unaltered after insulin

stimulation (L. Guo, E. Fisher, data not shown). Obviously,

further investigation will be needed to evaluate in depth the many

possible mechanisms underlying the class II PI3-kinase effects on

insulin-stimulated apoB100 degradation.

In conclusion, the present results indicate that autophagy and

class II PI3-kinase are required for the degradation of apoB100 in

insulin-stimulated hepatocytes. In insulin-resistant people,

apoB100 and VLDL are overproduced (e.g., [43,44]). Conse-

quently, our results suggest that this may represent the loss of the

insulin-stimulated autophagy-dependent pathway for apoB100.

This intriguing possibility can be indirectly tested by extending our

studies to insulin-resistant mice competent or deficient in

autophagy or class II PI3-kinase activity.

Supporting Information

Figure S1 Effect of siRNA knockdown of PI3K class II
gamma on the insulin-stimulated production of its
specific product PI(3,4)P2. Levels of PI(3,4)P2 were assessed

as in Figure 3 in primary hepatocytes (isolated from Apobec12/2

mice) treated with either control or class II PI3-kinase gamma

siRNA.

(TIF)

Figure S2 Class III PI3-kinase knockdown reduces
insulin-stimulated apoB100 degradation and autophagic
activity in mouse primary hepatocytes. A) Primary

hepatocytes (isolated from Apobec12/2 mice) were treated with

either control or Class III PI3-kinase (Vps34) siRNA. 48 h after

siRNA transfection, pulse-chase experiments were performed.

ApoB100 recovery results are represented in the histogram

(mean6SEM) from two independent experiments with each

performed in triplicate. B) Western blotting analysis of LC3-II

(normalized to GAPDH) in primary hepatocytes transfected with

control, PIK3C2gamma or PIK3C3 (Vps34) siRNA as in panel A.

(TIF)
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