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Abstract: Superoxide dismutase (SOD) is an important enzyme that acts as the first line of protection
in the plant antioxidant defense system, involved in eliminating reactive oxygen species (ROS)
under harsh environmental conditions. Nevertheless, the SOD gene family was yet to be reported
in rapeseed (Brassica napus L.). Thus, a genome-wide investigation was carried out to identify
the rapeseed SOD genes. The present study recognized 31 BnSOD genes in the rapeseed genome,
including 14 BnCSDs, 11 BnFSDs, and six BnMSDs. Phylogenetic analysis revealed that SOD genes
from rapeseed and other closely related plant species were clustered into three groups based on the
binding domain with high bootstrap values. The systemic analysis exposed that BnSODs experienced
segmental duplications. Gene structure and motif analysis specified that most of the BnSOD genes
displayed a relatively well-maintained exon–intron and motif configuration within the same group.
Moreover, we identified five hormones and four stress- and several light-responsive cis-elements in
the promoters of BnSODs. Thirty putative bna-miRNAs from seven families were also predicted,
targeting 13 BnSODs. Gene ontology annotation outcomes confirm the BnSODs role under different
stress stimuli, cellular oxidant detoxification processes, metal ion binding activities, SOD activity,
and different cellular components. Twelve BnSOD genes exhibited higher expression profiles in
numerous developmental tissues, i.e., root, leaf, stem, and silique. The qRT-PCR based expression
profiling showed that eight genes (BnCSD1, BnCSD3, BnCSD14, BnFSD4, BnFSD5, BnFSD6, BnMSD2,
and BnMSD10) were significantly up-regulated under different hormones (ABA, GA, IAA, and
KT) and abiotic stress (salinity, cold, waterlogging, and drought) treatments. The predicted 3D
structures discovered comparable conserved BnSOD protein structures. In short, our findings
deliver a foundation for additional functional investigations on the BnSOD genes in rapeseed
breeding programs.

Keywords: abiotic stress; antioxidant defense systems; gene ontology; miRNA; phytohormones;
3D structures

1. Introduction

Several environmental cues, including abiotic and biotic traumas, are considered key
influences affecting the plants’ productivity [1,2]. Under stressful conditions, the plant
amends its homeostatic apparatus by developing an increased reactive oxygen species
(ROS) in plant cells. Usually, ROS overproduction results in several molecular and cellular
damages, and ultimately programmed cell death [3,4]. ROS such as superoxide anion,
hydrogen peroxide, hydroxyl radical, perhydroxyl radicals, alkoxy radicals, peroxy radicals,
singlet oxygen, and organic hydroperoxide, are considered to be major signaling molecules,
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regulating abiotic and biotic stress responses, and also participate in plant productivity [3,4].
Mainly, ROS are formed in the apoplast, mitochondria, plasma membrane, chloroplast,
peroxisomes, endoplasmic reticulum, and cell walls [3,4]. Therefore, to manage ROS
noxiousness, plants have established well-organized and composite antioxidant defense
systems, including numerous non-enzymatic and enzymatic antioxidants [3,4].

Among numerous antioxidant enzymes, superoxide dismutase (SOD; EC 1.15.1.1), a
set of metalloenzymes, largely exists in alive organisms. SOD acts as the first line of ROS
scavenging and plays a crucial role in plants’ physio-biochemical procedures to manage
environmental cues [3]. Findings revealed that SOD catalyzes the superoxide radicals’
dismutation into oxygen and hydrogen peroxide via disproportionation, and protects
the plant cells from oxidative injury [5,6]. According to metal cofactors, plant SODs are
largely characterized into four major groups such as copper-zinc SOD (Cu/ZnSOD), iron
SOD (FeSOD), manganese SOD (MnSOD), and nickel SOD (NiSOD) [7,8]. Among them,
NiSOD mainly exists in Streptomyces, cyanobacteria, and marine life, and is yet to be
described in plants [9]. However, FeSODs and MnSODs are primarily extant in lower
plants, while Cu/ZnSODs exist in higher plants [10,11]. These SODs are widely distributed
in various cell organs. For instance, Cu/ZnSODs are amply present, and mostly distributed
in chloroplasts, cytoplasm, and peroxisomes [12]. FeSOD is distributed in the chloroplasts,
and MnSODs are distributed in mitochondria and peroxisomes [8,13].

Recently, numerous investigations have revealed that the transcript level of the plant
SODs gene responds to several environmental cues and helps plants cope with harsh
environmental conditions. For instance, the increased SOD activity helps plants to show
resistance to salinity and drought stress in Brassica juncea plants [14], temperature-induced
oxidative damage in Acutodesmus dimorphus [15], cold-induced oxidative damage in tomato
(Solanum lycopersicum) [16], etc. Moreover, the expression of the Cu/ZnSOD gene was
persuaded by the copper-nanoparticle application in cucumber (Cucumis sativus) [17]. Un-
der cold stress, trehalose application modulated the expression profile of the Cu/ZnSOD
gene in tomato plants [16]. In a recent study, the overexpression of SikCuZnSOD3 en-
hances tolerance to cold, drought, and salinity stresses in cotton (Gossypium hirsutum) [18].
Under water deficit conditions, wheat (Triticum aestivum) plants showed a higher expres-
sion of different antioxidant encoding genes, including MnSOD [19]. Likewise, under
1-methylcyclopropene (1-MCP) supplementation, apple (Malus×domestica Borkh.) fruits
showed a higher expression of Cu/ZnSODs, MnSODs, and FeSODs [20]. In short, these
findings showed that improved SOD activity and higher expression of SOD-encoding
genes can contribute to plant tolerance to multiple stresses.

Additionally, earlier investigations recommended that miRNA-mediated regulation of
ROS-accompanying genes is crucial for plant productivity [21,22] and stress resistance [23–26].
For example, miR398 targets two Cu/ZnSOD genes in Arabidopsis thaliana [27]. In another
study, 20 miRNAs are found to be targeting 14 cotton SOD genes at 33 predicted sites [28].
Moreover, ghr-miR414c, ghr-miR7267, m0081, m0166, and m0362 are found to play a vital
role in cotton fiber variation and progress [29,30], and ghr-miR3 controls the transcript
level of targeted genes throughout cotton somatic embryogenesis [31]. In A. thaliana,
two Cu/ZnSOD genes (CSD1 and CSD2) are induced via the down-regulation of miR398,
which helps plants to enhance tolerance to oxidative injury [32]. These discoveries stated
that miRNAs might play active roles against environmental cues and plant development
through modifying the SOD genes.

Rapeseed (Brassica napus L.) is the second imperative oilseed crop and possesses a
complex genome. Several abiotic stresses significantly limit rapeseed productivity [33–36].
To date, SOD family genes have not been reported in rapeseed. Thus, in the present study,
we performed a genome-wide analysis to identify SOD genes in the rapeseed genome.
Additionally, their phylogenetic relationships, synteny analysis, gene structures, conserved
motifs, cis-elements, miRNA predictions, functional annotations, and 3D structures have
been characterized. Moreover, the expression profile in numerous tissues/organs and
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under numerous hormone and abiotic stress conditions have been extensively appraised,
which deeply boosted our understanding of the SOD genes in rapeseed.

2. Materials and Methods
2.1. Identification and Characterization of SOD Genes in Rapeseed

According to our recent study [37], we used two methods to identify SOD genes in the
B. napus genome, i.e., BLASTP (protein blast) and the Hidden Markov Model (HMM) [37].
The B. napus genome sequence was downloaded from the BnPIR database (Available
online: http://cbi.hzau.edu.cn/bnapus/index.php, accessed on 1 April 2021) [38]. For
BLASTP, we used eight A. thaliana SODs (AT1G08830.1/AtCSD1, AT2G28190.1/AtCSD2,
AT5G18100.1/AtCSD3, AT4G25100.1/AtFSD1, AT5G51100.1/AtFSD2, AT5G23310.1/AtFSD3,
AT3G10920.1/AtMSD1, and AT3G56350.1/AtMSD2) amino acid sequences as a query with
an e-value set to 1e−5. The amino acid sequences of eight AtSODs were obtained from
the TAIR Arabidopsis genome database (Available online: http://www.arabidopsis.org/,
accessed on 1 April 2021). [39]. Further, the local HMMER 3.1 web server (Available
online: http://www.hmmer.org/, accessed on 1 April 2021) [40] was used to search the
SOD genes with default parameters. Then, the HMM file of the Sod_Cu (PF00080.21)
and Sod_Fe_C (PF02777.19) having SOD genes were downloaded from the Pfam protein
domain database (Available online: http://pfam.xfam.org/, accessed on 1 April 2021) [41].
Finally, 31 BnSOD genes were identified by combining the two methods in the rapeseed
genome. Moreover, we identified SOD genes in different plant species, such as Brassica rapa,
and Brassica oleracea, with the genome downloaded from the JGI Phytozome 12.0 database
(Available online: https://phytozome.jgi.doe.gov/pz/portal.html, accessed on 1 April
2021) [42] via the same method.

The physico-chemical properties of molecular weight, and isoelectric points, were ana-
lyzed by the online ProtParam tool (Available online: http://web.expasy.org/protparam/,
accessed on 1 April 2021) [43]. The subcellular localization of BnSOD proteins was pre-
dicted from the WoLF PSORT server (Available online: https://wolfpsort.hgc.jp/, accessed
on 1 April 2021) [44]. BnSOD gene structures were constructed via TBtools software
(V 1.068; https://github.com/CJ-Chen/TBtools, accessed on 1 April 2021) [45]. The con-
served motifs about BnSOD protein sequences were identified using the MEME web-
site (Available online: https://meme-suite.org/meme/db/motifs, accessed on 1 April
2021) [46].

2.2. Phylogenetic Tree and Synteny Analysis of BnSOD Proteins

To observe the evolutionary relationship of the BnSOD gene family, we constructed
a phylogenetic tree about B. napus, B. oleracea, B. rapa, and A. thaliana protein sequences. The
sequence alignment was performed by MEGA 7 software (Available online:
https://megasoftware.net/home, accessed on 1 April 2021) [47]. The neighbor-joining
(NJ) method was performed to construct a phylogenetic tree with 1000 bootstrap repli-
cates using the Evolview v3 website (Available online: https://www.evolgenius.info/
evolview, accessed on 1 April 2021) [48] to display the phylogenetic tree. Synteny rela-
tionships of SOD genes were developed by the python-package, JCVI (Available online:
https://github.com/tanghaibao/jcvi, accessed on 1 April 2021) [49] from B. napus, B. oleracea,
B. rapa, and A. thaliana. We calculated the Ka/Ks ratios of all SODs using KaKs_Calculator
2.0 (Available online: https://sourceforge.net/projects/kakscalculator2/, accessed on 1
April 2021) [50].

2.3. Analysis of Cis-Acting Regulatory Elements in the BnSODs Promoters

To analyze the putative cis-elements in the BnSODs promoters, we extracted the
2Kb sequence upstream of start codons in the B. napus genome. Then, the promoter
sequence of each gene was analyzed using the PlantCARE website (Available online:
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 1 April 2021) [51]
and figures drawn using TBtools (V 1.068) [45].

http://cbi.hzau.edu.cn/bnapus/index.php
http://www.arabidopsis.org/
http://www.hmmer.org/
http://pfam.xfam.org/
https://phytozome.jgi.doe.gov/pz/portal.html
http://web.expasy.org/protparam/
https://wolfpsort.hgc.jp/
https://github.com/CJ-Chen/TBtools
https://meme-suite.org/meme/db/motifs
https://megasoftware.net/home
https://www.evolgenius.info/evolview
https://www.evolgenius.info/evolview
https://github.com/tanghaibao/jcvi
https://sourceforge.net/projects/kakscalculator2/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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2.4. Prediction of Putative miRNA Targeting BnSOD Genes and GO Annotation Analysis

The coding sequence (CDS) of BnSODs was used to identify possible target miRNAs
in the psRNATarget database (Available online: http://plantgrn.noble.org/psRNATarget/,
accessed on 01 April 2021) [52] with default parameters. We drew the interaction network
figure between the miRNAs and BnSOD genes by Cytoscape software (V3.8.2; Available
online: https://cytoscape.org/download.html, accessed on 1 April 2021). Gene ontology
(GO) annotation analysis was performed by uploading all BnSODs protein sequences to the
eggNOG website (Available online: http://eggnog-mapper.embl.de/, 1 April 2021) [53].
TBtools was used to perform GO enrichment analysis.

2.5. Expression Profiling of BnSOD Genes in Different Tissues

For tissue-specific expression profiling, we downloaded RNA-seq data (BioProject
ID: PRJCA001495) of rapeseed from the National Genomics Data Center. The complete
method has been described in our recent work [37]. Briefly, Cuffquant and Cuffnorm
were used to produce normalized counts in transcripts per million (TPM) values. Based
on TPM values, the expression heat map was created using GraphPad Prism 8 software
(https://www.graphpad.com/, accessed on 1 April 2021). [54].

2.6. Plant Material and Stress Conditions

In this study, a typical cultivated variety, “ZS11,” was used for stress treatments.
The seeds of the “ZS11” genotype were provided by the OCRI-CAAS, Wuhan, China.
The stress treatments were carried out as described in our recent work [37]. Briefly, the
vigor seeds were cultivated on water-saturated filter paper in a chamber (25 ◦C day/night
and 16 h/8 h light/dark cycle) till the radicle’s extent extended around 5 mm. For stress
treatment, germinated seeds were subjected to 150 mM NaCl solution for salinity stress,
15% PEG6000 solution for drought stress, and 4 ◦C for cold stress on water-saturated
filter paper. For waterlogging stress, the seeds were flooded with water in the Eppendorf
tube. To evaluate the impact of diverse hormones, the germinated seeds were grown in
Murashige and Skoog (MS) medium supplied with 100 µM abscisic acid (ABA), 100 µM
gibberellic acid (GA), 100 µM indole-acetic acid/auxin (IAA), and 100 µM kinetin (KT). The
samples were collected at 0 (CK), 2, 4, 6, and 8 h after the treatments. All of the treatments
were performed with three biological replications. All of the samples were immediately
frozen in liquid nitrogen and were stored at −80 ◦C for further experiments.

2.7. RNA Extraction and qRT-PCR Analysis

Total RNA extraction and cDNA synthesis were performed using a TransZol Up Plus
RNA Kit (TransGen Biotech, Beijing, China) and cDNA Synthesis SuperMix (TransGen
Biotech, Beijing, China) according to manufacturer instructions. The detailed information
of qRT-PCR reactions has been described in our recently published work [37]. Initially, the
expression data were analyzed using the 2−∆∆CT method. Due to the large difference in the
expression levels, we used the log2 fold change method to calculate the expression results
for better visualization of differently expressed genes under stress treatments. All of the
primers used in this experiment are listed in Table S1. The heatmap was created using
GraphPad Prism 8 software [54].

2.8. Prediction of the 3D Structure of BnSOD Proteins

The predicted 3D structures of BnSODs were created with the 3D LigandSite website
(https://www.wass-michaelislab.org/3dlig/index.html, accessed on 1 April 2021) [55].
The probability score of the predicted sites shows the possibility of apiece residue to
be elaborated in binding. During the 3D model predictions, we choose cluster 1 with
a higher Z-score. The higher Z-score value indicates the reliability and trueness of the
cluster/model [55].

http://plantgrn.noble.org/psRNATarget/
https://cytoscape.org/download.html
http://eggnog-mapper.embl.de/
https://www.graphpad.com/
https://www.wass-michaelislab.org/3dlig/index.html
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3. Results
3.1. Identification of SOD Gene Family in B. napus

The current study identified 31 BnSOD genes in the rapeseed genome using eight
A. thaliana (AtSODs) protein sequences as queries (Table 1; Table S2). According to the
domain scrutiny, 14 proteins were found to have a Cu/Zn-SODs domain (Pfam: 00080),
11 proteins were found to have a Fe-SODs domain (Pfam: 00081), and six proteins were
found to have an Mn-SODs domain (Pfam: 02777); hereafter, these genes were named as
BnCSD1-BnCSD14, BnFSD1-BnFSD11, and BnMSD1-BnMSD6, respectively (Table 1). Com-
prehensive statistics of 31 BnSOD genes were documented in Table 1. Out of 31 BnSODs,
15 genes were located on the A subgenome, and 16 genes were located on the C subgenome
(Table 1). The gene length extended from 826 bp (BnCSD4) to 6898 bp (BnFSD5) with
3–9 exons in the individual gene sequences. The CDS length, protein length, and molecular
weight extended from 441–1173 bp, 146–390 amino acids, and 14.55–42.34 kDa (BnCSD9-
BnCSD2), respectively. The isoelectric points extended from 4.88 (BnFSD7) to 9.56 (BnMSD3)
(Table 1). The subcellular localization results prophesied that 15 proteins were located on
the chloroplast, nine proteins were located on the cytoskeleton, five proteins were located
on the mitochondrion, and the remaining two proteins (BnFSD9 and BnMSD6) were located
on the endoplasmic reticulum (Table 1).

Additionally, 14 SOD genes were also identified from Brassica oleracea (BolCSD1-
BolCSD6, BolFSD1-BolFSD5, and BolMSD1-BolMSD3), and Brassica rapa (BraCSD1-BraCSD7,
BraFSD1-BraFSD4, and BraMSD1-BraMSD3) genomes (Table S2).

3.2. Phylogenetic Relationships of SOD Genes

In the current study, the evolutionary relationships were explored between BnSODs,
BolSODs, BraSODs, and AtSODs genes. Based on domains (Cu/Zn-SODs, Fe-SODs, and
Mn-SODs) and a phylogenetic tree, 67 SODs were clustered into three major groups
(Figure 1). Results presented that the Cu/Zn-SODs group consists of 30 SODs members
(14 BnSODs, 7 BraSODs, 6 BolSODs, and 3 AtSODs), the Mn-SODs group consists of
14 SODs members (6 BnSODs, 3 BraSODs, 3 BolSODs, and 2 AtSODs), and the Fe-SODs
group consists of 23 SODs members (11 BnSODs, 4 BraSODs, 5 BolSODs, and 3 AtSODs)
(Figure 1). Interestingly, Cu/Zn-SODs and Fe-SODs groups possessed a greater number of
SODs than the Mn-SOD group. It was also found that the BnSODs exhibited a more closely
phylogenetic relationship with BolSODs and BraSODs in each group.

3.3. Chromosomal Locations and Synteny Analysis of SOD Genes

Gene duplications (tandem and segmental) are considered the main driving forces
in promoting new genomic evolution [56]. Thus, gene duplication events were evaluated
between BnSODs, BolSODs, BraSODs, and AtSODs (Table S3). The chromosol location of
10 BnSODs gene pairs was examined (Figure 2). Twelve out of 19 chromosomes harbored
BnSODs. Particularly, chromosomes A01, A04, A05, A08, A10, C04, C05, and C07 possessed
one gene, chromosome C01 contained two genes, chromosomes C08 and C09 possessed
three genes, and chromosome A09 contained four genes (Figure 2). Surprisingly, the
residual chromosomes did not comprehend BnSOD genes. Our results show that segmental
duplications have played vital parts in developing BnSOD genes in the rapeseed genome
(Table S3). Moreover, no tandem duplication events were detected. Notably, a gene
pair (BnMSD6 and BnMSD6) was found to be dispersed, while the remaining gene pairs
experienced segmental duplications (Table S3).
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Table 1. The data of 31 SOD genes identified in rapeseed genome.

Gene ID Gene Name Genomic Position (bp) Gene Length (bp) CDS Length (bp) Exons Protein Length
(Amino Acids)

Molecular
Weight (kDa)

Isoelectric
Point (pI)

Subcellular
Localization

BnaA04T0182200ZS BnCSD1 A04-18599782:18600942 (+) 1160 639 6 212 22.15 7.16 Chloroplast

BnaA06T0053200ZS BnCSD2 A06-3364923:3368393 (+) 3470 1173 9 390 42.34 8.71 Cytoskeleton

BnaA08T0278700ZS BnCSD3 A08-26336887:26338407 (+) 1520 954 6 317 33.76 5.19 Chloroplast

BnaA09T0129500ZS BnCSD4 A09-7757584:7758410 (−) 826 660 3 219 23.60 5.95 Chloroplast

BnaA09T0647100ZS BnCSD5 A09-61965958:61967448 (+) 1490 954 6 317 33.45 5.26 Chloroplast

BnaA09T0664700ZS BnCSD6 A09-62938095:62939938 (−) 1843 459 8 152 15.17 5.64 Cytoskeleton

BnaA10T0190600ZS BnCSD7 A01-21329437:21330797 (−) 1360 465 6 154 15.94 7.12 Cytoskeleton

BnaC04T0482300ZS BnCSD8 C04-60854831:60856275 (+) 1444 627 6 208 21.60 7.84 Chloroplast

BnaC05T0066000ZS BnCSD9 C05-3767908:3769181 (+) 1273 441 7 146 14.55 5.44 Cytoskeleton

BnaC08T0217500ZS BnCSD10 C08-32001876:32003366 (−) 1490 951 5 316 33.71 6.91 Chloroplast

BnaC08T0505400ZS BnCSD11 C08-51947641:51949188 (+) 1547 957 6 318 33.58 4.97 Chloroplast

BnaC08T0529200ZS BnCSD12 C08-53323394:53325251 (−) 1857 672 7 223 23.42 6.66 Cytoskeleton

BnaC09T0137500ZS BnCSD13 C09-10172656:10173492 (−) 836 660 3 219 23.72 6.83 Chloroplast

BnaC09T0484500ZS BnCSD14 C09-59599637:59601046 (−) 1409 510 6 169 17.63 6.82 Cytoskeleton

BnaA01T0146300ZS BnFSD1 A01-8654405:8657035 (−) 2630 561 6 186 21.12 6.06 Cytoskeleton

BnaA03T0141400ZS BnFSD2 A03-7188761:7190553 (+) 1792 906 8 301 34.51 4.97 Chloroplast

BnaA06T0320600ZS.1 BnFSD3 A06-40740605:40744473 (+) 3868 879 9 292 33.60 7.58 Chloroplast

BnaA09T0072700ZS BnFSD4 A09-4315462:4316968 (−) 1506 792 8 263 30.16 7.76 Chloroplast

BnaA10T0083700ZS BnFSD5 A10-13303579:13310477 (−) 6898 738 6 245 28.02 9.44 Mitochondrion

BnaC01T0186100ZS BnFSD6 C01-13777631:13779146 (−) 1515 618 5 205 22.99 6.3 Cytoskeleton

BnaC03T0164000ZS BnFSD7 C03-9109698:9111720 (+) 2022 903 9 300 34.39 4.88 Chloroplast

BnaC07T0373300ZS BnFSD8 C07-49894566:49896148 (−) 1582 780 6 259 29.58 8.58 Chloroplast

BnaC07T0462000ZS BnFSD9 C07-55868729:55870093 (−) 1364 648 5 215 24.17 6.65 Endoplasmic
reticulum

BnaC09T0062700ZS BnFSD10 C09-4091989:4094054 (−) 2065 783 8 260 29.72 6.66 Chloroplast
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Table 1. Cont.

Gene ID Gene Name Genomic Position (bp) Gene Length (bp) CDS Length (bp) Exons Protein Length
(Amino Acids)

Molecular
Weight (kDa)

Isoelectric
Point (pI)

Subcellular
Localization

BnaC09T0329400ZS BnFSD11 C09-41111988:41116227 (−) 4239 1077 7 358 40.40 8.8 Chloroplast

BnaA01T0376200ZS BnMSD1 A01-33774266:33775498 (−) 1232 699 6 232 25.50 8.38 Mitochondrion

BnaA05T0446100ZS BnMSD2 A05-41549634:41550932 (−) 1298 696 6 231 25.41 8.47 Mitochondrion

BnaA09T0519400ZS BnMSD3 A09-55258451:55262461 (−) 4010 966 9 321 35.60 9.56 Cytoskeleton

BnaC01T0471300ZS BnMSD4 C01-53548352:53549620 (−) 1268 693 6 230 25.36 8.94 Mitochondrion

BnaC05T0492700ZS BnMSD5 C05-53531802:53533097 (−) 1295 696 6 231 25.43 7.83 Mitochondrion

BnaC08T0362400ZS BnMSD6 C08-43431847:43433140 (−) 1293 729 6 242 27.11 6.14 Endoplasmic
reticulum

In the genomic position, the positive (+) and negative (−) sign shows the presence of a gene on the positive and negative strand of that specific marker correspondingly. CSD means Cu/Zn-SOD; FSD means
Fe-SOD; and MSD means Mn-SOD.
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Collinearity investigation revealed strong orthologs of SOD genes among B. napus
and three closely related species (B. rapa, B. oleracea, and A. thaliana) (Figure 3). In summary,
in the A subgenome, seven and five B. napus genes demonstrated syntenic relations with
BraSODs and AtSODs, respectively. Three genes exhibited syntenic relations with BolSODs
and AtSODs (Figure 3). In contrast, in the C subgenome, six and three B. napus genes
displayed syntenic relations with BolSODs and AtSODs. One gene revealed syntenic
relations with BnSODs and AtSODs (Figure 3). Our results revealed numerous A. thaliana,
B. rapa, and B. oleracea homologous sustained syntenic relations with BnSODs, suggesting
that whole-genome duplication or segmental duplications played a significant part in
BnSODs gene family progression (Table S3).
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The Ka/Ks ratio is considered a significant index in evaluating the duplication events
and selection pressures [57]. Therefore, to understand the evolutionary story of the Bn-
SODs, the Ka, Ks, and Ka/Ks ratio was calculated for B. napus and the other three plant
species (Table S3). Our results revealed that all of the duplicated BnSOD gene pairs had a
Ka/Ks ratio of <1 (Table S3), signifying that the BnSOD genes might have handled intense
purifying selective pressure through their evolution (Table S3). Similar findings were
observed in B. rapa, B. oleracea, and A. thaliana (Table S3).

3.4. BnSOD Gene Structures and Conserved Motifs Investigation

The exons–introns structures and the introns number play a vital role in gene family
evolution [12,58]. The comprehensive examination of the phylogenetic relationships and
gene structure illustration supported our knowledge of BnSODs gene structures (Figure 4).
The findings exposed that exon and intron numbers of BnSOD genes had high inconsistency
and were steady with the evolutionary hierarchy outcomes, i.e., the numbers of introns and
exons were found to be relatively similar within the same group (Figure 4a,b). Briefly, the
number of exons and introns varied from three to nine and two to eight in the individual
gene sequences, respectively (Table 1; Figure 4b). A group with the Fe-SOD domain had
five–nine exons and four–eight introns. A group with the Mn-SOD domain had six exons



Antioxidants 2021, 10, 1182 10 of 21

and five introns (five genes), and only one gene (BnMSD3) had nine exons and eight introns.
Whereas, the group with Cu/Zn-SOD had five–nine exons and two–eight introns (Table 1;
Figure 4b). Notably, group Fe-SOD and Cu/Zn-SOD groups have complex structures
compared to the Mn-SOD group.
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To systematically appraise BnSODs’ protein structure diversity and envisage their
functions, we explored the full-length protein sequences of 31 BnSODs by MEME software
to identify their conserved motifs. The investigation outcomes displayed that a total of
12 conserved motifs were found (Figure 4c). The detailed information (name, sequence,
width, and E-value) of identified motifs is presented in Table S4. In short, the conserved
motifs of SOD proteins varied from two to seven, and the motifs distributions were in
agreement with the groups. In the Fe-SOD group, only two proteins (BnFSD11 and BnFSD5)
had three and two motifs, respectively (Figure 4c). Interestingly, motifs 1, 3, 4, 5, and 8 were
predicted to be specific to Fe-SOD and Mn-SOD groups. Motif 6 was specific to Mn-SOD
and Cu/Zn groups. Motifs 2, 9, 10, and 11 were specific to the Cu/Zn group. Only motif
12 was largely distributed among all of the domain groups (Figure 4c). In summary, the
group arrangements’ reliability was mightily sustained by investigating conserved motif
arrangements, gene structures, and phylogenetic relationships, suggesting that BnSOD
proteins have tremendously well-maintained amino acid remains and members within a
group. Thus, it can be assumed that proteins with similar structures and motifs might play
similar functional roles.
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3.5. Examination of Cis-Elements in Promoters of BnSOD Genes

To distinguish the gene functions and regulatory roles, cis-regulatory elements in Bn-
SODs promoter regions were examined by searching a 2000 bp upstream region from each
gene’s transcriptional activation site against the PlantCARE database. The detailed infor-
mation of cis-elements is presented in Table S5. As revealed in Figure 5, five phytohormone-
correlated [(abscisic acid (ABA), auxin, methyl jasmonate (MeJA), gibberellin (GA), and
salicylic acid (SA)] responsive elements including TCA-element, CGTCA-motif, ABRE,
TGACG-motif, TATC-box, GARE-motif, P-box, etc. were recognized (Figure 5; Table S5).
Particularly, numerous phytohormone-correlated elements were predicted to be specific to
some genes and widely distributed (Figure 5), signifying the crucial role of these genes in
phytohormone-mediation.
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Furthermore, four stress-responsive (drought, low-temperature, anaerobic, and light)
elements, including ARE, LAMP-element, LTR, TCT-motif, chs-CMA1a, MBS, G-box, GT1-
motif, MBS, etc. were identified (Figure 5; Table S5). Mainly, numerous light-responsive
elements were found to be widely distributed among all of the genes (Figure 5; Table S5),
signifying the substantial role of BnSODs in response to light stress. Overall, results
advised that BnSODs expression levels may diverge under phytohormone and abiotic
stress conditions.

3.6. Genome-Wide Analysis of miRNA Targeting BnSOD Genes

In the recent past, several studies have revealed that miRNA-mediated regulation
accompanies the stress responses in plants. Thus, for a deep understanding of miRNA-
mediated post-transcriptional regulation of BnSODs, we predicted 30 miRNAs targeting
13 genes (Figure 6a; Table S6). Some of the miRNA-targeted sites are presented in Figure 6b,
whereas the detailed information of all miRNAs targeted genes/sites is presented in
Table S6. Our results showed that four members of the bna-miR159 family targeted four
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genes (BnCSD7, BnCSD14, BnMSD1, and BnMSD4). Six members of the bna-miR166 family
targeted one gene (BnCSD10). Fourteen members of the bna-miR169 family targeted one
gene (BnFSD11). Four members of the bna-miR172 family targeted one gene (BnCSD2).
Two members of the bna-miR394 family targeted four genes (BnFSD11, BnFSD2, BnFSD7,
and BnFSD5). Two members of the bna-miR397 family targeted one gene (BnCSD10). One
member of the bna-miR6033 family targeted three genes (BnFSD4, BnFSD8, and BnFSD3)
(Figure 6a; Table S6). Mainly, BnFSD11, BnCSD10, and BnCSD2 were prophesied to be
targeted by a greater number of miRNAs (Figure 6a; Table S6). The expression levels of
these miRNAs and their targeted genes requires validation in additional research to govern
their biological roles in the rapeseed genome.

Antioxidants 2021, 10, x FOR PEER REVIEW 13 of 22 
 

 
Figure 6. miRNA targeting BnSOD genes. (a) Network diagram of predicted miRNA targeting BnSODs genes. Different 
diamond colors represent BnSODs genes, and gray ellipse shapes represent miRNAs. (b) Schematic illustration indicates 
the BnSODs targeted by miRNAs. The RNA sequence of each complementary site from 5’-3’ and the predicted miRNA 
sequence from 3’-5’ are exposed in the long-drawn-out areas. See Table S6 for the detailed data of all predicted miRNAs. 

3.7. Functional Annotation Study of BnSOD Genes 
The functions of the BnSODs genes were prophesied through GO annotation inves-

tigation based on biological process (BP), molecular function (MF), and cellular compo-
nent (CC) classes. The GO annotation results revealed numerous significantly enriched 
terms (Table S7). Analysis of BP annotations indicated that these genes were mainly in-
volved in responses to stimulus (GO:0050896), responses to chemicals (GO:0042221), re-
sponses to stress (GO:0006950), responses to inorganic substances (GO:0010035), re-
sponses to abiotic stimulus (GO:0009628), cellular oxidant detoxification (GO:0098869), 
cellular response to oxygen-containing compound (GO:1901701), etc. (Table S7). Analysis 
of MF annotations revealed that these genes were primarily involved in ion binding 
(GO:0043167), copper ion binding (GO:0005507), zinc ion binding (GO:0008270), oxidore-
ductase activity (GO:0016491), superoxide dismutase activity (GO:0004784), antioxidant 
activity (GO:0016209), etc. (Table S7). A study of CC annotations showed that these genes 
are mainly involved in cellular anatomical entity (GO:0110165), cytoplasm (GO:0005737), 
obsolete intracellular part (GO:0044424), cellular component (GO:0005575), intracellular 
anatomical structure (GO:0005622), membrane-bounded organelle (GO:0043227), etc. (Ta-
ble S7). In conclusion, GO annotation results confirmed the BnSODs role in response to 

Figure 6. miRNA targeting BnSOD genes. (a) Network diagram of predicted miRNA targeting BnSODs genes. Different
diamond colors represent BnSODs genes, and gray ellipse shapes represent miRNAs. (b) Schematic illustration indicates
the BnSODs targeted by miRNAs. The RNA sequence of each complementary site from 5’-3’ and the predicted miRNA
sequence from 3’-5’ are exposed in the long-drawn-out areas. See Table S6 for the detailed data of all predicted miRNAs.

3.7. Functional Annotation Study of BnSOD Genes

The functions of the BnSODs genes were prophesied through GO annotation inves-
tigation based on biological process (BP), molecular function (MF), and cellular compo-
nent (CC) classes. The GO annotation results revealed numerous significantly enriched
terms (Table S7). Analysis of BP annotations indicated that these genes were mainly
involved in responses to stimulus (GO:0050896), responses to chemicals (GO:0042221),
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responses to stress (GO:0006950), responses to inorganic substances (GO:0010035), re-
sponses to abiotic stimulus (GO:0009628), cellular oxidant detoxification (GO:0098869),
cellular response to oxygen-containing compound (GO:1901701), etc. (Table S7). Analy-
sis of MF annotations revealed that these genes were primarily involved in ion binding
(GO:0043167), copper ion binding (GO:0005507), zinc ion binding (GO:0008270), oxidore-
ductase activity (GO:0016491), superoxide dismutase activity (GO:0004784), antioxidant
activity (GO:0016209), etc. (Table S7). A study of CC annotations showed that these genes
are mainly involved in cellular anatomical entity (GO:0110165), cytoplasm (GO:0005737),
obsolete intracellular part (GO:0044424), cellular component (GO:0005575), intracellu-
lar anatomical structure (GO:0005622), membrane-bounded organelle (GO:0043227), etc.
(Table S7). In conclusion, GO annotation results confirmed the BnSODs role in response
to different stress stimulus, cellular oxidant detoxification processes, metal ion binding
activities, SOD activity, and different cellular components.

3.8. Expression Analysis of BnSOD Genes in Several Developmental Tissues

Tissue-specific expression levels of BnSODs genes were appraised in six different
tissues and organs (including roots, stems, leaves, flowers, seeds, and silique) using RNA-
seq data from B. napus (ZS11 variety) (BioProject ID: PRJCA001495). As shown in Figure 7,
the group I genes display higher expression in all of the tissues except BnFSD1, BnCSD3,
BnCSD7, BnCSD14, BnMSD2, that showed relatively lower expression than other genes
(Figure 7). Meanwhile, genes clustered in group II exhibited considerably low expression,
whereas BnMSD3 and BnMSD6 showed high expression at the seed_45d stage (Figure 7).
Overall, results showed that genes from group I may play significant roles in B. napus
growth and development.

3.9. Expression Profiles of BnSOD Genes under Hormones and Abiotic Stress Treatments

To examine the BnSOD genes’ expression levels under different hormones (ABA, GA,
IAA, and KT) and abiotic stress (salinity, cold, waterlogging, and drought) treatments,
the qRT-PCR analysis of 10 randomly selected BnSOD genes was applied to govern the
transcription profile (Figure 8). Under all of these stress conditions, BnCSD6 and BnFSD1
were down-regulated and showed relatively low expression levels. Likewise, BnMSD10
showed a considerable response to ABA, GA, IAA, salinity, cold, and drought stress at
different time points. The other eight genes were significantly up-regulated and showed
higher expression to all hormones and abiotic treatments (Figure 8), signifying that these
genes may play a significant role in mitigating various hormone and abiotic stresses.

3.10. Prediction of the 3D Structures of BnSODs

The 3D structures of BnSODs proteins were predicted using the 3DLigandSite tool with
the default Search probability threshold (80.0%). The created models were downloaded to
view the 3D structures (Figure 9). The detailed information of predicted 3D structures is
presented in Table S8. The predicted Cu/Zn-SODs (BnCSD1-BnCSD14) model possessed a
primarily highly conserved β-barrel structure, including a few short α-helices (Figure 9).
The distinctive quaternary model of eukaryotic Cu/ZnSODs proteins contained a β-barrel
domain comprised of eight antiparallel β-strands and Cu/Zn binding sites positioned
at the exterior of the β-barrel in the active site network [13]. An individual subunit of
Cu/ZnSODs proteins, the binding site possessed the Cu/Zn ion ligated by four histidines
and important enzymes (such as arginine and alanine) with different conserved residues
(Table S8). The conserved disulfide bond residues were examined in the active site channel
of Cu/ZnSODs, including Cys202, Cys110, Cys201, and Cys110 in BnCSD3, BnCSD4,
BnCSD10, BnCSD13, respectively (Table S8). The remaining Cu/ZnSODs proteins do not
possess the Cys–Cys conserved disulfide bonds.
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Likewise, the examination of B. napus Fe/MnSODs discovered that the dominant
α-helices and β-sheet structures were detected (Figure 9). However, considerable variance
in the sum of α-helices was observed and missing the disulfide bonds (exclusive features
of Cu/ZnSODs). For instance, the active spot of Mn/FeSODs was positioned among the N-
and C-terminal domains, and it varied from that of Cu/ZnSODs as it was comprised of a
single metal ion. The metal ion is harmonized in a stressed trigonal bipyramidal geometry
through eight–ten amino acid side-chains (including HIS, HIS, TYR, TRP, GLN, ASP, ALA)
(Table S8) with solvent molecules. These Mn/FeSODs active sites also comprise hydrogen
bonds that spread from the metal-bound solvent molecule to solvent-visible residues at the
edge among subunits (Table S8). Additional structural investigation of these amino acids
can boost our understanding of the catalytic process and metal ion binding.
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4. Discussion

Rapeseed is an allotetraploid crop that experiences extensive genome repetition and
integration actions [59]. Nonetheless, rapeseed yield is affected by several abiotic stresses,
including cold, heat, salinity, drought, and heavy metals [33,34]. ROS production under
typical and stress environments is measured and scavenged through SODs, which act as
the primary markers of an enzyme complicated in ROS scavenging, and play a crucial role
in plants’ physiological and biochemical procedures to survive with environmental cues [3].
Over the last few years, SOD family genes have been documented in different plant species,
such as five SOD genes in Zostera marina [60], seven genes in Medicago truncatula [12]
and barley [61], eight genes in sorghum [62], nine genes in tomato [63], ten genes in
grapevine [64], 18 genes in cotton [28], 25 genes in banana [65], 26 genes in wheat [66],
and 29 genes in B. juncea [67]. Thus far, there is no wide-ranging investigation of the SOD
family genes in rapeseed. The obtainability of the whole rapeseed genome permits the
genome-wide characterization of the SOD family genes, which may be used for future
rapeseed improvement.

In the current study, we identified 31 BnSOD genes, including 14 Cu/Zn-SODs, 11 Fe-
SODs, and six Mn-SODs genes (Table 1), which were clustered into three major sets based
on the binding domain (Figure 1). So far, this is the largest SOD gene family identified in
the rapeseed genome. Changes in the SOD gene numbers among plant species may be
accredited to gene repetition events, including tandem and segmental repetitions, and act
as a key factor in extending SODs for divergence. Gene doubling of SOD genes was also
detected in various plant species [67,68]. Our results showed that BnSODs had experienced
segmental duplications (Table S3). Consequently, these outcomes suggested that BnSODs
duplication actions might play an important role in gene progression.

Gene structure analysis discovered that the number of exons varied from three to
nine, and the number of introns varied from two to eight (Table 1; Figure 4). The Fe-SOD
group had five to nine exons and four to eight introns. The Mn-SOD group had six exons
and five introns (five genes), and only one gene (BnMSD3) had nine exons and eight
introns. In comparison, the group with Cu/Zn-SOD had five to nine exons and two to
eight introns (Table 1; Figure 4b). In wheat, seven TaSODs genes were found to have seven
introns [66]. In sorghum, intron numbers varied from five to seven [62]. The exon–intron
assemblies’ difference was proficient by three critical apparatuses (exon/intron gain/loss,
exonization/pseudoexonizationand, insertion/deletion), and they are directly subsidized
to structural discrepancy [62,69]. Interestingly, the SOD genes in each cluster presented
similar exon–intron association and conserved motifs (Figure 4), signifying that these genes
may participate in the same roles connected to numerous abiotic stressors. Comparable
findings have also been reported in sorghum [62], tomato [63], cotton [28], and wheat [66].

To better understand the BnSOD genes’ role against several environmental strains, cis-
elements in the promoter regions were prophesied. Our results exhibited that three types of
cis-elements were recognized: stress-, hormones-, and light-responsive (Figure 5; Table S5).
Most of the identified cis-elements were connected with ABA, MeJA, GA, SA, drought, low-
temperature, light, and anaerobic induction. According to previous reports, cis-elements
subsidize to plant stress responses [70,71]. These consequences were further validated
by the GO annotation analysis (Table S7). Moreover, several researchers reported similar
findings in different crop plants where SOD genes were found to play a significant part
under various stress conditions [62,66,67]. These outcomes can boost our understanding of
BnSOD genes under diverse environmental conditions.

Previous investigations have described that SOD genes may show diverse expres-
sion levels in tissues and under stress conditions [62,63,72]. Thus, in the current study,
tissue-specific expression levels of BnSODs genes were appraised in six different devel-
opmental tissues using RNA-seq data (Figure 7), which were in agreement with earlier
findings [12,63,66]. Several genes displayed higher expression in all evaluated tissues,
indicating that these genes may contribute to rapeseed growth and development. Simi-
larly, the expression levels of 10 BnSOD genes were evaluated under different hormones



Antioxidants 2021, 10, 1182 17 of 21

and abiotic stress treatments (Figure 8). Almost all genes were up-regulated under stress
treatments, excluding BnCSD6 and BnFSD1 genes, whose expression levels were down-
regulated. These results agreed with previous findings where several SOD genes showed
higher expression in response to stresses. For instance, in grapevines, many SODs were
up-regulated under cold, heat, salinity, and drought treatment [72]. All SODs were sig-
nificantly up-regulated in tomatoes under salt and drought stress [63]. In wheat, almost
all SODs showed higher expression in response to mannitol, salinity, and drought stress
than control conditions [66]. Under cold stress conditions, SOD activity was significantly
increased in rapeseed [34]. These findings provided strong evidence that SOD genes play a
conserved role in vindicating abiotic stresses in different plant species.

Over the past few years, abundant miRNAs have been recognized through genome-
wide examination in rapeseed to participate in diverse environmental factors [73–77]. In
the present study, we identified 30 miRNAs from seven families targeting 13 BnSODs genes
(Figure 6a; Table S6). In a recent study, 20 miRNAs were predicted to target 14 SOD genes in
cotton [28]. Previously, miR398 targeted two Cu/ZnSOD genes in Arabidopsis thaliana [27].
miR166 has been stated to be pointedly up-regulated against UV-B radiation in maize [78];
in cassava against cold and drought stresses [79]; in Chinese cabbage under heat stress
conditions [79]. According to recent reports, bna-miR159 plays a vital role in fatty acid
metabolism in rapeseed [80,81]. Several members of miR172 have been detected while
participating in plant development, including regulation of flowering time and floral
patterning [82], and developmental control in A. thaliana [83]. miR394 has been reported
to be involved in drought and salinity tolerance in A. thaliana via an ABA-dependent
pathway [84]. In another study, miR394 was associated with cold stress responses in
A. thaliana [85]. Shortly, these reports support our results and recommend that bna-miRNAs
might play pivotal roles against several stresses by altering the transcript levels of SOD
genes in rapeseed.

To obtain further insight, we also predicted the 3D structures of BnSODs proteins
(Figure 9). The Cu/Zn-SODs (BnCSD1-BnCSD14) models had primarily highly conserved
β-barrel structures, including a few short α-helices (Figure 9). According to a recent report,
eukaryotic Cu/ZnSODs proteins contain a β-barrel domain comprised of eight antiparallel
β-strands and Cu/Zn binding sites positioned at the exterior of the β-barrel in the active
site network [13]. In Cu/ZnSODs proteins, the binding site possessed Cu/Zn ions ligated
by four histidines and important enzymes (such as arginine and alanine) with different
conserved residues (Table S8). These results were in agreement with previously predicted
3D models of SODs in sorghum [62], in Gossypium raimondii, and G. arboretum [86], and
in rice [87]. The previous study proved that the binding active site of metal ions and
the generation of the conserved disulfide bond in individual subunits would participate
in the protein constancy, specificity, and dimer gathering [62,88]. Similarly, conserved
residues (including arginine residue) also supported our results, and these residues were
considered to be vital players for normal enzymatic movement (Table S8) [88]. Similarly, the
Fe/MnSODs models of rapeseed suggested that the β-sheets were conquered by α-helices
(Figure 9), and these results were in agreement with recently predicted SOD models in
rice [87], soybean [89], and sorghum [62].

5. Conclusions

In the current study, we identified 31 BnSOD genes in the rapeseed genome via
genome-wide comprehensive investigation. To boost our understanding, gene structure,
phylogenetic and synteny, conserved motifs, cis-elements, GO annotation, miRNA pre-
diction, 3D protein structure, tissue-specific expression, and expression profiling under
different hormones and abiotic stress treatments have been performed. The results showed
that some genes significantly responded to both hormone and abiotic stress stimuli, enhanc-
ing our understanding of the BnSOD genes. Thus, additional investigations are required
to confirm the purposeful role of BnSOD genes in rapeseed growth, development, and
response to numerous environmental cues.
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pairs, Table S4: the information of identified 12 motifs in BnSOD proteins, Table S5: information
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