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Copy number variation (CNV) is a genomic mutation that plays an important role in
tumor evolution and tumor genesis. Accurate detection of CNVs from next-generation
sequencing (NGS) data is still a challenging task due to artifacts such as uneven mapped
reads and unbalanced amplitudes of gains and losses. This study proposes a new
approach called HBOS-CNV to detect CNVs from NGS data. The central point of
HBOS-CNV is that it uses a new statistic, the histogram-based outlier score (HBOS), to
evaluate the fluctuation of genome bins to determine those of changed copy numbers.
In comparison with existing statistics in the evaluation of CNVs, HBOS is a non-linearly
transformed value from the observed read depth (RD) value of each genome bin,
having the potential ability to relieve the effects resulted from the above artifacts. In the
calculation of HBOS values, a dynamic width histogram is utilized to depict the density
of bins on the genome being analyzed, which can reduce the effects of noises partially
contributed by mapping and sequencing errors. The evaluation of genome bins using
such a new statistic can lead to less extremely significant CNVs having a high probability
of detection. We evaluated this method using a large number of simulation datasets and
compared it with four existing methods (CNVnator, CNV-IFTV, CNV-LOF, and iCopyDav).
The results demonstrated that our proposed method outperforms the others in terms of
sensitivity, precision, and F1-measure. Furthermore, we applied the proposed method
to a set of real sequencing samples from the 1000 Genomes Project and determined a
number of CNVs with biological meanings. Thus, the proposed method can be regarded
as a routine approach in the field of genome mutation analysis for cancer samples.

Keywords: copy number variations, next-generation sequencing data, outlier detection, histogram analysis,
tumor purity

INTRODUCTION

Copy number variation (CNV) is a type of structural variation in human genomes that accounts
for a large part of the genome diversity and is associated with many complex human diseases (Feuk
et al., 2006), such as autism, Parkinson’s disease, schizophrenia, and cancer. CNVs are generally
defined as amplifications or deletions in DNA fragments larger than 1 Kb and can span up to 1 Mbp,
accounting for 12–16% of the entire human genome (Redon et al., 2006). Traditionally, CNVs were
identified with cytogenetic technologies such as karyotyping and fluorescence in situ hybridization
(FISH), array comparative genomic hybridization, or single nucleotide polymorphism array
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approaches (Itsara et al., 2009). However, these methods are
sub-optimal because of hybridization noise, limited genome
coverage, and low resolution. Different from traditional methods,
the short reads generated by next-generation sequencing (NGS)
technologies have a higher resolution that provides potential
advantages for the accurate detection of CNV regions as small
as several hundred bases (Metzker, 2010; Zhao et al., 2013).

In recent years, numerous classic methods for detecting CNV
from NGS data have been developed, such as FREEC proposed
by Boeva et al. (2012), which uses GC-content to normalize
read counts from tumor samples, and automatically determines
a window size for each sample. FREEC can estimate the tumor
purity of the sequenced samples and predict the genotype for each
genomic segment. However, because the automatically defined
window size might be very volatile, the breakpoint positions of
the detected CNVs might be different from reality (Boeva et al.,
2012). One of the most popular read depth (RD)-based methods
is CNVnator (Abyzov et al., 2011). CNVnator uses the mean-
shift (Comaniciu and Meer, 2002) method to cluster RD data
and segments the signals after clustering. After that, adjacent
segments are merged with minimal difference in the average RD
by a greedy algorithm (Abyzov et al., 2011). Finally, CNVs are
called via a t-test procedure. The algorithm has the advantage of
high precision and fast speed. However, when there is relatively
low coverage depth data, the false positive rate of CNVnator is
difficult to control due to the influence from artifacts such as
an uneven distribution of reads and a difference in bandwidth
size. The iCopyDav method developed by Prashanthi et al. (2018)
divides the genome into small intervals according to the RD
signal and defines the upper and lower thresholds to determine
gain or loss. It possesses good sensitivity and precision but
requires high sequence coverage and high tumor purity.

Different from the above methods, CNV-IFTV (Yuan et al.,
2021) proposed by Yuan et al. (2019) is a CNV detection
algorithm based on isolated forest and total variation models.
The algorithm uses the prior knowledge that the CNV region
is far smaller than the normal region to accurately detect the
CNV region. First, each bin is graded by the isolated forest, and
then, the continuous bins are smoothed by the total variation
model. Based on the first step, the significant distribution value
is calculated to call the CNV (Yuan et al., 2021). However,
many factors related to CNV, such as the inherent correlations
among genome positions, have not yet been fully explored by the
method. Besides, due to the insufficient utilization of computing
performance, the algorithm runs for a considerable length of
time. Another method using multi-threading is CNV-LOF (Yuan
et al., 2019), this method adds positional information to the
processed RD signals to convert them into two-dimensional data
and uses the local outlier factor (LOF) algorithm to determine
the local outliers. This method explores the relationship between
copy number amplitude and positional space, and it possesses
good precision and sensitivity for low tumor purity data and
exhibits low time complexity. However, the sensitivity of the
algorithm is too high, which leads to additional false-positive
results for high tumor purity data.

Although these methods provide significant results, none of
them is sufficiently versatile in various scenarios, such as when

there is (1) spatial dependence among consecutive bins that can
weaken the difference of the RD value between normal and
abnormal regions. Many existing methods ignore the correlation
and interaction among continuous bins and do not detect CNVs
with a small fluctuation of RD values. (2) Due to the difference
in the amplitudes between gains and losses, the distribution of
the RD profile is not well-fitted by statistical models (Miller et al.,
2011). Many methods use linear or non-linear transformations to
process RD profiles to better fit statistical models. However, the
unbalanced signals still affect the processed profile, resulting in a
high false discovery rate. (3) When the coverage depth or tumor
purity is low, most methods cannot maintain stable detection
results. Many methods produce satisfactory detection results
using sequencing data with high coverage depth and high tumor
purity, but few CNVs have been detected in low tumor purity and
low coverage data (Telenti et al., 2016). Another drawback of the
methods is that although they improve the detection precision of
low-quality data, the false-positive rate is difficult to control when
there are high purity and high coverage data (Chen et al., 2017).

With careful consideration of the issues mentioned above,
in this study, we propose a new approach to detect copy
number variations, called Histogram-based Outlier Score of Copy
Number Variation (HBOS-CNV). HBOS-CNV uses a histogram
to analyze the RD value of each bin in the whole genome.
Unlike the standard histogram with equal intervals, the interval
for each column in the histogram of HBOS-CNV is dynamic
(Goldstein and Dengel, 2014). Thus, HBOS-CNV can reduce
the influence from unbalanced signals and calculate the density
of each bin. Besides, to ensure the inherent correlations among
genome positions of the impression. Before using a histogram,
the discrete 1D convolution kernel is used to smooth the bins
in sequence data. This method highlights the difference in RD
value between normal and abnormal bins, and also satisfactorily
reflects the relationship between copy number amplitude and
positional space.

To demonstrate the power of our method, we used HBOS-
CNV to analyze simulation datasets and real WGS datasets and
compare their performance to that of four other state-of-the-art
tools. All performed analyses demonstrated that our approach is
capable of detecting CNV in low coverage depth and low tumor
purity datasets, thus outperforming all other compared tools.

MATERIALS AND METHODS

Flowchart of the HBOS-CNV Method
HBOS-CNV is based on RD and performs the analysis of CNV
without the requirement of control-matched samples. Before
running HBOS-CNV, it is necessary to use the BWA software
(Li and Durbin, 2010) to align a sequencing sample with a
reference genome (such as hg19). Then, the read count profile
is extracted using the SAMtool software (Li et al., 2009), and
stored in a BAM file. Based on the BAM file, HBOS-CNV detects
CNV through the following five processes. Figure 1 shows an
overview of the HBOS-CNV process, as follows. (1) The read
counts profile is preprocessed. In this step, we address the lost
values and the ’N’ position in the gene sequence, generating
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FIGURE 1 | Diagram showing the HBOS-CNV workflow. It includes the main steps for processing input read count profiles from SAMtools: preprocessing,
smoothing, calculating the density of bins, calculating the HBOS, determining the threshold, and calling the CNV.

bins and RD signals, and correcting the GC content bias. (2)
The RD profile is smoothed by a sliding window. By smoothing
the RD value, the noise in the RD contour is reduced, and the
interaction in continuous bins is considered. (3) The density of
bins is calculated. The dynamic width histogram is used in this

step to compute the density of bins. (4) The HBOS of bins is
calculated. The HBOS is used to evaluate the degree of outliers. (5)
The threshold is determined, and CNVs are declared. According
to the HBOS profile, the threshold of the normal interval
is determined, and the CNVs are called with the threshold.
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HBOS-CNV software is implemented in Python, and the code
can be found at https://github.com/BDanalysis/HBOS-CNV. In
the following subsections, the implementation of the proposed
method is described in detail, and then, the characteristics of the
approach are discussed.

Preprocessing
For the read count profile obtained from a BAM format file,
preprocessing is initially required. Most preprocessing methods
are similar and mainly divided into four steps. In the first
step, the ‘N’ positions are removed from the reference genome
(Backenroth et al., 2014; Wang et al., 2014). In the second step,
the read count profile is divided into non-overlapping bins with
the same length (Backenroth et al., 2014). In the third step, the
mean read count is calculated as a read depth (RD) value in each
bin. In the last step, the GC bias correction is conducted via Eq. 1
(Yoon et al., 2009; Abyzov et al., 2011):

rm =
r̄

r̄gc
· r̃m, (1)

where rm represents the corrected RD values of the m-th bin and
r̃m represents the raw values of the m-th bin. The average of the
RD values across all bins is denoted by r̄ is meant; rgc represents
the average RD value of those bins with similar GC fractions
to the m-th bin. In this study, we used a previously described
method for the GC bias calculations (Yu et al., 2016; Poell et al.,
2018; Yuan et al., 2018a).

Smoothing the RD Profile by Sliding
Window
After preprocessing, in order to ensure that the following process
does not produce new errors, we need to divide the gaps
caused by telomeres and centromeres from the preprocessed data
(Montpetit et al., 2014). Firstly the RD frequency in the RD
profile is clustered into two clusters with K-means (Hartigan
and Wong, 1979). Secondly, the preprocessed data is roughly
divided into two segments according to the average RD value
represented by these clusters. Then, the discrete 1D convolution
kernel is used to smooth each segmentation. Generally, the RD
value of the m-th bin has the greatest influence on itself, and the
influence of the other neighboring bins weakens in turn, which
is similar to the normal distribution. Therefore, we design the
weight of the convolution kernel to be a normal distribution.
Finally, all segments are stitched together in the initial order
to form a complete smoothed sequence. The calculation for the
sliding window is shown in Eq. 3. Each recalculated bin, named
r′m, represents the new statistic for the m-th bin in the RD profile:

−→
R = (rm−w, rm−w+1, . . . , rm+w)
−→
X = (xm−w, xm−w+1, . . . , xm+w) ,

−→
X ∼ N (µ, σ) ,

r′m =
−→
R ·
−→
X

(2)

where r′m represents the statistic of the m-th bin, which is
obtained by the inner product of two vectors. ER represents
the RD value of the bins in the sliding window, w represents
half the length of the sliding window, and

−→
X represents the

weight of normal distribution. N(µ, σ) represents a normal
distribution with the expectation of µ and a standard deviation
of σ. Generally, the value of µ is 0, which can ensure that the RD
value of a bin has the greatest impact on itself. The size of w is set
to 0.01% of the total number of bins. In other words, the size of w
depends on the size of bin-size. Since the chromosome length is
fixed, the smaller the bin-size, the larger the value of w. The value
of the standard deviation σ depends on the Eq. 3:

σ =
1
r̄
·

∑n
i=1 |ri − r̄|

n
, (3)

where n represents the number of total bins in the chromosome,
r̄ represents the average of RD, ri denotes the RD value of i-th bin.

Calculating the Density of Bins
For the RD profile obtained after sliding window processing, a
dynamic width histogram is used to describe the bin density
on the analyzed genome, which can ensure that the density
calculation is based on a local fixed number of bins. The result
is minimally affected by the unbalanced signal in the global RD
values. The specific algorithm is as follows. It is necessary to set
the number of columns in the histogram, and we can ensure the
number of bins in each column via Eq. 4:

S =
n
k
, (4)

where n denotes the number of total bins in the chromosome, S
represents the number of bins in each column, and k denotes the
number of columns (Goldstein and Dengel, 2014). Generally, the
number of columns k is set as the square root of the number of
total bins n (Goldstein and Dengel, 2014).

The first step is sorting the bins according to the RD value,
and arranging the S-sorted consecutive bins into a single column.
Because the area of a column in a histogram represents the
number of bins, it is the same for all columns in the histogram
(Goldstein and Dengel, 2014). At the same time, the width of
the column is defined by the first and the last value in the
column. Thus, the height of each column can be computed via
Eq. 5 (Goldstein and Dengel, 2014). This indicates that columns
covering a larger interval of the RD value exhibit decreased height
and represent a lower density:

hist (i) =
S(

ri
max − ri

min
)
+1

, (5)

where hist (i) represents the height of the i-th column in the
histogram, S represents the number of bins in each column,
and ri

max and ri
min represent the max and min read depths,

respectively, in the i-th column. Add one to the denominator to
make sure the denominator is not zero. Finally, the histograms
are then normalized such that the maximum height is 1.0. This
ensures an equal weight of each feature concerning the outlier
score (Goldstein and Dengel, 2014).

However, there is an exception. Under the influence of
centromeres and telomeres, there are usually no mapped reads
at some positions of chromosomes. In this case, the RD values of
these bins are all 0, and the number of these bins is more than
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S. Therefore, the method allows having more than S values in
the same column (Goldstein and Dengel, 2014). Significantly, in
this case, the calculated hist(i) value is very large, so the HBOS
value (used to measure outliers) calculated by hist(i) will be very
small. In CNV detection, this method can avoid the gap caused
by telomere and centromere to be detected as CNV.

Calculating the HBOS of Bins
Finally, according to the height of each column, the outlier factor
of bins in the column is calculated via Eq. 6. That is, the outlier of
each bin is determined by the outlier of the column in which it is
located:

HBOS(i) = log
(

1
hist(i)

)
(6)

where HBOS(i) represents the score of the i-th column in the
histogram, and hist (i) represents the height of the i-th column.

This result, called the Histogram-Based Outlier Score (HBOS),
is a non-linearly transformed value from the observed RD value
of each genome bin. HBOS describes the degree of variation in
each genome bin. With an increasing possibility of mutation in
genomic bins, HBOS will become larger. As shown in Figure 2,
the green points indicate the ground truth of CNVs, and the black
points are the normal bins. When we use RD signal (x-axis) to
directly detect CNV, half of the CNVs are covered in the normal
area, which will be detected by HBOS signal (y-axis).

Determining the Threshold and Calling
CNVs
The HBOS is not a binary property, and therefore, it
cannot be used to directly determine CNVs. It is necessary

to design a stable and reliable method to declare CNVs
based on the HBOS profile. The commonly used method,
which assumes a null distribution and calculates the p-value
for each object, determines outliers by a significance level.
However, this method requires that the data be subject to the
corresponding distribution model (Chen and Yuan, 2020). The
distribution of the HBOS profile is complex, and it cannot
be subject to the null distribution model. To overcome this
limitation, the method used to calculate the upper limit in
the boxplot is used to determine the threshold of outliers
in the HBOS profile (Yuan et al., 2019). A value greater
than the threshold in the HBOS profile is judged as the outlier.
Finally, outliers are mapped to the RD profile to determine the
position of CNVs.

After the declaration of CNVs, the gain or loss in the variation
region needs to be determined. It is similar to the algorithm
we previously developed (Yuan et al., 2021). In this study, the
mean RD value is used as the criterion to decide the gain or loss.
The mean RD value (r̄) is calculated over all bins by removing
the variation bins. The method of calculating the absolute copy
number is shown in Eq. 7:

CN =
(rt − (1− ϕ) · r̄) · ρ

ϕ · r̄
, (7)

Where the ρ represents the tumor ploidy, in the data of the
human genome, it is usually assumed to be 2, rt represents
the average RD of the CNV region, and the ϕ represents the
tumor purity. Similar to most algorithms (Cun et al., 2018),
the tumor purity can calculate by the RD of hemizygous loss
(rhem), homozygous loss (rhom), and average RD (r̄). The method

FIGURE 2 | The RD value was used as the x-axis and the HBOS of each bin as the y-axis to construct a scatter plot. The generated profile can greatly separate the
normal area and the variation area. The green point is the ground truth of CNV, and the parts above the red line are predicted as CNV regions.
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is shown in Equation 8, the tumor purity ϕ is the average of
‘ϕ1andϕ2:

rhem = ϕ1 ·
r̄
2
+ (1− ϕ1) · r̄, rhom = (1− ϕ2) · r̄ (8)

RESULTS

Simulation Study
Simulation Datasets
Simulation studies are considered to be an appropriate method
for evaluating the performance of existing and new methods
(Yuan et al., 2012, 2018b). To evaluate the rationality and
reliability of this method, a unified evaluation criteria should
be adopted, and the comparison method should have the

same input. With that in mind, we compared HBOS-CNV
with four existing methods (CNVnator, CNV-IFTV, CNV-LOF,
and iCopyDav) to obtain sensitivity, precision, and F1-measure
(harmonic mean of the sensitivity and precision). The simulation
software named IntSIM (Yuan et al., 2017), a simulation tool we
previously developed was used to generate various datasets with
tumor purity ranging from 0.2 to 0.6 and sequencing coverage
ranging from 4 to 8 times. In each simulation configuration, 50
duplicate samples were generated to fully test the five methods.
In each replicate sample, 14 CNVs were simulated, ranging in
size from 10,000 to 500,000 BP. Besides, all experiments in this
chapter use hg18 as the human reference genome.

Parameters of the Methods
To ensure a comprehensive comparison, we set the bin-size of 500
and 1000 when we used simulation data to test these methods.

FIGURE 3 | Performance comparisons between the five methods with bin-size of 1000 in terms of sensitivity, precision, and F1-measure on simulation datasets. The
F1-measure levels are shown in grey curves ranging from 0.1 to 0.9.
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Specifically, in addition to setting the bin-size, other parameters
are set as follows: (1) HBOS-CNV uses the square root of the
number of total bins as the default k value, which is defined as
the number of columns. (2) In CNVnator, the four parameters
(-his, -stat, -partition, and -call) are the same as bin-size in the
experiment. (3) The parameter of CNV-IFTV to control the
number of isolated trees is 256 by default. (4) The default value
of segCount defined by LOF-CNV is 50, and the default value of k
is 10. (5) In iCopyDav, the minSize is consistent with the bin-size
in the experiment, and the genome flag is set to hg18.

Simulation Experiments and Comparison With Peer
Methods
With the simulation datasets, we performed all five methods
described herein. They revealed the sensitivity, precision, and
F1-measure, which were the average of the 50 repeated samples

running results. The program running results for the simulated
data are shown in Figures 3, 4. Figure 3 shows the precision and
sensitivity of the detection results of all methods when the bin-
size is 1000. When the bin-size is 500, the detection results are
shown in Figure 4. The tumor purity of the data was 0.2, 0.4, and
0.6. The simulated data coverage depth was 4 times, 6 times, and
8 times respectively.

In the figures, for the data with low tumor purity and low
coverage, the results are quite different. For these five methods,
with the improvement of tumor purity, the change of CNV-LOF
was very small or even decreased, the precision and sensitivity of
CNV-IFTV were greatly improved, CNV-LOF only maintained a
high sensitivity, and iCopydav only maintained a high precision.
Different from the other four methods, the HBOS-CNV method
not only ensured the precision and sensitivity of high-purity data,
but there was also a reliable result in low-purity data.

FIGURE 4 | Performance comparisons between the five methods with the bin-size of 500 in terms of sensitivity, precision, and F1-measure on simulation datasets.
The F1-measure levels are shown in grey curves ranging from 0.1 to 0.9.
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As shown in Figure 3, for the low coverage data, such as 4
times, the F1-measure value of HBOS-CNV was the largest, and
CNV-LOF was the second largest when the tumor purity was
low. However, when the tumor purity was high, the F1-measure
value of HBOS-CNV was the largest, and CNV-IFTV was the
second largest. The F1-measure value of CNV-LOF underwent
little change. Figure 4 shows the results of the five algorithms

when the bin-size is 500. The bin-size has a certain impact on
the results of HBOS-CNV, which is mainly reflected in a 10%
decrease in precision. However, considering the precision and
sensitivity, the F1 value of HBOS-CNV is still the first. In terms of
precision, the result of HBOS-CNV was the second most precise
one of the algorithms. The most precise algorithm was iCopydav,
and the other algorithms produced results that were lower in

FIGURE 5 | The running time of the five methods was compared by running 50 to 700 files. Each file records the simulated sequencing data of chromosome 21, and
the size of each file is about 1G.

FIGURE 6 | The x-axis represents the precision, sensitivity, and F1-score of the five methods, and the y-axis represents the three samples (NA19238, NA19239,
NA19240). The precision, sensitivity, and F1-score of each method are marked in the figure.
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precision than those of HBOS-CNV. In terms of sensitivity,
HBOS-CNV was second only to CNV-LOF in the case of low
purity. Considering only precision or sensitivity, HBOS-CNV
may not be the optimal solution, but considering both, the F1-
score of HBOS-CNV is the first. In other words, HBOS-CNV
has high precision and sensitivity in low coverage and low purity
sequencing samples.

For the high coverage data, such as 8 times, all the five
algorithms have high sensitivity and precision. When the
bin-size is 1000, The precision and sensitivity of HBOS-CNV
rank first or second, especially in the data of high tumor
purity, HBOS-CNV has the best results, and its F1-score
is close to 0.93. Comparing Figures 3, 4, the result shows
that when the bin-size changes, the F1-value of the HBOS-
CNV method is at a relatively stable level. In the high
coverage data, changing the bin-size reduces the precision

by about 5% at most, while the precision reduces close to
10% in the low coverage data. When the sensitivity and
precision of the simulation results were considered, HBOS-
CNV exhibited the most optimal trade-off in the detection of
various purity levels.

In addition to the above three criteria, the running time of
the algorithm was compared to measure the detection efficiency.
We prepared 100 to 700 copies of simulation data. Under the
condition of ensuring the accuracy of the results, we ran the
above five algorithms and recorded their running times. The
results are shown in Figure 5, and illustrate that CNV-IFTV has
the longest running time. CNV-IFTV makes insufficient use of
computer computing performance, and thus, the running time
is high, and the time significantly increases with the increase in
files. Other algorithms, such as CNVnator, CNV-LOF, iCopyDav,
and HBOS-CNV, exhibit low complexity and relatively high

FIGURE 7 | The detection of all whole genomes of NA19238 is shown, with the circles representing (1) RD, and CNV published in DGV (2) the CNVs detected with
HBOS-CNV, (3) the CNVs detected with CNVnator, (4) the CNVs detected with iCopyDav, and (5) the CNVs detected with CNV-IFTV, (6) the CNVs detected with
LOF-CNV, from the outside to the inside.
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efficiency. Combined with precision, sensitivity, and running
time, HBOS-CNV is the optimal compromise.

Real Data Applications
The Analysis of Samples From the 1000 Genomes
Project
To examine the effectiveness of HBOS-CNV, it was applied to
analyze real sequencing samples that were obtained from the 1000
Genomes Project1 (Handsaker et al., 2015; Eberle et al., 2017). We
selected three representative detection results by analyzing the
samples of father, mother, and child from the same family,to show
the comparison results between the proposed method and the
other four methods (CNVnator, iCopyDav, CNV-LOF, and CNV-
IFTV). According to the CNVs of these chromosomes reported

1http://www.internationalgenome.org/

in the DGV database (MacDonald et al., 2014)2, we calculated the
sensitivities, precisions, and F1-measures for the five compared
methods so that we could accurately evaluate these five methods.

The precision, sensitivity, and F1 value of each sample are
shown in Figure 6. Among the three samples, considering
precision and sensitivity, HBOS-CNV has the highest F1-score,
and CNV-IFTV ranks second. Considering only sensitivity,
CNVnator maintains the highest value, and only considering
accuracy, iCopydav has the highest value. Therefore, HBOS-CNV
exists as the optimal trade-off in real data.

To show the CNV detection results more clearly, we use
the circos map and a table to show the detection results of all
samples. In Figures 7–9, scatter graphs show the RD information
of the whole genome, blue lines represent the chromosome

2http://dgv.tcag.ca/

FIGURE 8 | The detection of all whole genomes of NA19239 is shown, with the circles representing (1) RD, and CNV published in DGV (2) the CNVs detected with
HBOS-CNV, (3) the CNVs detected with CNVnator, (4) the CNVs detected with iCopyDav, and (5) the CNVs detected with CNV-IFTV, (6) the CNVs detected with
LOF-CNV, from the outside to the inside.
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FIGURE 9 | The detection of all whole genomes of NA19240 is shown, with the circles representing (1) RD, and CNV published in DGV (2) the CNVs detected with
HBOS-CNV, (3) the CNVs detected with CNVnator, (4) the CNVs detected with iCopyDav, and (5) the CNVs detected with CNV-IFTV, (6) the CNVs detected with
LOF-CNV, from the outside to the inside.

variation positions published in DGV. The CNV positions and
absolute copy number of HBOS-CNV, CNVnator, iCopydav,
CNV-IFTV, and LOF-CNV are displayed in the inner five cycles.
Greenline represents the normal or lost region of CN, i.e.,
absolute copy numbers are less than or equal to 2. Redline
represents the gain region of CN and black represents the position
centromere telomere.

The results show that CNVnator has false positive detection
in chromosome 1, chromosome 2, and chromosome X. Although
the detection results of iCopydav have high precision, the total
number of the variation is small and the sensitivity is low. HBOS-
CNV and CNV-IFTV can detect most CNV in the three samples,
and the results are relatively stable. But considering the running
time, HBOS-CNV is much faster than CNV-IFTV.

The data in the Table 1 shows that the length of CNV detected
by the five methods is different. The number of CNVs detected

by CNVnator is greater than that of the other four methods and
also greater than that reported by DGV. The detection precision
and sensitivity of the other four methods are basically the same as
those of the simulation data.

In summary, the HBOS-CNV method exhibited the optimal
tradeoff among sensitivity, precision, and efficiency in this large
real data application. Therefore, we concluded that HBOS-CNV
is a reliable tool for the detection of CNVs.

TABLE 1 | Comparison of CNV detection quantity between HBOS-CNV and other
methods on real samples.

Sample HBOS-CNV CNVnator iCopydav LOF-CNV CNV-IFTV DGV

NA19238 3882 6302 2153 3281 4552 3836

NA19239 4954 7442 2964 7435 5700 4842

NA19240 4434 7996 2930 4332 5407 4867
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DISCUSSION AND CONCLUSION

The detection of CNVs can assist researchers in studying
the origin and evolution of tumor genes from biological and
medical perspectives, and can also be further used to isolate
targeted drugs for the treatment of tumors (Li et al., 2009;
Bellos and Coin, 2014; Boeva et al., 2014). To decrease the
defects in the existing software, the current study presents
a novel detection method HBOS-CNV, which can be used
as a single tumor sample without a normal control-matched
sample. Compared with the existing algorithms, HBOS-CNV
possesses several new features, described as follows. (1) HBOS-
CNV uses a sliding window to smooth the RD profile, which
successfully reduces the interaction among the continuous bins,
and increases the difference in RD values between normal regions
and variation regions. (2) HBOS-CNV uses a dynamic width
histogram to calculate the density of bins, which can reduce
the influence of gain and loss amplitudes. For small-amplitude
CNV regions, HBOS-CNV can calculate the density of local
bins, and avoid the adverse effect of the maximum amplitude.
(3) HBOS is a non-linearly transformed value obtained from
the observed RD value of each genome bin, having the
characteristics of fewer input variables and high stability for
accurate calculation results.

Finally, the performance of HBOS-CNV was evaluated and
verified by experiments. In the simulation experiment, the
sensitivity, accuracy, and F1 measurement of HBOS-CNV were
compared with the four existing methods. The detection results of
CNVs with different purity and coverage depth were compared.
The results showed that HBOS-CNV achieved the optimal trade-
off among sensitivity, accuracy, and computational efficiency. In
practical data application, HBOS-CNV was verified by results
previously reported in the DGV database. The comparative
results demonstrated that our approach has several advantages
in terms of sensitivity, precision, F1-measure, and computational
efficiency. Therefore, HBOS-CNV is expected to be a reliable tool
to detect CNV from NGS data, especially for complex cases where
the amplitude of CNV varies over a wide range.

The potential disadvantages of the HBOS-CNV method are
discussed from the following two aspects. Firstly, HBOS-CNV
uses a method that calculates the upper limit in a boxplot to
determine the threshold of outliers and subsequently removes all

bins smaller than the threshold. In some extreme gene sequencing
data, this method may lead to a high false-positive rate. A more
effective approach would be to preset the distribution model for
the HBOS profile and calculate the significance of the data based
on the model, so as to determine the outliers. Secondly, the GC
bias correction method and the estimation method of tumor
purity will limit the applicability of this algorithm. At present, the
algorithm can only perform CNV detection on the sequencing
data of human genes and does not apply to genes other than
humans (Eberle et al., 2017; Turner et al., 2017). We plan to
improve the algorithm in the next research.

In future work, we plan to solve the above problems to further
improve the performance of HBOS-CNV, extend the method to
the CNV detection of other animal and plant genes. This will
be very helpful for studying the accurate quantification of CNV
and exploring the evolution process of species (Zhu et al., 2017a;
You et al., 2018). At the same time, we plan to use the CNV
detection results in the correction of Cancer Cell Fraction (CCF),
which will greatly promote a comprehensive understanding of
tumor occurrence and development (Xi et al., 2018; Mao et al.,
2021; Tarabichi et al., 2021). We will also try to apply this
algorithm to the research of ancient DNA mutation detection,
which may be helpful to explore the evolution process of species
(Zhu et al., 2017b).
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