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Abstract: In this work, we use computer simulations (Molecular Dynamics) to analyse the behaviour
of a specific auxetic hierarchical mechanical metamaterial composed of square-like elements. We
show that, depending on the design of hinges connecting structural elements, the system can
exhibit a controllable behaviour where different hierarchical levels can deform to the desired extent.
We also show that the use of different hinges within the same structure can enhance the control
over its deformation and mechanical properties, whose results can be applied to other mechanical
metamaterials. In addition, we analyse the effect of the size of the system as well as the variation
in the stiffness of its hinges on the range of the exhibited auxetic behaviour (negative Poisson’s
ratio). Finally, it is discussed that the concept presented in this work can be used amongst others
in the design of highly efficient protective devices capable of adjusting their response to a specific
application.

Keywords: hierarchical; auxetic; mechanical metamaterials; Poisson’s ratio

1. Introduction

Mechanical metamaterials [1–3] are a class of rationally-designed systems that can
exhibit counter-intuitive mechanical properties based on their design rather than material’s
composition. Over the years, these systems have been thoroughly analysed from the
point of view of their potential to exhibit unusual mechanical properties such as auxetic
behaviour [4–12], negative compressibility [13–20] and negative stiffness [21–26]. This
large and continuously growing interest of the research community in the mechanical
metamaterials stems from the fact that their unusual mechanical properties can be utilised
in numerous applications ranging from biomedical [27] to soundproofing [28,29] and
protective devices [30–33].

Over the years, a large number of different classes of mechanical metamaterials have
been proposed with all of them being capable of exhibiting unusual mechanical behaviour.
It seems that some of the most studied examples of such structures include rotating rigid
unit systems [34], re-entrant structures [35,36] and chiral systems [37–41]. However, it
is important to emphasise the fact that all of these classes of mechanical structures as
well as many other types of mechanical metamaterials known in the literature have one
limitation. Namely, once they are manufactured, it is difficult to change their mechanical
properties or a deformation pattern. In fact, in a majority of mechanical metamaterials,
to achieve such effect, it would be necessary to destroy some elements of the structure
whose process is clearly not reversible. In view of this, a majority of popular types of
mechanical metamaterials cannot normally act as controllable devices capable of adjusting
their response to a specific application. Fortunately, there is another class of these systems
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called hierarchical mechanical metamaterials [42–52], where, as reported in recent years,
such effect is possible.

Hierarchical mechanical metamaterials are a class of systems where substructures
composing the system have their independent geometry. This means that the structure
can undergo a multi-level deformation process which in general can result in a variety
of different types of mechanical behaviour. The possibility of controlling the behaviour
of hierarchical metamaterials was first discussed by Gatt et al. [44] and Cho et al. [45] in
which cases the multi-level rotating squares system was taken into account. This concept
was later explained through a simple theoretical model by Dudek et al. [50] and further
developed by other research groups with the emphasis on experimental studies [53–55].
However, studies related to hierarchical mechanical metamaterials are still in their infancy
and, in order to achieve a full control over their behaviour, it is necessary to acquire a
much deeper understanding of mechanisms governing their deformation process. Thus,
an analysis of the dynamic behaviour of hierarchical mechanical metamaterials could lead
to the design of structures that could fine-tune their mechanical response depending on
a particular application. This in turn could be beneficial from the point of view of the
industry and potential applications as it would help to increase the efficiency of numerous
currently known materials.

In view of the above, in this work, we are going to study the dynamic behaviour
of a particular hierarchical metamaterial in order to assess the possibility of achieving
a control over its behaviour. To achieve it, we are going to analyze the possibility of
controlling the behaviour of specific parts of the structure upon using different types
of hinges depending on their specific location within the system. Finally, we are going
to investigate the mechanism responsible for specific hierarchical levels of the system
deforming at a different rate than the others which could prove to be very significant in
the design of other hierarchical mechanical metamaterials acting for example as efficient
protective devices.

2. Methods
2.1. Geometry

In this work, a two-dimensional hierarchical mechanical metamaterial composed of
square-like structural units is investigated from the point of view of its potential to exhibit a
controllable mechanical behaviour (see Figure 1). The considered system has two levels of
hierarchy where level 0 of the structure corresponds to individual squares having a linear
dimension of a while level 1 represents larger building blocks consisting of Nx × Ny level 0
elements. Furthermore, all of the level 0 structural units have a discrete mass distribution
where only points at the corners of respective structural units have a non-zero mass, namely
mass m (see Figure 1a). Different pairs of these points are connected by means of stiff
bond-like elements having their length governed by the harmonic potential associated with
the stiffness constant k (see Section 2.3) so that square-like structural units can retain their
shape throughout the entire deformation process. In addition, in order to reliably mimic the
behaviour of elastic systems, it is assumed that the hinging motion exhibited by different
pairs of level 0 elements corresponds to some non-zero resistance of these elements to the
rotational motion which changes with the extent of the mechanical deformation. To achieve
it, the hinging motion is assumed to be governed by the harmonic potential associated
with the stiffness constant Kh,i where the value of this parameter can change depending on
the location of a particular hinge within the system. More specifically, in the considered
structure, it is possible to distinguish two types of hinges, i.e., hinges where the stiffness
constant assumes the value of Kh0 or Kh1 (see Figure 1a). In this work, it is assumed that
hinges connecting level 0 elements being a part of the same level 1 block always correspond
to the same stiffness constant Kh0. On the other hand, the four hinges connecting larger
level 1 building blocks are associated with the Kh1 parameter (see Section 2.3). It is also
important to note that the behaviour of all of the hinges is represented by appropriate
three-body bonded interactions as graphically portrayed in Figure 1b. At this point, it
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is also worth mentioning that, even though in this work we only consider the harmonic
potential to describe the hinging motion of structural elements, in general, one could take
an arbitrary type of the potential into account. In addition, results could vary from those
reported in this study if a different potential is used.

Figure 1. The panels show (a) an example of the analyzed system corresponding to Nx × Ny = 4× 4
where red arrows indicate constant external forces applied to the leftmost and rightmost points
within the system and (b) a graphical representation of interactions responsible for rigidity of
square elements (two-body bonded interactions) and hinging between them (three-body bonded
interactions).

Based on Figure 1a, it is possible to note that the considered system may assume
a plethora of different configurations. However, due to a large rigidity of square units,
one can note that there are only two geometric parameters that determine a particular
configuration of the structure, i.e., angles θ0 and θ1. Thus, the deformation process induced
by external forces may result only in the change in these two parameters which in turn
leads to the deformation of the level 0 and level 1 of the system. More specifically, the
opening of the level 0 of the structure results in the increase in the value of θ0 and the
increase in the linear dimensions of level 1 blocks. On the other hand, the opening of the
level 1 of the structure results in the increase in the value of θ1 and the rotation of large
building blocks shown graphically in Figure 1a by means of the red colour. Nevertheless, it
is important to note that, due to its geometry, the system cannot assume the configuration
corresponding to an arbitrary combination of angles θ0 and θ1. In fact, there is a very
limited range of these angles that can be assumed by the system without the structural
units overlapping. Such conditions [50] can be expressed in a following manner: θ1 > θ0,
π − θ1 − θ0 > 0 and θ0, θ1 ∈ [0, π]. Thus, in order to have a possibility of observing a
significant evolution of both levels of the structure, in this work, the initial configuration of
the structure subjected to the mechanical deformation is assumed to always correspond to
the angles θ0 = 10◦ and θ1 = 40◦.

2.2. Deformation Process

In order to assess the mechanical properties of the considered system, it is subjected
to the mechanical deformation induced by constant external forces. These forces have a
magnitude F and are applied to the two leftmost and two rightmost vertices of the structure
as shown in Figure 1a. It is important to note that, as the system deforms, the positions
of the outmost vertices of the structure change. In this work, we assume that the points
where external forces are applied shift together with the outmost vertices of the structure so
that the system is not constrained from the motion in any direction during its deformation
process. However, it is interesting to note that, if the external forces were not allowed to
shift together with the system, it could induce the out-of-plane buckling of the structure as
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discussed in other studies [53]. Finally, it is important to emphasize the fact that, in this
work, the evolution of the structure which is initially at rest is analyzed only up to the
point where neighbouring structural units collide or when the external forces are no longer
large enough to overcome the elastic restoring forces corresponding to the system. At this
point, it is worth noting that, in this work, we assume that the external forces applied to
the system can only result in the deformation of the structure (i.e., primarily the rotation
of square units) and cannot damage it or its components. In practice, it is envisaged that,
should the applied loads be excessive in magnitude, this assumption may not hold.

2.3. Simulations and Parameters

In this work, in order to analyze the evolution of the considered system, we conduct
Molecular Dynamics (MD) simulations utilising the fourth order Runge–Kutta method [56]
for a constant time step ∆t = 10−6 s. In this case, the points constituting the system in
addition to the external forces also experience forces originating from the bonded interac-
tions present within the system. More specifically, two-bonded interactions are assumed
to be governed by means of the harmonic potential V2 = 1

2 k(l − leq)2, where k is the
stiffness constant and, for all of the simulations, it assumes the value of 2× 106 Nm−1.
In addition, l is the current length of a given bond-like element and leq is its equilib-
rium value. In our case, we assume that leq = a = 2 cm. Furthermore, the three-body
bonded interactions responsible for hinging between structural units are also assumed to be
governed by means of the harmonic potential defined as V3 = 1

2 Kh(θi − θi,eq)
2, where Kh

is the stiffness coefficient and, depending on the particular set of results analysed in
this work, it assumes a value from the interval between KhS = 1.23× 10−4 J deg−2 and
KhL = 0.314 J deg−2. The remaining parameters used in this work were set to be the
following: m = 40 g, F = 10 N. At this point, it is worth noting that the parameters were
selected in a way so that the deformation time would match the time scale reported in the
literature for experimental studies incorporating similar structures [57].

In this work, in order to assess mechanical properties of the considered system, we
measure its Poisson’s ratio. To do this, we use the engineering definition of this quantity
with its definition for loading in the x-direction being shown below:

νxy = −
εy

εx
= −

(
ly(t)− ly(t = 0)

ly(t = 0)

)
/
(

lx(t)− lx(t = 0)
lx(t = 0)

)
(1)

In this case, lx(t) and ly(t) are the current dimensions of the structure in the x- and y-
dimensions, respectively. On the other hand, lx(t = 0) and ly(t = 0) are initial dimensions
of the system. At this point, it is also worth noting that all of the results were generated
through the code written by the authors in the Python programming language.

At this point, it is worth mentioning that, in general, MD-type simulations have some
limitations. First and foremost, they correspond to a non-zero numerical error which
may affect generated results. Hence, in order to solve differential equations of motion
describing the evolution of a given system, it is essential to select the appropriate numerical
algorithm and the size of the corresponding time step in order to ensure that the size of the
numerical error is insignificant. In view of this, in our work, in addition to a small time
step referenced above, we incorporated a very stable fourth-order Runge–Kutta algorithm
that allows us to ensure that the obtained results are reliable and that the corresponding
numerical errors are negligible. Another limitation of this class of simulations corresponds
to the use of a discrete mass distribution. However, through the use of appropriately
defined bonds connecting point-like elements having a non-zero mass, it is still possible
to represent the behaviour of different structural elements including rigid bodies. On the
other hand, it is also important to emphasise the fact that MD simulations offer numerous
advantages in comparison to other approaches. First of all, they allow for analysing the
dynamic evolution of the structure even in the case of big strains. They also take into
account the inertia of the system during such dynamics processes, whose effect is not taken
into account in the case of many different simulations methods. Finally, the computation
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time corresponding to MD simulations is often significantly lower than is the case for other
methods.

3. Results and Discussion

The main objective of this work is to show the possibility of achieving a control over
the behaviour and mechanical properties of the considered hierarchical metamaterial. To
do this, we analyse the effect of the variation in the magnitude of the stiffness coefficient
corresponding to hinges connecting different structural units on the overall behaviour of
the system and the evolution of respective hierarchical levels of the structure. To this aim,
we first analyse the behaviour of the system where all of the hinges within the structure
correspond to the same stiffness constant, i.e., Kh0 = Kh1 (see Figure 2a,b).

Figure 2. The panels show the behaviour of the system when hinges associated with level 0 and
level 1 correspond to different values of a stiffness constant, namely: (a) Kh0 = Kh1 = KhS (all hinges
are soft, KhS = 1.23× 10−4 J deg−2), (b) Kh0 = Kh1 = KhL (all hinges are stiff, KhL = 0.314 J deg−2),
(c) Kh0 = KhL and Kh1 = KhS (level 0 hinges are stiff and level 1 hinges are soft), and (d) Kh0 = KhS
and Kh1 = KhL (level 0 hinges are soft and level 1 hinges are stiff). All of the results presented in
this figure correspond to the system having level 1 structural blocks composed of Nx × Ny = 4× 4
square units. In addition, ∆θi = θi(t)− θi(t = 0), where i = 0 or i = 1.

Based on Figure 2a, one can note that, in the case of the system where all of the hinges
are relatively soft and correspond to the same stiffness constant Kh0 = Kh1 = KhS (see
Section 2.3), level 0 of the structure opens to a significantly larger extent than level 1. This
is manifested by a much larger increase in the value of θ0 than θ1. Such behaviour of the
system originates from the fact that, in the case of a negligible or very small magnitude of
the stiffness coefficient, the governing factor determining the rate of expansion of respective
structural levels becomes the torque corresponding to external forces applied to specific
vertices within the structure. As discussed in [50], due to the particular geometry of the
two-level hierarchical square system, the torque acting on level 0 elements is larger than in
the case of the level 1 blocks, which results in the angle θ0 opening at a faster rate than θ1.
This, in turn, means that, during the deformation process, the rotation of level 1 building
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blocks is relatively small in comparison to the extension of linear dimensions of level 1
building blocks composed of level 0 squares (see Figure 3a).

According to Figure 2b, it is possible to see that the behaviour of the system presented
in Figure 2a becomes completely reversed in the case when all of the hinges are stiff and
correspond to the same stiffness coefficient Kh0 = Kh1 = KhL (see Section 2.3). More
specifically, in this situation, angle θ1 increases to a much larger extent than θ0 at the end
of the deformation process. This stems from the fact that, in order to open level 0 of the
system, it is necessary to rotate a much larger number of hinges as opposed to level 1 of the
structure, which is associated solely with four hinges. Thus, the resistance of hinges to the
rotational motion is much larger for level 0 of the structure than is the case for level 1 of the
system, which results in the situation where we primarily observe the rotation of level 1
building blocks while their linear dimensions remain almost unchanged. At this point, it is
also important to emphasize the fact that the use of stiff hinges results in a smaller extent of
the deformation of the entire system than is the case for the structure constituted solely by
light hinges. This stems from the fact that, in both of these cases, the same external forces
were used to deform the system. Thus, a much larger resultant stiffness of the system
corresponding to the results shown in Figure 2b makes it more difficult for external forces
to deform the structure.

In addition to structures having all of their elements connected by hinges correspond-
ing to the same stiffness coefficient, it is also very interesting to consider a hybrid system
where level 0 and level 1 are composed of hinges having different stiffness. As shown in
Figure 2c, one such example can be the structure with soft hinges (Kh1 = KhS) connecting
level 1 building blocks and stiff hinges (Kh0 = KhL) connecting level 0 squares. As a
result, during the deformation process, the rotation of level 0 squares is negligible while
level 1 building blocks rotate to a very significant extent corresponding to the change
in θ1 being approximately equal to 52◦ (see Figure 3b). On the other hand, as shown in
Figure 2d, in the case of the hybrid system where level 0 elements are connected by soft
hinges (Kh0 = KhS) and level 1 building blocks are connected by means of stiff hinges
(Kh1 = KhL), very different behaviour can be observed. Namely, both level 0 and level 1 of
the structure deform to a small extent. This stems from the particular design of the hinges
where level 0 squares cannot rotate without all of the squares forming level 1 building
blocks being able to rotate. This, in turn, is very important as based on Figure 1a, one can
note that, in each level 1 building block, there is always one level 0 square that is connected
to one of its neighbours by means of the hinge corresponding to the Kh1 stiffness constant.
Thus, even though the resistance between level 0 squares is relatively small, they cannot
significantly deform due to the presence of the four stiff hinges.

Up to this point, we have only analysed structures where hinges were associated
either with a large or small stiffness coefficient, i.e., KhL and KhS respectively. On the
other hand, it is also very interesting to investigate the behaviour of the system where the
stiffness constant corresponding to hinges would assume an arbitrary value from within
this range. As shown in Figure 4, the variation in the value of the stiffness coefficient
may significantly affect the deformation pattern exhibited by the structure as well as its
mechanical properties. More specifically, based on Figure 4a, it is possible to note that
structures where Kh (Kh = Kh0 = Kh1) assumes relatively small values have both of their
hierarchical levels opening to a larger extent than for structures with large values of Kh.
This is reasonable as the increase in the value of Kh results in the larger stiffness of the
entire structure. Furthermore, based on Figure 4b, one can note that the variation in the
value of Kh can be also used in order to control the value of the Poisson’s ratio exhibited
by the structure. More specifically, the larger the value of Kh, the more auxetic the system.
This stems from the fact that, for large values of this coefficient, level 1 blocks retain
approximately a square-like shape throughout the deformation process. On the other hand,
structures with softer hinges have their level 1 blocks deforming to a larger extent which
results in them resembling a rectangle. This in turn leads to the increase in the value of the
Poisson’s ratio in comparison to structures composed of square-like units.
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Figure 3. The panels show the evolution of the hierarchical system where: (a) Kh0 = Kh1 = KhS (all
hinges are soft) and (b) Kh0 = KhL and Kh1 = KhS (level 0 hinges are stiff and level 1 hinges are soft).

Figure 4. The effect that the variation in the stiffness coefficient related to the hinges has on the
behaviour of the structure. (a) the dependence of θ1 vs. θ0 during the deformation process and
(b) the variation in the Poisson’s ratio for loading in the x-direction plotted against strain.

At this point, it is worth noting that all of the results presented in this study were
generated for structures where level 1 building blocks were composed of 4× 4 square
elements, i.e., Nx × Ny = 4 × 4. Thus, it would be also very interesting to analyze
the behaviour of the structure composed of a different number of units. As shown in
Figure 5a, the external forces applied to the system deform it very differently depending on
the size of the system. More specifically, the smaller the building blocks, the easier it is for
level 0 squares to rotate which results in the very large increase in the value of θ0. On the
other hand, for larger systems, the number of hinges corresponding to level 0 significantly
increase, which makes it stiffer and promotes the rotation of level 1 building blocks as
opposed to the rotation of individual level 0 squares. Of course, for very large systems, for
example, corresponding to Nx × Ny = 6× 6, the overall stiffness of the structure increases
even further which reduces the extent of motion of the system. Based on Figure 5b, it is
possible to note that the variation in the size of the structure also affects the Poisson’s ratio
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exhibited by the system. Upon having a closer look at the provided results, it is possible to
note that structures composed of a very large number of square units are the most auxetic.
This stems from the fact that large systems have many hinges associated with level 0, which
makes it difficult for individual squares to rotate. Hence, level 1 building blocks retain
a square-like shape throughout the deformation process. On the other hand, in the case
of smaller systems, it is much easier for level 0 squares to rotate due to a smaller number
of hinges present within the system, which results in level 1 building blocks assuming a
rectangle-like shape. This in turn increases the value of the Poisson’s ratio.

Figure 5. The effect of the variation in the number of squares constituting level 1 building blocks on
the behaviour of the structure. These results were generated for structures where all off the hinges
corresponded to the same stiffness coefficient equal to 0.2 KhL. (a) the dependence of θ1 vs. θ0 during
the deformation process and (b) the variation in the Poisson’s ratio for loading in the x-direction
plotted against strain.

All of this is very important as, in this work, it is shown that the considered hierarchical
metamaterial is capable of exhibiting a controllable behaviour where, depending on the
stiffness constant related to its hinges, it is capable of deforming in a very different manner.
More specifically, by fine-tuning the magnitude of the stiffness constant, it is possible to
obtain the structure where either level 0 or level 1 deforms to a greater extent. This in turn
is very significant as it implies that the same in terms of its initial geometry structure can
behave very differently and exhibit different values of the Poisson’s ratio solely based on
the way how the hinges are designed. Furthermore, it is also discussed that the extent of
such control over the behaviour of the structure can be further enhanced by introducing
hybrid hinges to the system where hinges associated with the level 0 and level 1 correspond
to a different stiffness constant. It is also important to emphasize the fact that the variation
in the magnitude of the stiffness coefficient of hinges is not far-fetched and can be easily
achieved in the case of the experimental prototype. For example, sides of neighbouring
squares sharing a vertex can be connected to each other by means of an elastic material
such as rubber. Then, depending on the amount of the rubber between the structural units,
the stiffness of hinges could be easily controlled. This, in turn, can be achieved amongst
others by means of standard SLA 3D printers. In addition, it is worth mentioning that the
concept presented in this study can be extended to other hierarchical geometries, which
can result in a greater range of mechanical properties of the already known materials.

The above discussion indicates that the results presented in this work make a valuable
contribution to the state of art in the field of hierarchical mechanical metamaterials. This
stems from the fact that, up to now, the dynamic behaviour of the specific hierarchical
geometry analyzed in this work has been only studied by means of the highly idealised
theoretical model [50]. Furthermore, the other studies [44,45,53] known in the literature
were primarily focused on the quasi-static deformation of the system. This in turn does
not allow for exploring all aspects of the possible deformation profiles and mechanical
properties that can be observed throughout the deformation process. Thus, the possibility
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of the analysis of the time evolution of the considered hierarchical mechanical metamaterial
by means of computer simulations certainly offers an interesting insight into what types of
deformations processes it can undergo. In addition, in the case of the approach used in this
work, we also consider a discrete mass distribution whose aspect was not taken into account
in the other studies [44,45,53] related to the considered geometry. It is also important to
emphasize the fact that, in this work, we investigated the possibility of using different types
of hinges for specific hierarchical levels. In fact, this concept was already proposed in the
literature, but, in the first paper where it was discussed [44], the extent of the mechanical
deformation was very small, and it was not possible to analyze emergent deformation
patterns. On the other hand, in the second study where this concept was analyzed [53],
due to the constraints included in the model, the entire structure was deformed by external
forces in a very different way than is the case in this work.

Finally, it is worth mentioning that the control over mechanical properties of the system
considered in this work could prove to be useful in the case of numerous applications
including protective devices where, depending on the cause of the mechanical deformation,
one could use the material with a specific design of hinges in order to increase its efficiency.
This stems from the fact that the appropriate design of hinges could enable the structure to
exhibit a very specific variation in the profile of the Poisson’s ratio upon being subjected
to mechanical deformation. Thus, depending on the type of the protective devices and
the expected cause of the mechanical deformation, one could select a protective material
where the design of hinges makes it possible for the structure to exhibit the most optimal
deformation pattern. Hierarchical mechanical metamaterials similar to those studied in
this work could also prove to be useful in the design of efficient biomedical devices such
as stents, as suggested elsewhere [44]. In this case, the stent assuming and initially folded
configuration upon being inserted into the blood vessel could expand differently depending
on a specific patient.

4. Conclusions

In this work, it is shown that the behaviour and mechanical properties of the consid-
ered mechanical metamaterial can be conveniently controlled upon adjusting the magni-
tude of the stiffness coefficient corresponding to its hinges. More specifically, it is shown
that either level 0 or level 1 of the structure can deform to a larger extent depending on
the value of the stiffness constant. This in turn makes it possible for the same in terms
of its initial geometry structure to deform in a variety of different ways. In this study, it
is also shown that the control over the behaviour of the considered hierarchical system
can be further enhanced by using different types of hinges to connect structural elements
associated with level 0 and level 1 of the structure. It is also discussed that the deformation
pattern and the magnitude of the Poisson’s ratio exhibited by the system can be controlled
either via the stiffness coefficient associated with the hinges or a number of elements con-
stituting level 1 building blocks. Thus, all of the presented results show a great potential of
hierarchical mechanical metamaterials to be used in the design of versatile devices capable
of adjusting their mechanical response depending on the particular application.
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