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Abstract

Over the last three decades corals have declined precipitously in the Florida Keys. Their

population decline has prompted restoration effort. Yet, little effort has been invested in

understanding the contemporary niche spaces of coral species, which could assist in priori-

tizing conservation habitats. We sought to predict the probability of occurrence of 23 coral

species, including the critically endangered Acropora cervicornis, using observations at 985

sites from 2011–2015. We ran boosted regression trees to evaluate the relationship

between the presence of these corals and eight potential environmental predictors: (i)

bathymetry (m), (ii) mean of daily sea surface temperature (SST) (˚C), (iii) variance of SST

(˚C), (iv) range of SST (˚C), (v) chlorophyll-a concentration (mg m3), (vi) turbidity (m-1), (vii)

wave energy (kJ m-2), and (viii) distance from coast (km). The Marquesas and the lower and

upper Florida Keys were predicted to support the most suitable habitats for the 23 coral spe-

cies examined. A. cervicornis had one of the smallest areas of suitable habitat, which was

limited to the lower and upper Florida Keys, the Dry Tortugas, and nearshore Broward-

Miami reefs. The best environmental predictors of site occupancy of A. cervicornis were

SST range (4–5˚C) and turbidity (K490 between 0.15–0.25 m-1). Historically A. cervicornis

was reported in clear oligotrophic waters, although the present results find the coral species

surviving in nearshore turbid conditions. Nearshore, turbid reefs may shade corals during

high-temperature events, and therefore nearshore reefs in south Florida may become

important refuges for corals as the ocean temperatures continue to increase.

1. Introduction

Since the late 1970s, there has been a steady decline in live coral cover throughout the Carib-

bean [1, 2]. This decline has included unprecedented mortality of two of the Caribbean’s most

historically important reef-building coral species, A. cervicornis and Acropora palmata [1, 3].

Most of the acroporid mortality in the Caribbean was caused by disease and thermal-stress

events [4–6]. In 2006 this decline prompted the listing of both acroporids as ‘threatened’ under

the U.S. Endangered Species Act [7], and in 2008 they were listed as ‘critically endangered’ on

the International Union for Conservation of Nature Red List. Decades after the initial
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mortality events, coral populations along the Florida reef tract continue to decline [8–10]. It is

therefore critical to quantify the contemporary niche space of coral species as marine diseases

become more extensive and destructive [11], and as thermal-stress events become more fre-

quent and intensive [12].

Yet niche space has long been an enigma. Niche theory evolved from Elton’s [13] definition

of a species’ place in the biological environment and its relationship to food and predators.

Later Gause [14] emphasized the role of competitive interactions among species, and Hutchin-

son [15] delineated a species’ environmentally-driven fundamental niche from its competitive

realized niche. MacArthur and May [16] made the implicit assumption that two species could

not coexist indefinitely on the same limiting resource, although Roughgarden [17] subse-

quently advanced niche theory to include low inter-species interactions in high diversity locali-

ties. Similarly, Scheffe and van Nes [18] argued that multiple species can coexist in a given

niche, which agrees with Hubbell’s [19] assumption of neutrality. However, for coral reefs,

such multi-species neutrality may be only relevant in equatorial, benign habitats [20], with

higher latitude coral reefs being more susceptible to major physio-chemical drivers such as

temperature and light. Superimposed on such niche concepts are background levels of distur-

bances from hurricanes, thermal-stress events [21], and disease outbreaks [11].

Most contemporary niche models predict the fundamental niche of a species [22, 15],

although some niche models include competitive interactions [23] and mechanistic processes

[24]. Past niche models along the Florida reef tract suggested that A. cervicornis colonies were

most common on shallow reefs where temperature fluctuations were moderate [25, 26].

Recently, D’Antonio et al. [27] showed that A. cervicornis colonies were found close to shallow

reef ridges, where topography was high. Yet wave energy, irradiance, and water quality also

influence the physiology and survival of corals [28–33].

This study predicts the contemporary niche space of 23 coral species, including A. cervicor-
nis, along the Florida reef tract. Niche space was quantified regionally using niche models [22],

which associate the geographic distribution of species with broad-scale environmental condi-

tions. Niche models combine the geographical space of a species with their theoretical-envi-

ronmental space. The theoretical-environmental space is used to predict the niche of the

species, and then that space is projected back onto geographic space, for which environmental

conditions are known [34]. The objective of this study was to highlight geographical localities

that are most suitable for the survival of 23 coral species along the Florida reef tract. Along

with identifying habitats and regions that should be prioritized for conservation purposes, this

work could also help guide restoration efforts, highlighting where the outplanting of nursery-

reared coral colonies may have the best chance of survival.

2. Methods

Study area and biological data

The Florida reef tract runs parallel to the Florida mainland and along the Florida Keys in the

southwest (Fig 1). Data on the presence and absence of A. cervicornis and 31 other species [i.e.,

A. palmata, Agaricia fragilis, Agaricia lamarcki, Colpophyllia natans, Dichocoenia stokesii,
Diploria labyrinthiformis, Eusmilia fastigiata, Favia fragum, Isophyllia sinuosa, Madracis decac-
tis, Meandrina meandrites, Millepora alcicornis, Millepora complanata, Montastraea cavernosa,

Mussa angulosa, Mycetophyllia sp., Oculina diffusa, Orbicella annularis, Orbicella faveolata,

Orbicella franksi, Porites astreoides, Porites divaricata, Porites furcata, Porites porites, Pseudodi-
ploria clivosa, Pseudodiploria strigosa, Siderastrea radians, Siderastrea siderea, Solenastrea
bournoni, Stephanocoenia intersepta, Undaria (Agaricia) agaricites] were examined along the

Florida reef tract using the Florida Reef Resiliency Project (FRRP) monitoring dataset from
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2011–2015. Note that the models only predicted niche spaces for 23 of the 32 coral species

because nine of the species were reported in less than 10% of the sites, making predictions

uncertain. The FRRP data were collected at 1028 sites using 10 m x 1 m (10 m2) belt transect

surveys (Fig 1). The niche models were trained on a random subset (80%) of the sites and were

tested against the remaining 20% of the sites (Table A in S1 File).

Environmental data. Eight environmental predictors, which have been previously shown

to influence coral physiology and survival [35–37], were initially examined for incorporation

in the niche model: (i) bathymetry (m), (ii) mean of daily sea surface temperature (SST) (˚C),

Fig 1. Distribution of 985 study sites used in the niche model along the Florida reef tract from 2011–2015, where FRRP is the

Florida Reef Resiliency Project (43 sites were removed prior to use in model). The coral reef layer is a 1km buffer taken from the

Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute’s Unified Florida Reef Tract spatial layer.

Basemap from Esri, DigitalGlobe, GeoEye, i-cubed, United States Department of Agriculture Farm Service Agency, United States

Geological Survey, Aerials Express (AEX), Getmapping, Aerogrid, French National Mapping Agency (IGN), Instituto Geográfico

Português (IGP), swisstopo, and the GIS User Community.

https://doi.org/10.1371/journal.pone.0231104.g001
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(iii) variance of SST(˚C), (iv) range of SST(˚C), (v) chlorophyll-a concentration (mg m3), (vi)

turbidity (m-1), (vii) wave energy (kJ m-2), and (viii) distance from coast (km) (Table 1). A

1-km resolution depth (m) raster file was developed by Ames [38], which was a combination

of satellite data and in-situ field measurements. Daily measurements of SST (˚C) and chloro-

phyll-a concentration (mg m-3), collated as raster data, with a 0.25 km resolution, were

obtained from the University of Southern Florida’s Optical Oceanography laboratory from

2011–2015 (https://optics.marine.usf.edu/). The average SST (˚C) was calculated as the mean

of daily SST from 2011–2015. The variance of SST (˚C), a measurement of thermal variability,

was calculated as the variance of daily SST from 2011–2015. The range of SST was calculated

by subtracting the minimum temperature from the maximum temperature at every pixel. The

average daily chlorophyll-a concentration was calculated as the mean chlorophyll-a concentra-

tion from 2011–2015. Turbidity was quantified by the diffuse light attenuation coefficient K at

490 nm (m-1) from NOAA CoastWatch, averaged daily from 2013–2015. Although pre-2013

K490 imagery exists, it does not include the region of interest and so pre-2013 data were not

included in the analysis. Wave energy was calculated using inputs of fetch (i.e., the distance of

open ocean over which winds travel unobstructed) calculated using the ‘fetchR’ package in R

[39], and daily wind speed and wind direction raster data were obtained from Remote Sensing

Solutions [40] from 2011–2015. Wave energy was calculated using equations in Chollett and

Mumby [41] adapted from [42], where each cell’s fetch was evaluated in the dominant wind

direction. If fetch was less than 38 km, then the seas were considered ‘fetch-limited’, whereas if

the fetch was greater than 38 km then the seas were considered ‘fully developed.’ A complete

explanation of the wave energy calculations is available in the online S1 File. Distance from

coast (km) was calculated at the 1-km resolution using the distance function in the ‘raster’
package [43] and the coastline polygon from the high-resolution map in the package ‘RWorld-
Map’ [44] in R [45]. For spatial consistency, the final input raster files were resampled to a

1-km resolution and masked to a 1km buffer of the Fish and Wildlife Conservation Unified

Florida Reef Tract Map (http://geodata.myfwc.com/datasets/unified-florida-reef-tract-map).

Coral niche model. A niche model was developed initially for 32 coral species along the

Florida reef tract at 1028 sites from 2011–2015. However, 9 coral species were found in less

than 10% of the sites making those models unstable, therefore the results are not included here

in the 23 coral species niche model (Table 2). In addition, because A. cervicornis is listed as

‘critically endangered’ and is of special interest in this study, an exception to the 10% rule was

Table 1. Environmental data used to produce predictor variables in the niche model. The source resolutions are presented in parentheses. The fifth column indicates

whether the variable was used in the niche model (I = included, E = excluded).

Variable Unit Source Period Niche Model

Bathymetry m NOAA (~100 m) 2016 I

Mean daily SST ˚C USF Optical Oceanography Laboratory (250 m) 2011–2015 I

Variance of daily SST ˚C USF Optical Oceanography Laboratory (250 m) 2011–2015 E

Range SST ˚C USF Optical Oceanography Laboratory (250 m) 2011–2015 I

Chlorophyll-a concentration mg m3 USF Optical Oceanography Laboratory (250 m) 2011–2015 I

Turbidity (K490) m-1 K490 NOAA CoastWatch (250 m) 2013–2015 I

Modeled mean daily wave energy kJ m-2 fetchR raster (1 km) Remote Sensing Systems CCMP Wind Vector Analysis Product (0.25˚) 2011–2015 I

Distance from Coast km Rworldmap 2018 I

SST indicates sea surface temperature. Where FWC is the Florida Fish and Wildlife Commission, USF is the University of South Florida, NOAA is the National Oceanic

and Atmospheric Administration, and CCMP is Cross-Calibrated Multi-Platform. Note that fetchR [39] and RWorldmap [44] are packages in R [45].

https://doi.org/10.1371/journal.pone.0231104.t001
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made for this species. A. palmata is also of special interest but was only recorded in < 0.5% of

the sites (Table 2), which made modeling problematic.

We used boosted regression trees (BRTs) [46] to fit the presence and absence of the coral

species data, at 1028 sites, to seven of the eight potential environmental predictors (Table 1,

Table A in S1 File). Variance of SST was excluded as a potential environmental predictor

because there was a strong positive correlation between variance of SST and range of SST

(0.71, Fig A in S1 File). Data for each environmental factor were then extracted for each site.

Any sites that did not have values for all 7 environmental factors were removed. Of the 1028

total sites, 43 were removed: 22 sites had no SST data, 20 sites had no turbidity data, and 7 sites

Table 2. In-situ presence of coral species at sites (%); the modeled area under the receiver operating curve (AUC), which is a diagnostic for model performance; and

the percent suitable habitat area (%) predicted by the niche model along the Florida reef tract using data from 985 sites from 2011–2015.

Species Name Presence at Sites (%) AUC Suitable Habitat Area (%)

Siderastrea radians 47.67 0.66 80.5

Siderastrea siderea 89.4 0.75 75.57

Stephanocoenia intersepta 72.28 0.62 65.79

Solenastrea bournoni 30.06 0.63 61.54

Millepora alcicornis 88.52 0.75 58.34

Porites astreoides 80.93 0.68 58.09

Pseudodiploria strigosa 30.06 0.64 57.97

Orbicella faveolata 30.35 0.62 56.45

Dichocoenia stokesii 59.53 0.69 55.48

Montastraea cavernosa 64.49 0.69 55.45

Porites porites 54.96 0.70 54.86

Undaria (Agaricia) agaricites 48.15 0.71 51.36

Diploria labyrinthiformis 19.84 0.61 49.88

Eusmilia fastigiata 16.44 0.59 48.73

Pseudodiploria clivosa 16.05 0.56 46.77

Colpophyllia natans 26.65 0.70 46.33

Porites furcata 12.55 0.65 46.17

Porites divaricata 15.08 0.57 44.7

Orbicella franksi 12.26 0.74 36.34

Mycetophyllia sp. 10.31 0.83 32.65

Acropora cervicornis�� 7.78 0.69 24.2

Meandrina meandrites 31.52 0.57 24.12

Madracis decactis 11.28 0.65 22.87

Agaricia fragilis� 1.75 - -

Agaricia lamarcki� 8.46 - -

Favia fragum� 4.28 - -

Isophyllia sinuosa� 0.88 - -

Millepora complanate� 2.72 - -

Orbicella annularis� 8.95 - -

Mussa angulosa� 3.5 - -

Oculina diffusa� 2.04 - -

Acropora palmata� 0.39 - -

Where

� indicates coral species that were not present at >10% of the survey sites and were therefore excluded from the model.

�� indicates an exception for the 10% rule, because the critically endangered A. cervicornis was a species of special interest in this study. The dashes indicate that the coral

species were found in less than 10% of the sites, therefore the results are not included.

https://doi.org/10.1371/journal.pone.0231104.t002
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had no wave energy data (6 of which also had no SST data). In total, 985 sites were used in the

analysis (Fig 1).

We used k-fold partitioning to randomly divide the data into five sections. We used data

from four of those sections (i.e., 80% of the data) to train the model and data from one of the

sections (i.e., 20%) to test the model. We used a machine-learning algorithm in the form of

BRTs to evaluate the relationship between the presence of each species and potential environ-

mental predictors. BRTs fit data by recursively adding ‘trees’ (n-branching nodes) at each iter-

ation—bagged trees take a new bootstrap sample from the training data and choose the next

tree that minimizes the ‘loss’ function. We set the bag fraction to 0.8 to introduce some sto-

chasticity into the niche model, which indicates that 80% of the training data were used to fit

each individual tree. Additionally, we weighted all sites to generate an equal weight of pres-

ences and absences [47]. We built the model using the ‘gbm’ R package [46] and code adapted

from [48]. The niche model was set to a tree complexity dependent on number of environmen-

tal factors being tested, a learning rate of 0.0015, and an initial condition of 30 trees.

A 1-km buffer of the coral-reef polygons, found within Florida Fish and Wildlife Conserva-

tion Commission-Fish and Wildlife Research Institute’s Unified Florida Reef Tract spatial

layer, was used to clip the geographical extent of the model results (Fig 1). The amount of suit-

able habitat was then calculated as the combined area of cells (km2), above a 50% threshold

value. The stepwise iteration process of the BRTs cross-validates at each iteration using data

that were not in the immediate bootstrapped training set. The model was run multiple times

using different environmental combinations, based on their performance in previous runs, to

optimize the model (i.e., the best area under the receiver operating curve) and remove unpre-

dictive environmental variables. The model was then tested for accuracy against the remaining

20% of the dataset, to produce diagnostics of model performance which included constructing

confusion matrices (Tables B and C in S4 File). Confusion matrices were computed using the

‘caret’ package [49] in R [45].

We were also interested in the effects of disturbances on the niche space of Acropora cervi-
cornis. Several disturbances occurred either side of our field-sampling window (2011–2015),

including a major cold-snap in 2010 [5], Hurricane Irma in 2017, and a disease outbreak

(stony-coral-tissue-loss disease) in 2016. Therefore, we took a landscape-metrics approach to

simulate the influence of a ‘generic’ disturbance on the predicted patch attributes of Acropora
cervicornis along the Florida reef tract. Because Acropora cervicornis colonies are spread across

the Florida reef tract as viable patches of subpopulations, disturbances are likely to remove via-

ble patches from the metapopulation, increasing the average distance among the patches. To

test this concept and calculate the relative distances between predicted patches of Acropora cer-
vicornis subpopulations on modern reefs along the Florida reef tract, we computed the Euclid-

ean nearest-neighbor distance among the predicted niche patches to examine the average

distances between the patches using a series of probability-of-occurrence thresholds. These

thresholds simulate different intensities of disturbance, with increasing values simulating

increasing intensities of disturbance. All data and R code are available at https://github.com/

rvanwoesik/Florida-Niche, and kmz (Google Earth) files of the predicted probability of occur-

rence of each coral species is available in S4 File.

Ethics statement

The field data were collected by participants in the Florida Reef Resilience Program Distur-

bance Response Monitoring (DRM) https://myfwc.com/research/habitat/coral/drm/. Permis-

sion to visit the study sites was granted by the Florida Fish and Wildlife Conservation
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Commission and the National Oceanic and Atmospheric Administration. The field studies did

not involve the collection of endangered or protected species.

3. Results

Probability of occurrence

The niche model was run on 23 coral species (Table 2). The coral species Siderastrea radians
and S. siderea were predicted to have the largest area of suitable habitat along the Florida reef

tract (Table 2, Table 3). S. intersepta, S. bournoni, M. alcicornis, P. astreoides, and P. strigosa
were also predicted to have large areas of suitable habitat, whereas A. cervicornis was among

the species with the smallest area of suitable habitat along the Florida reef tract (Table 2,

Table 3).

The Marquesas, the lower Florida Keys, and the upper Florida Keys were predicted to sup-

port the most suitable habitats for the coral species examined (Table 3, Table D in S4 File). The

subregions north of Deerfield were predicted to support the lowest suitable habitats for most

of the coral species examined, although the more northern habitats had a high probability of

occurrence for M. cavernosa, M. decactis, M. meandrites, M. alcicornis, and S. intersepta
(Table 3, Table D in S4 File). For illustrative purposes (Fig 2) we focus on 4 contrasting coral

species: A. cervicornis, Mycetophyllia sp., O. franksi, and S. siderea, although maps showing the

predicted probability of occurrences of all 23 coral species are presented in the online support-

ing document (Figs B–X in S1–S4 Files). The geographical subregions with the highest proba-

bility of occurrence of the critically endangered species Acropora cervicornis included the

lower Florida Keys (195 km2), the Dry Tortugas (156 km2), the upper Florida Keys (112 km2),

and nearshore Broward-Miami reefs (Table 3, Fig 2). The probability of occurrence was lower

at Deerfield to South Palm Beach, and the reefs north of South Palm Beach were predicted as

unsuitable for Acropora cervicornis at the time of surveys (Table 3, Fig 2). Mycetophyllia sp.

was predicted to occur from the Dry Tortugas through to the middle Florida Keys, whereas the

probability of occurrence of O. franksi was more restricted, and only included the upper Flor-

ida Keys and Biscayne. S. siderea had a wide geographic extent and had a particularly high

probability of occurrence from the Dry Tortugas through to Miami (Fig 2, Table 3).

Environmental predictors

Distance from the coast, range of SST, bathymetry, and wave energy were the 4 most consis-

tent predictors of the 23 coral species examined (Table 4). Again, for illustrative purposes, we

focus on four contrasting coral species (A. cervicornis, Mycetophyllia sp., O. franksi, and S. side-
rea) (Fig 3), although the partial dependency plots that outline the best environmental predic-

tors of the 23 coral species are presented in the online supporting document (Figs B–X in S1–

S4 Files).

The best environmental predictors of site occupancy of A. cervicornis were SST, moderate

turbidity (K490 0.15–0.25 m-1), and moderate wave energy (>0.5–1.5 kJ m-2) (Table 4, Fig 3).

The probability of occurrence of A. cervicornis was lower where wave energy was> 1.5 kJ m-2

(Table 4, Fig 3). Mycetophyllia sp., had the highest probability of occurrence when the temper-

ature range was between 4–6˚C, the bathymetry was deeper than 5 m, the chlorophyll-a con-

centrations were below 1.5 mg m3, and the mean SST was 24 oC (Table 4, Fig 3). The highest

probability of occurrence for O. franksi occurred in the Dry Tortugas, > 60 km from shore,

where wave energy was relatively high (1.2–1.5 kJ m-2), and where mean SST was around 25
oC (Table 4, Fig 3). Note the flat line in Fig 3B represents a lack of sampling sites between 10

km and 70 km from shore. S. siderea had the highest probability of occurrence in habitats that
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had low chlorophyll-a concentrations (< 0.3 mg m3), mean SST around 26 oC, and wave

energy between 1.2–1.5 kJ m-2 (Table 4, Fig 3).

4. Discussion

In the last four decades the Florida reef tract has lost a significant proportion of coral popula-

tions, particularly the reef-building corals Orbicella and Acropora species [1, 2, 50]. The niche

models predicted that 13 species of coral were likely to have favorable habitats from the Dry

Tortugas to Miami. These species included: D. stokesii, D. labyrinthiformis, E. fastigiata, M.

alcicornis, O. faveolata, P. astreoides, P. divaricata, P. furcata, P. clivosa, S. radians, S. siderea, S.

bournoni, S. intersepta (S3 File for Google Earth kmz files). Seven coral species appeared more

sensitive to the environmental variables examined, and their probability of occurrence was

Table 3. Area of suitable habitat space (km2) for the 23 coral species in each of the 10 subregions along the Florida reef tract using data from 985 sites from 2011–

2015.

Coral species North Palm

Beach

South Palm

Beach

Deerfield Broward-

Miami

Biscayne Upper

Keys

Middle

Keys

Lower

Keys

Marquesas Dry

Tortugas

Total Area

(km2)

Siderastrea radians 0 0 0 0 328 407 335 404 588 270 2332

Siderastrea siderea 13 10 8 97 256 347 286 385 536 233 2171

Stephanocoenia
intersepta

25 46 17 110 130 181 255 419 494 229 1906

Solenastrea bournoni 1 18 11 138 240 361 301 419 277 2 1768

Porites astreoides 2 0 0 23 166 163 220 328 520 261 1683

Pseudodiploria
strigosa

0 0 0 0 146 207 257 382 434 254 1680

Millepora alcicornis 17 44 15 67 220 276 222 344 201 270 1676

Orbicella faveolata 0 0 0 0 140 258 196 369 466 207 1636

Dichocoenia stokesii 0 0 0 1 204 362 283 405 339 0 1594

Montastraea
cavernosa

31 49 17 96 105 81 178 356 427 253 1593

Porites porites 0 0 0 0 116 268 217 284 421 270 1576

Undaria (Agaricia)
agaricites

0 0 0 0 158 206 213 235 454 222 1488

Diploria
labyrinthiformis

0 0 0 0 118 220 200 297 369 241 1445

Eusmilia fastigiata 0 0 0 0 110 172 225 324 367 202 1400

Pseudodiploria clivosa 0 4 4 17 198 264 193 285 246 144 1355

Porites furcata 0 0 0 0 210 208 245 160 312 203 1338

Colpophyllia natans 0 0 0 0 48 108 187 337 425 226 1331

Porites divaricata 0 0 0 0 188 265 306 346 110 80 1295

Orbicella franksi 0 0 0 0 105 147 35 54 456 256 1053

Mycetophyllia sp. 0 5 5 4 2 6 100 226 367 237 952

Acropora cervicornis 0 9 8 91 49 112 22 195 59 156 701

Meandrina
meandrites

30 52 19 76 27 18 63 123 122 163 693

Madracis decactis 29 47 16 44 2 8 2 33 298 188 667

Model extent (km2) 33 84 43 203 349 433 372 522 588 270 2897

Average 7.54 15.33 6.79 40.29 150.63 211.58 204.71 301.33 369.83 201.54

Rank 9 8 10 7 6 3 4 2 1 5

The coral species are ranked according to their total area of suitable habitat space (km2)—depicted in the right-hand column of the table. The subregions are ranked in

the last row of the table according to total area (km2) of predicted probability of occurrence.

https://doi.org/10.1371/journal.pone.0231104.t003
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patchy (Table 3). These species included A. cervicornis, C. natans, M. decactis, M. meandrites,
M. cavernosa, Mycetophyllia sp., and O. franksi. For example, the niche model showed that the

lower and upper Florida Keys, the Dry Tortugas, and nearshore Broward-Miami County reefs

were likely to support A. cervicornis, but the middle Florida Keys was less likely to support this

species. Similarly, the reef-building coral O. faveolata was predicted to favor the habitats in the

upper and lower Florida Keys rather than the middle Florida Keys (Table 3). Ginsburg and

Shinn [51] first reported on the negative influence of Florida Bay on the middle Florida Keys,

and recently Toth et al. [52] showed that reef accretion terminated significantly earlier in the

middle Florida Keys than elsewhere, which they suggested was most likely because of negative

influences from Florida Bay. It is likely that Florida Bay will continue to influence reefs in the

middle Florida Keys, which may prove a disadvantage for many coral species along those reefs.

Fig 2. The probability of occurrence of (a) A. cervicornis, (b) Mycetophyllia sp., (c) O. franksi, and (d) S. siderea along the Florida reef tract

based on the niche model calculated using boosted regression trees using data from 985 sites from 2011–2015.

https://doi.org/10.1371/journal.pone.0231104.g002
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The best environmental predictors of site occupancy of the ‘critically endangered’ A. cervi-
cornis were moderate turbidity, SST, and wave energy. Although historically Acropora corals

are known to survive best in oligotrophic waters [53–55], the present results suggest that on

modern reefs, near zero turbidity was not optimal for A. cervicornis [56]. Rather, a moderate

turbidity value K490 of between 0.15–0.25 m-1 showed the highest probability of occurrence.

These results agree with physiological studies, which show that reducing light by shading can

effectively reduce the influence of temperature anomalies [57–59]. Indeed, thermal-stress

events may be shifting the optimal niche space of corals toward more turbid habitats, for

example to nearshore reefs of Broward-Miami subregion, as ocean temperatures increase [56].

The present study also suggests that moderate wave energy (>0.5–1.5 kJ m-2) is favorable for

A. cervicornis. In support, D’Antonio et al. [27] showed that colonies of A. cervicornis were

most common close to reef edges, where water-flow rates were high. Physiological experiments

also show Acropora colonies are particularly intolerant to stagnant waters, with low rates of

mass transfer [60].

Although the niche models were 87% accurate at predicting localities for restoration for A.

cervicornis, and 88% accurate for O. franksi and Mycetophyllia sp. (Table C in S4 File), there

are some caveats that need consideration. Firstly, these types of models suffer from incomplete

Table 4. Summary of relative influence of the 7 influential predictor variables (listed from greatest to least influence, left to right) that created the most accurate

niche model for 23 coral species the values are shown as percentages (rows sum to 100%) with the primary variable highlighted in blue for each species using Florida

reef tract data from 985 sites from 2011–2015.

Species Name Dist. from Coast Range SST Bathymetry Wave Energy Chl-a conc Mean SST Turbidity

Undaria agaricites 55.84 10.26 5.73 14.64 - - 13.54

Porites porites 41.30 - 17.61 17.21 13.77 10.11 -

Porites astreoides 36.47 - 26.62 10.16 - 6.57 20.18

Eusmilia fastigiata 35.91 8.94 16.17 24.69 14.28 - -

Millepora alcicornis 33.59 5.65 5.04 17.50 8.72 24.81 4.69

Orbicella franksi 31.54 14.35 7.45 21.73 - 24.93 -

Diploria labyrinthiformis 26.73 24.18 15.13 22.35 - - 11.60

Siderastrea siderea 19.34 3.51 17.14 18.48 5.23 17.26 19.04

Mycetophyllia sp. - 43.94 20.59 - 17.74 17.74

Acropora cervicornis - 35.19 - 11.93 - 21.35 31.54

Colpophyllia natans 17.95 31.04 17.23 4.62 5.29 12.15 11.71

Pseudodiploria clivosa - 28.62 22.13 9.01 - 19.43 20.81

Orbicella faveolata 19.41 25.13 17.06 20.66 - 17.73 -

Pseudodiploria strigosa 20.06 30.54 32.26 17.13 - - -

Stephanocoenia intersepta 15.82 18.89 30.09 14.38 - 16.70 4.13

Meandrina meandrites 9.85 13.05 30.01 10.58 27.42 - 9.10

Montastraea cavernosa 11.00 19.40 26.14 19.91 9.81 13.74 -

Siderastrea radians - 4.65 5.86 46.76 - 32.37 10.36

Porites furcata - 12.36 21.66 45.50 - 20.48 -

Porites divaricata 7.90 21.57 - 35.92 - 11.68 22.93

Madracis decactis - 8.86 17.25 - 54.47 - 19.42

Solenastrea bournoni 18.29 21.73 8.40 18.26 33.32 - -

Dichocoenia stokesii - - 26.21 8.46 18.81 46.52 -

The 7 predictor variables include: distance from coast (km), range of SST (˚C), bathymetry (m), wave energy (kJ m-2), chlorophyll-a concentration (mg m3), mean of

daily sea surface temperature (SST) (˚C), and turbidity (m-1). Variance of SST (˚C) was excluded as a potential environmental predictor because there was a strong

positive correlation between variance of SST and range of SST. Dashes indicate minimal significance of predictive variable.

https://doi.org/10.1371/journal.pone.0231104.t004
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geographic sampling and mismatches of scale between the organism and environmental covar-

iates. For example, an observed absence of a coral in a 10 m2 belt transect in the field does not

necessarily imply a complete absence throughout a 1-km2 grid cell, at which the environmental

variables are considered. Therefore, an absence might not be considered a ‘true absence’ [61]

and would reduce the model’s predictive capacity. Secondly, while a dominant species might

occupy most of its fundamental niche space, rare species might occupy only a small proportion

of their fundamental niche [62]. Dispersion limitation may further prevent the rare species

from occupying all the potential niche space, and therefore predicting the probability of occu-

pancy may be over-estimated (i.e., with high false positives).

Since niche models are known to be prevalence-dependent [63], low in-situ occurrences

will translate to low accuracies. Indeed, the niche models had high specificity and low sensitiv-

ity (see S4 File for full specificity and sensitivity results). Specificity is an indicator of how good

the model is at detecting true negatives, whereas sensitivity is an indicator of how good the

model is at detecting true positives. In other words, the niche models were good at predicting

Fig 3. a-g) Partial dependency plots for the 7 predictor variables for the 4 coral species A. cervicornis, Mycetophyllia sp., O. franksi,
and S. siderea along the Florida reef tract from 985 sites from 2011–2015 as calculated using boosted-regression tree models.

https://doi.org/10.1371/journal.pone.0231104.g003
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habitats in which a particular species was unlikely to be present, but less accurate at predicting

habitats in which a species could occur. This strong specificity and low sensitivity are expected

in localities such as the Florida reef tract, where the organisms do not occupy the entire niche

space because the system has undergone recent disturbances. Such disturbed environments

reflect data that are unbalanced toward absences, although we did compensate for this issue by

generating an equal weight of presence and absence sites [47]. The simulations that examined

disturbances to the predicted patches of Acropora cervicornis, using a series of probability-of-

occurrence thresholds, found that patch distances were on average 2–3 km (Fig Y in S4 File)

on modern reefs along the Florida reef tract, and that distances between the patches are likely

to increase with an increase in disturbances. These results are troublesome considering the

fragile nature of the modern metapopulation of Acropora cervicornis. The niche models can be

improved in the future by hierarchically adding spatial and temporal complexity, although we

expect that the general geographic patterns will hold up. The models can also be improved by

adding more local information, such as macroalgal cover, since low macroalgae coverage has

been shown to increase the survival of A. cervicornis [64].

5. Summary and conclusions

Recent changes in environmental conditions along the Florida reef tract may have shifted, and

even narrowed, the niche space of some sensitive coral species [8], and consequently informa-

tion on the distribution of coral species from decades past may no longer provide information

for present niche space. Previously, the most optimal purported niche space for A. cervicornis
was in clear oligotrophic waters, although the present results suggest that turbid conditions are

more optimal on modern reefs that frequently experience high heat stress. Therefore, the near-

shore reefs along the Florida reef tract may become important refuges for corals as the ocean

temperatures continue to increase.
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