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SUMMARY

Cortical computation arises from the interaction of
multiple neuronal types, including pyramidal (Pyr)
cells and interneurons expressing Sst, Vip, or Pvalb.
To study the circuit underlying such interactions, we
imaged these four types of cells in mouse primary
visual cortex (V1). Our recordings in darkness were
consistent with a ‘‘disinhibitory’’ model in which
locomotion activates Vip cells, thus inhibiting Sst
cells and disinhibiting Pyr cells. However, the disinhi-
bitory model failed when visual stimuli were present:
locomotion increased Sst cell responses to large
stimuli and Vip cell responses to small stimuli. A
recurrent network model successfully predicted
each cell type’s activity from the measured activity
of other types. Capturing the effects of locomotion,
however, required allowing it to increase feedforward
synaptic weights and modulate recurrent weights.
This network model summarizes interneuron inter-
actions and suggests that locomotion may alter
cortical computation by changing effective synaptic
connectivity.

INTRODUCTION

Neocortical interneurons are divided into genetically distinct types

and are arranged in stereotypic recurrent circuits (Jiang et al.,

2015; Kepecs and Fishell, 2014; Markram et al., 2015; Pfeffer

et al., 2013; Tasic et al., 2016; Tremblay et al., 2016; Zeisel et al.,

2015). The behavior of recurrent circuits can be counterintuitive

andcannot alwaysbeunderstoodusing intuitivearguments (Ozeki

et al., 2009;Rubinet al., 2015;Tsodyksetal., 1997).Tounderstand

how different types of interneurons influence each other and

shape the activity of excitatory neurons, one must therefore

constrain quantitative circuit models with measurements from

different neuronal classes during diverse neural computations.

In primary visual cortex (V1), two computations that are

thought to arise from interneuron interactions are size tuning

and locomotor modulation. Size tuning—the suppression of ac-
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tivity seen when visual stimuli increase beyond a preferred size—

was suggested to depend on interneurons expressing somato-

statin (Sst), which integrate inputs from wide regions of cortex

(Adesnik et al., 2012; Zhang et al., 2014). Modulation of firing

by locomotion (Ayaz et al., 2013; Erisken et al., 2014; Fu et al.,

2014; Niell and Stryker, 2010) has been suggested to arise

from a disinhibitory circuit, where interneurons expressing vaso-

active intestinal peptide (Vip) inhibit Sst interneurons and thereby

disinhibit pyramidal (Pyr) cells.

This disinhibitory circuit rests on substantial anatomical and

functional evidence,but its role in themodulationof sensorycortex

is debated. The connectivity is well established: Vip interneurons

principally target Sst interneurons (Acsády et al., 1996a, 1996b;

Fu et al., 2014; Garcia-Junco-Clemente et al., 2017; Karnani

et al., 2016a; Pfeffer et al., 2013; Pi et al., 2013), and Sst neurons,

in turn, inhibitmost cortical neuronal classesexcept otherSstcells

(Jiang et al., 2015;Karnani et al., 2016b; Pfeffer et al., 2013). Inbar-

rel cortex, disinhibitioncould explain theeffectsofwhisking,which

increases activity inVip cells and Pyr dendrites and decreases it in

Sstcells (Gentet etal., 2012;Leeetal., 2013). Invisual cortex, loco-

motion increases activity in Vip cells (Fu et al., 2014; Reimer et al.,

2014) and putative Pyr cells (Ayaz et al., 2013; Erisken et al., 2014;

Fuet al., 2014;Niell andStryker, 2010).However, it is not clear that

it decreases the activity of Sst cells (Fu et al., 2014); some studies

observed mixed or even opposite effects (Pakan et al., 2016;

Polack et al., 2013; Reimer et al., 2014).

Here, we used two-photon microscopy to measure responses

of Sst, Vip, and Pvalb interneurons and Pyr cells in V1. We found

that locomotor modulation of each cell class depends critically

on the stimulus size, with modulation of sensory responses

following fundamentally different rules than modulation of spon-

taneous activity. We then used our data to constrain a model for

the circuit connecting these neuronal classes. This model pro-

vided a quantitative account for all our measurements. It also

captured the complexity of the interaction between locomotion,

stimulus size, and cell class, thanks to a simple reweighting of

feedforward versus recurrent synapses.
RESULTS

We used two-photon imaging to measure the activity of

Pyr, Pvalb, Vip, and Sst neurons in mouse V1 (Figure 1;
d by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Genetic Targeting and Activity Statistics Identify Pyr, Pvalb, Vip, and Sst Cells in the Awake Cortex
(A1) Experimental setup showing the air-suspended ball surrounded by the three screens for stimulus presentation.

(A2) Green fluorescence from an Emx1-Cre mouse expressing GCaMP6m via virus injections.

(A3) Normalized fluorescent trace from a representative Pyr neuron. Blue shading above axes represents periods of locomotion (>1 cm/s).

(A4) Histogram of fluorescence values for the example neuron in (A3). The number indicates the skewness of the distribution.

(A5) Distribution of skewness values over all Pyr neurons.

(B1) Green fluorescence from a mouse expressing GCaMP6 following virus injection. Scale bars, 100 mm.

(B2) Red fluorescence from the recordings in (B1), indicating tdTomato expression in Pvalb neurons.

(B3 and B4) Same as (A3) and (A4) for a representative Pvalb neuron.

(B5) Same as (A5) for all Pvalb neurons.

(C) Similar analysis for Vip cells.

(D) Similar analysis for Sst cells.

(E3 and E4) Normalized fluorescent traces from an unlabeled neuron recorded simultaneously with the Sst example in (D3) and (D4).

(E5) Distribution of skewness values over all unlabeled neurons. Unlabeled cells above a skewness threshold of 2.7 (dashed vertical line) are classified as putative

Pyr (E5).
Figure S1). Mice were head fixed and free to run on an air-sus-

pended ball (Niell and Stryker, 2010) while viewing a grating in

a circular window of variable diameter (Figure 1A1). The raw fluo-
rescence traces were corrected for out-of-focus fluorescence

(neuropil correction; Figure S2; Chen et al., 2013; Peron

et al., 2015).
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Genetic Targeting and Activity Statistics Identify Pyr,
Pvalb, Vip, and Sst Cells in the Awake Cortex
To identify neurons belonging to a specific class, we used one of

two genetic approaches (Figure 1, columns 1 and 2). In the first

approach, we expressed GCaMP6m virally in all neurons in

mice in which a class of interneurons was labeled with tdTomato

(Figures 1B–1D, columns 1 and 2). This approach allowed us to

record the activity of identified interneurons in the labeled class

and of many unlabeled neurons, which will comprise mainly, but

not exclusively, Pyr cells. In the second approach, we expressed

the calcium indicator exclusively in a chosen cell class either by

injecting a Cre-dependent GCaMP6m virus into an appropriate

transgenic driver line (Figure 1A2; Figure S2B2) or via a triple-

transgenic line that expressed GCaMP6s specifically in superfi-

cial layer Pyr cells.

Interneurons of all three classes fired much more frequently

than pyramidal neurons (Figure 1, columns 3 and 4). As expected

from the sparse firing of superficial-layer pyramidal cells (Niell

and Stryker, 2010), identified pyramidal cells showed rare iso-

lated calcium events (Figure 1A3), yielding a distribution of fluo-

rescence that was highly skewed (Figure 1A4). By contrast, iden-

tified Pvalb, Vip, and Sst interneurons showed frequent calcium

events (Figures 1B–1D, column 3), yielding distributions of fluo-

rescence with little skewness (Figures 1B–1D, column 4).

These differences in skewness allowed us to use this measure

to identify putative Pyr cells among the concurrently measured

unlabeled neurons (Figure 1E). Similar to identified Pyr cells,

most unlabeled neurons showed sparse activity and high skew-

ness (e.g., Figures 1E3 and 1E4). To identify putative Pyr cells, we

thus set a threshold on skewness. Its precise value made little

difference to our results; we chose a conservative value of 2.7,

as it provided a small false-positive rate (24/1,511Pvalb neurons,

29/1,385 Vip cells,and 91/537 Sst cells exceeded this threshold;

Figures 1B–1D, column 5) while correctly classifying most iden-

tified pyramidal cells (2,598/4,949; Figure 1A5). While unlabeled

neurons exceeding this threshold are highly likely to be pyrami-

dal, cells below the threshold could be of any type and were

therefore excluded from further analysis (Figure 1E5). This pro-

cedure worked well for all methods of GCaMP expression

(Figure S3).

The Effects of Locomotion on Baseline Activity Depend
on Cell Type and Depth
We next asked how locomotion affected baseline (spontaneous)

activity, measured when the screens were uniform gray (Fig-

ure 2). These measurements showed strong effects of locomo-

tion on baseline activity of interneurons and unexpected depen-

dences on cortical depth. They also revealed ways in which

apparently conflicting reports on Sst cells could be reconciled.

Consistent with previous results (Fu et al., 2014; Niell and

Stryker, 2010; Polack et al., 2013; Saleem et al., 2013), the

effects of locomotion on the baseline activity of Pyr cells

were weak and diverse (Figure 2A). The sparse baseline activity

of a typical Pyr cell changed only weakly with running speed

(Figure 2A1). Across Pyr cells, the average correlation between

baseline activity and running speed was close to zero

(rgray = 0:03±0:01 SE, n = 7,553 identified Pyr cells; Figure 2A3).

Nevertheless, 35% of identified Pyr cells showed a significant
604 Neuron 98, 602–615, May 2, 2018
positive or negative correlation with speed (p < 0.05, shuffle

test), significantly more than the 5% expected by chance

(p < 10�16, Fisher’s combined probability test). Similar results

were seen in the putative Pyr neurons identified by skewness

(Figures S4A and S4B).

The effects of locomotion on the baseline activity of Pvalb in-

terneurons were stronger and more varied and depended on

cortical depth (Figure 2B). For example, in two Pvalb cells

imaged simultaneously, activity decreased with running speed

(r = � 0:54, p < 0.01, shuffle test) in the more superficial cell

and increased (r = 0:54, p < 0.01, shuffle test) in the deeper

cell (darker and lighter traces in Figure 2B1). These results

were typical of the population, where correlations were strong

and depended significantly on depth (robust regression,

p < 10�22 n = 1,730; Figure 2B2), with high consistency across

experiments (p < 0.018, t test; Figure S5). Among Pvalb cells

in superficial L2/3 (depth < 300 mm, n = 833), correlation with

speed was significantly negative in 36% of the cells and signif-

icantly positive in only 24% of the cells (p < 0.05, shuffle test).

The situation was reversed in deeper L2/3, with correlations

significantly positive in 47% of cells and negative in only 18%

of cells (p < 0.05, shuffle test). Therefore, when pooling across

depth, a wide variety of effects was seen (Figure 2B3), echoing

the wide and bimodal range of correlations observed previously

(Fu et al., 2014).

Even larger effects were seen in Vip cells, where correlations

were overwhelmingly positive (Figure 2C). Consistent with previ-

ous results (Fu et al., 2014; Pakan et al., 2016), the typical Vip cell

increased baseline activity markedly with locomotion (Fig-

ure 2C1), and the overall population showed almost exclusively

positive correlations with running speed, with a mean correlation

of rgray = 0:27±0:03 (SE, n = 1,393). The correlation increased

significantly with cortical depth (robust regression; p < 10�10),

an effect that was robust across experiments (p < 0.01, t test;

Figure S5).

Perhaps, surprisingly, locomotion also generally increased the

baseline activity of Sst cells (Figure 2D). The typical Sst cell

increased its baseline activity markedly with locomotion (Fig-

ure 2D1), and across the population the correlation of baseline

activity with running speed was on average positive (rgray =

0:18± 0:02, SE, n = 636; Figure 2D3) regardless of depth (robust

regression, p = 0.39; Figure 2D2). This did not reflect altered rate

during running onset, as the correlation persisted after removing

transition periods between locomotion and stationary periods

from the analysis (Figure S6). These effects of locomotion on

the baseline activity of Sst cells confirm some previous results

(Pakan et al., 2016; Polack et al., 2013), but they appear to

disagree with other measurements (Fu et al., 2014).

To confirm these observations in Sst cells, we first ensured

that they were not due to background fluorescence that might

originate from other cell classes. We repeated the measure-

ments in mice expressing the calcium indicator only in Sst cells

(Sst-IRES-Cre mice injected when adult with a Cre-dependent

GCaMP6m virus; Figure S2B2). These experiments confirmed

our results: the average correlation of baseline activity with

running speed was positive (Figures S2C–S2E) in all locations

where GCaMP6m had strong expression, be it cell bodies or

neuropil.
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Figure 2. The Effects of Locomotion on Baseline Activity Depend on Cell Type and Depth

(A1) Fluorescence of representative L2/3 pyramidal neuron (top) and simultaneous running speed trace (bottom).

(A2) Correlation coefficient of recorded pyramidal cells with running speed plotted versus cell depth. Circles represent cells with significant correlations at p < 0.05

(shuffle test); dots represent cells with insignificant correlations. For clearer visualization, we plotted only a random subsample of 800 of genetically identified Pyr

cells. Dashed line represents fitted dependence of correlation versus depth. Black circle indicates example cell shown in (A1).

(A3) Histogram of correlation coefficients of all pyramidal cells. Solid bars indicate significant correlations at p < 0.05 (shuffle test). Values left and right of the

histogram represent the percentage of cells with a negative or positive correlation, respectively.

(B) Similar analysis for Pvalb neurons. The two traces in (B1) (top) show fluorescence traces of representative Pvalb cells of upper and lower L2/3 (blue and cyan,

respectively). The average correlation with speed was slightly negative (rgray = � 0:05±0:03, SE) among Pvalb cells in superficial L2/3 (depth < 300 mm, n = 843)

and weakly positive (rgray = 0:11 ±0:04; SE; n = 831) in deeper L2/3.

(C) Similar analysis for Vip cells.

(D) Similar analysis for Sst cells.
We next asked whether the disagreement on the effects of

locomotion on the baseline activity of Sst cells could be due to

differences in visual conditions (Pakan et al., 2016). Fu et al.

(2014) made their measurements in darkness, whereas we (Fig-

ure 2D) and Polack et al. (2013) had the mouse face a gray

screen. We thus turned off the screen and found that the effects

of locomotion on baseline activity of Sst cells were now overall

negative (rdark = � 0:07±0:02, SE; across experiments: p =

0.019, t test; Figures S7A4, S7B4, S7D, and S7E). The same

cell could show different modulation by locomotion depending
on screen illumination (Figure S7B4): for example, of the cells

showing significant modulation in both conditions, 26% showed

rdark < 0 and rgray > 0. Not all cells, however, showed this diver-

sity. On average, in fact, Sst cells showed a positive correlation

between rgray and rdark (Pearson correlation 0.34; p < 10�8).

These measurements, therefore, reconcile the apparent diver-

gence of previous results (Fu et al., 2014; Pakan et al., 2016;

Polack et al., 2013): the effect of locomotion on baseline activity

of Sst cells is overall positive when mice view a gray screen and

mildly negative when mice are in darkness.
Neuron 98, 602–615, May 2, 2018 605



This observation is specific to Sst cells. In the other cell types,

the effects of locomotion on baseline activity were similar

whether the screen was gray or dark. In agreement with results

obtained in darkness (Fu et al., 2014), when the monitors were

switched off, locomotion continued to have little overall

effect on baseline activity of Pyr cells (rdark = 0:00 ±0:01, SE;

Figures S7A1 and S7B1; Pearson correlation between rgray and

rdark 0.33; p < 10�71). Similar observations were made in Pvalb

cells (rdark = � 0:14 ±0:01, SE; Figures S7A2 and S7B2;

Pearson correlation between rgray and rdark 0.49, p < 10�22)

and Vip cells (rdark = 0:30±0:06, SE; Figures S7A3 and S7B3;

Person correlation between rgray and rdark 0.54; p < 10�48).

Locomotion Modulates Sensory Responses Differently
from Baseline Activity
Having explored the effects of locomotion on baseline activity,

we turned to its effect on visual responses (Figure 3). We pre-

sented drifting gratings of various diameters and focused first

on the neurons whose receptive field centers were located within

10� of the stimulus center. We computed a modulation index,

MR, to measure the effect of locomotion on each cell’s visual re-

sponses and a correspondingmodulation index,MB, for baseline

activity (see STAR Methods).

In contrast to its effects on baseline activity, locomotion

tended to increase visual responses in all cell classes (Figure 3,

columns 1 and 3). For example, a typical Pyr cell would markedly

increase its visual responses while the animal ran (Figure 3A1,

MR = 0:31), and this increase was common among Pyr cells

(p < 10�22, t test; Figure 3A3). Similar effects can be seen in the

visual responses of the example Pvalb cells, both superficial

and deep (Figure 3B1, MR = 0:77 and MR = 0:34, respectively),

and was common across the Pvalb population (p < 10�33, t test;

Figure 3B3). For Vip cells, the effect of locomotion on visual

responses was more mixed, with several cells having a weak

modulation (e.g., Figure 3C1, MR = 0:15), but was still overall

positive (p < 10�3, t test; Figure 3C3). Finally, locomotion typically

increased visual responses in Sst cells (Figure 3D1,MR = 0:47),

an effect that was significant across the population (p < 10�18,

t test; Figure 3D3).

These effects of locomotion on visual responses were very

different from those on baseline activity. Indeed, our previous

analysis (Figure 2) had shown that locomotion decreased base-

line activity in approximately half of Pyr and Pvalb neurons and in

a significant fraction of Sst cells.

Indeed, we typically saw no correlation between the locomotor

modulation of an individual cell’s baseline and its evoked activity

(Figure 3, column 4). The correlation between the effects of loco-

motion on baseline activity MB and on visual responses MR was

weak in Pyr cells (r = �0.07, p = 0.041; Figure 3A4) and not

significant in the remaining cell types (Pvalb cells: r = �0.12,

p = 0.11; Figure 3B4; Vip cells: r = �0.10, p = 0.18; Figure 3C4;

Sst cells, r = �0.05, p = 0.65; Figure 3D4).

Finally, while in some cell classes the effect of locomotion on

visual responses depended weakly on depth, the direction of

this modulation often differed from that seen during baseline ac-

tivity (Figure 3, column 2). The effect of locomotion did not vary

significantly with cortical depth in Pyr cells (p = 0.28, robust

regression; Figure 3A2), but it decreasedwith depth in Pvalb cells
606 Neuron 98, 602–615, May 2, 2018
(p < 10�3, robust regression; Figure 3B2), increased with depth in

Vip cells (p < 10�7, robust regression; Figure 3C2), and

decreased with depth in Sst cells (p < 10�2, robust regression;

Figure 3D2).

Locomotion Increases Sst Cell Responses to Large
Stimuli and Vip Cell Responses to Small Stimuli
We next asked how locomotion modulated responses to stimuli

of different sizes. We focused on visually responsive neurons

(significant effect of stimulus size, p < 0.05, one-way ANOVA)

with receptive fields centered within 10� of the stimulus center.

To discount possible effects of eye movements (whose occur-

rence might change during locomotion), we considered only tri-

als in which pupil position waswithin 5� of its average. Loosening
this criterion wouldmake us underestimate the selectivity of neu-

rons for stimulus size (Figure S8).

Pyr cells were selective for small stimuli and typically exhibited

mild but diverse locomotor modulation (Figure 4A). A typical Pyr

neuron responded substantially more to a stimulus of diameter

5� than to a stimulus of diameter 60� regardless of locomotion

(Figure 4A1), showing clear selectivity for smaller stimuli (Fig-

ure 4A2). Similar effects were seen in the overall population of

identified Pyr cells (n = 1,250; Figure 4A3), in which cells prefer-

ring large (Figure S9A) or small (Figure S9B) stimuli were rare. On

average, locomotion slightly increased responses to both a 5�

diameter stimulus (p < 10�16, paired t test across cells, p <

0.01, paired t test across experiments) and a 60� diameter stim-

ulus (p < 10�10 and p = 0.02). However, this effect was diverse

among cells, with locomotion significantly increasing or

decreasing responses in 17% and 3% of Pyr cells, respectively

(p < 0.05; two-way ANOVA, main effect of locomotion over stim-

uli of diameter 5� and 60�; Figure 4A4). Many cells (17%) showed

a significant interaction of locomotion and stimulus size

(p < 0.05; two-way ANOVA over stimuli of diameter 5� and 60�;
Figure 4A4; Figures S10A and S10B, column 1). In these cells,

locomotion changed the relative response to large and small

stimuli, as seen previously in deeper layers (Ayaz et al., 2013).

Similar results were found in putative pyramidal cells identified

by the sparseness of their calcium traces (Figures S4C and S4D).

Pvalb interneurons were similarly selective for smaller stimuli

but showed a stronger and overwhelmingly positive effect of

locomotion (Figure 4B). A typical Pvalb interneuron responded

strongly to small stimuli and more weakly to larger stimuli, and

its responses markedly increased during locomotion (Figures

4B1 and 4B2). These effects were highly consistent across Pvalb

interneurons (n = 277; Figure 4B3), with locomotion increasing

firing rate in practically all cells (Figure 4B4). This increase was

seen in responses to both large stimuli (p < 10�11, paired t test

across cells, p < 0.01, paired t test across experiments) and

small stimuli (p < 10�13 and p = 0.02), with no significant interac-

tion between stimulus size and locomotion (p = 0.23, two-way

ANOVA over stimuli of diameter 5� and 60�; Figures S10A and

S10B, column 2).

The responses of Vip interneurons (n = 233) were selective for

stimulus size and increased with locomotion, but this increase

was generally restricted to responses to small stimuli (Figure 4C).

A typical Vip interneuron responded most strongly to small stim-

uli during locomotion (Figures 4C1 and 4C2). Similar results were
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Figure 3. Locomotion Modulates Sensory Responses Differently from Baseline Activity

(A1) Visual responses of representative L2/3 pyramidal neuron (top) and simultaneous running speed trace (bottom) for the same cell as in Figure 2A1. In the top

plot, dots represent the size of visual responses relative to the mean response to the presented stimulus, while the continuous line represents a smoothed

interpolation of these points.

(A2) Average increased visual responses of recorded pyramidal cells by locomotion (modulation of visual responses by locomotion) plotted versus cell depth.

Continuous line represents fitted dependence of correlation versus depth. Black circle indicates example cell shown in (A1).

(A3) Histogram ofmodulation of visual responses by locomotion for all pyramidal cells. Solid bars indicate significant correlations at p < 0.05 (t test). Values left and

right of the histogram represent the percentage of cells with a negative or positive modulation, respectively.

(A4) Modulation of spontaneous activity by locomotion as a function of modulation of visual responses by locomotion. Each point corresponds to a different

neuron. Black circle indicates example cell shown in (A1) and Figure 2A1.

(B) Similar analysis for Pvalb neurons. The two traces in (B1) (top) show fluorescence traces of the same representative Pvalb cells of upper and lower L2/3 (blue

and cyan, respectively) as in Figure 2B1.

(C) Similar analysis for Vip cells with the example cell in (C1) being the same as in Figure 2C1.

(D) Similar analysis for Sst cells with the example cell in (D1) being the same as in Figure 2D1.
seen across the population: Vip interneurons showed clear size

tuning, and locomotion increased their responses to 5� stimuli

(p < 10�11, paired t test across cells, p = 0.059, paired t test

across experiments), but not to 60� stimuli (p = 0.95 and p =

0.77; Figure 4C3), with a significant interaction of size and loco-

motion (p < 10�10, two-way ANOVA over stimulus diameters 5�

and 60�; Figure 4C4; Figures S10A and S10B, column 3).
Sst interneurons tended to prefer large stimuli, and their re-

sponses increased with locomotion (Figure 4D). As observed

by Adesnik et al. (2012), a typical Sst interneuron responded bet-

ter to 60� than 5� stimuli, especially while the animal was running

(Figures 4D1 and 4D2). Similar results were seen across the

population (n = 191, Figure 4D3), with overall activity peaking at

diameter �15� during stationary conditions and �25� during
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Figure 4. Locomotion Increases Sst Cell

Responses to Large Stimuli andVipCell Re-

sponses to Small Stimuli

(A1) Responses of a representative Pyr neuron.

Black curves show trial-averaged response in the

stationary (dashed line) and locomotion (contin-

uous line) conditions. Panels show responses to

stimuli of diameter 5� (left) and 60� (right). Gray

shaded regions indicate the 1 s stimulus presen-

tation period.

(A2) Size-tuning curve for this example cell. Solid

line, locomotion; dashed line, stationary. Error

bars correspond to standard error.

(A3) Size-tuning curve averaged over Pyr cells

after normalization. Solid line, locomotion; dashed

line, stationary. Error bars correspond to standard

error.

(A4) Scatterplot showing change with locomotion

of normalized responses to large stimuli (diameter

60�; y axis) and to small stimuli (diameter 5�; x
axis). Circles represent cells whose responses

have a significant interaction between size and

locomotion (multi-way ANOVA over stimuli of

diameter 5� and 60� only), squares represent cells
that did not have a significant interaction but did

have a significant effect of locomotion, and dots

represent cells with no significant effect of loco-

motion. Arrow marks example cell shown in (A1)

and (A2); square marks mean response. Numbers

above and to the right of the dashed diagonal

represent the percentage of cells with a significant

positive or negative interaction between stimulus

size and running speed.

(B–D) Similar analysis forPvalb (B), Vip (C), andSst

(D) neurons.
locomotion. Sst cells showed a significant interaction between

stimulus size and locomotion (p < 10�7, two-way ANOVA over di-

ameters 5� and 60�), consistently across experiments (p < 0.01, t

test; Figure S10A4) and mice (p < 0.01, t test; Figure S10B4).

While locomotion did not significantly affect the responses to

5� stimuli (p = 0.051, paired t test across cells, p = 0.62, paired

t test across experiments, Figure 4D4), it strongly increased the

responses to 60� stimuli (p < 10�8 and p = 0.02).

Some Sst cells, however, did show size tuning (Figure 4D; Fig-

ures S9C and S9D). This observation is consistent with observa-

tions in anesthetized mice (Pecka et al., 2014) but differs from

those of Adesnik et al. (2012) in awake mice. We reasoned that

this may reflect high sensitivity of these cells to stimulus

centering and thus studied how size tuning varies with distance

between receptive center and stimulus center. Size tuning

emerged when stimulus distance was small (Figure 11A); when

the two were distant, cells of all classes preferred larger stimulus

sizes (Figure S11B). For Sst cells, in particular, size tuning ap-

peared when stimuli were within a radius of 20� from the recep-

tive field center (Figure S11, column 4).

For all cell types, we saw similar interactions of size tuning and

locomotion when cells were recorded in the binocular and

monocular regions of visual cortex (Figure S12). Furthermore,

the results did not change if we deconvolved the calcium traces

to estimate spike rates (Figure S13).
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In summary, the effects of running on cortical cell classes

depend on which stimuli are present. With small stimuli, locomo-

tion boosts responses in Vip cells while having little effect on Sst

cells, but with large stimuli, it has the opposite effect, doing little

to Vip cells but boosting Sst cells.

The Relationship of Interneuronswith Pyr Cells Is Linear
in Pvalb Cells and Nonlinear in Vip and Sst Cells
We next examined the correlations between interneuron types

and Pyr cells (Figure 5). According to the ‘‘balanced inhibition’’

theory, inhibitory activity should closely track the mean firing of

the Pyr population, thereby stabilizing network function (Shu

et al., 2003; van Vreeswijk and Sompolinsky, 1998;Wehr and Za-

dor, 2003). To measure Pyr-interneuron correlation, we relied on

our ability to simultaneously record identified interneurons and

putative Pyr neurons (unlabeled cells with skewness > 2.7,

Figure 1).

Consistent with the view that Pvalb interneurons track the ac-

tivity of Pyr cells (Cruikshank et al., 2007; Isaacson and Scan-

ziani, 2011; Okun and Lampl, 2008; Ozeki et al., 2009; Renart

et al., 2010), we found strong positive correlations between the

Pvalb and putative Pyr populations (Figure 5A). In each experi-

ment, we compared the summed activity of the Pvalb population

to that of the simultaneously recorded putative Pyr cells (using

only cells with receptive fields within 10� of the stimulus center).
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In a typical experiment, spontaneous correlations ðr0Þ were

strongly positive whether the mouse was stationary (r0 = 0:70;

Figure 5A1) or running (r0 = 0.60; Figure 5A2). Similar results

were seen across experiments (r0 = 0:60±0:04, SE, during

rest and 0:49± 0:03 during locomotion). Population signal corre-

lations—i.e., the relationship of the mean summed responses of

the Pvalb and Pyr cells across stimuli—also showed strong, pos-

itive correlations and a linear relationship in both stationary

(rs = 0:95 for the example in Figure 5A3, 0:86±0:04 across all ex-

periments) and locomotion (rs = 0:97 for the example in Fig-

ure 5A4, 0:91± 0:02 across all experiments) conditions. Noise

correlations (i.e., the relationship between trial-to-trial variability

in summed activity of the Pvalb and Pyr populations) were also

large (Figures S14A and S14D). These results were not biased

by the exclusion of low-skewed Pyr cells: when we lowered

the threshold (therefore including more Pyr cells but also some

unlabeled inhibitory neurons), the correlations of putative Pyr

cells with Pvalb cells remained high (Figures S14E–S14G).

Vip cells showedmarkedly different behavior (Figure 5B). Their

correlations with the putative Pyr population differed from those

of Pvalb cells in two respects. First, while spontaneous and

noise ðrnÞ correlations tended to be positive (r0 = 0:43±0:03,

SE, during stationarity and 0:42±0:06 during locomotion; rn =

0:33±0:07, SE, during stationarity and 0:37±0:02 during loco-

motion), they were weaker than those of Pvalb cells, at least dur-

ing stationarity (Figure 5D1; Figures S14B and S14D). Second,

the relationship between the population mean responses of Vip

and putative Pyr cells was nonlinear (Figures 5B3 and 5B4).

This nonlinearity reflects the different size tuning of Vip and Pyr

cells, with Vip responses peaking at smaller stimulus sizes

than Pyr responses (compare Figures 4C3 and 4A3). It further

suggests that, unlike for Pvalb cells, the sensory tuning of Vip

cells during locomotion cannot be explained by a simple tracking

of excitatory activity.

Sst interneurons showed yet a different sort of behavior, which

depended on locomotion (Figure 5C). The correlation of the Sst

and Pyr populations was positive in stationary conditions

(r0 = 0:25 for the example in Figure 5C1, 0:23±0:10 SE across

experiments) but weak during locomotion (r0 = � 0:01 for the

example in Figure 5C2, 0:13±0:13, SE, across experiments).

Noise correlations were also positive (Figures S14C and S14D;
Figure 5. The Relationship of Interneurons with Pyr Cells Is Linear in P

(A1 and A2) Summed activity of Pvalb population versus Pyr population in the gray s

circle represents the simultaneous normalized value of the excitatory and the in

estimate of signal correlation.

(A3 and A4) Average stimulus response of Pvalb population versus average respo

during locomotion (A4). Each point represents a response to a stimulus, with lar

polation of the Pvalb and Pyr size tuning obtained from their size-tuning curves.

(B and C) Same as (A), but for Vip (B) and Sst (C) interneurons. Note the nonlinea

(D1 and D2) Summary plots of spontaneous correlations during stationary period

(D3 and D4) Linear signal correlation (Pearson correlation coefficient) between t

experiments during stationary periods (D3) and during locomotion (D4). Error bar

(E1) Same plot represented in (C4) showing the characteristic angles used to illus

visual responses. Circles with black outline indicate the minimum size (diamete

preferred size (white filled). q1 is the angle relative to the horizontal axis of the line

neurons. q2 is the angle between the latter line and the line joining the response

(E2 and E3) Angle q2 versus q1 as defined in (E1) for each experiment during station

(A3)–(C3); in E4, arrows indicate examples in (A4)–(C4).
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rn = 0:39± 0:11, SE, stationary, rn = 0:30±0:04, SE, locomo-

tion). Signal correlations showed a nonlinear character, but this

differed to that of Vip cells (Figures 5C3 and 5C4).

To quantify the linearity of the relationship between the mean

responses of interneurons and of putative Pyr cells on a session-

by-session basis, we parameterized their relationship using two

angles, q1 and q2, that captured the signal correlation along the

increasing and decreasing slopes of the size-tuning curve (Fig-

ure 5E; Figures S14H and S14I). This analysis confirmed the reli-

able linearity of Pyr-Pvalb correlations (indicated by q2 close to 0)

and also revealed a nonlinear relationship for Sst and Vip cells,

indicated by a significant difference in q1 (stationary: p = 0.026,

locomotion: p < 0.01, Watson’s U2 permutation test, n = 1,000

permutations) and q2 between (stationary: p = 0.039, locomotion:

p = 0.036,Watsons U2 permutation test, n = 1,000 permutations).

Thus, while balanced inhibition is accurate for Pvalb neurons, the

activity of Sst and Vip cells diverges substantially from balance

with the Pyr population.

A Recurrent Network Model Accurately Predicts the
Visual Responses of Each Neuron Type
Our data indicate that a disinhibitory circuit in which Sst neurons

suppress Pyr responses to large stimuli cannot account for size

tuning, as the Sst neurons themselves show size tuning; further-

more, the complex and size-dependent effects of locomotion on

Vip and Sst cells do not match what one might intuitively expect

from simple disinhibition.

We therefore asked whether a more complete recurrent

network model could reproduce the different classes’ size tun-

ing. We fit the model with a novel approach: we estimated the

synaptic input parameters for each class of neurons to be those

optimally predicting that class’s average population sensory re-

sponses, with the average population activity of all other cell

classes clamped to their measured values.

Wemodeled the activity of each cell class by a ‘‘neural field’’: a

number that varied across the retinotopic cortical surface, repre-

senting the mean activity of all cells of that class at that location.

In the model, the sensory response of class a was a function

f
vð Þ

a s; rð Þ of stimulus size s and retinotopic position r (relative

to stimulus center); dependence on r was assumed to be

circularly symmetric. The superscript v indicates locomotion
valb Cells and Nonlinear in Vip and Sst Cells

creen condition during stationary periods (A1) and during locomotion (A2). Each

hibitory populations at one time point. Dashed line indicates linear regression

nse of Pyr population in a typical experiment during stationary periods (A3) and

ger circles representing larger stimuli. Dashed line represents nonlinear inter-

r signal correlations.

s (D1) and during locomotion (D2). Error bars correspond to standard error.

he Pyr population and the three classes of interneurons averaged across all

s correspond to standard error.

trate the nonlinear relationship between each interneuron class and Pyr mean

r 5�, black filled), maximum sizes (diameter 60�, red filled), and the Pyr cells’

joining the response to stimuli of diameter 5� and the preferred stimulus for Pyr

at the Pyr cells’ preferred size to the response to stimuli of diameter 60�.
ary periods (E2) and during locomotion (E3). In E3, arrows indicate examples in



condition (v = 0: rest; v = 1: locomotion). We estimated these

functions from the data using a smoothing method (Figures

S11C and S11D). The connection strength to a cell of type a1

at location r1 from a cell of type a2 at location r2 was a

two-dimensional Gaussian function, Ga1a2
r1 � r2ð Þ. We fit the

strength and spatial spread of these connections by exhaustive

search, minimizing the squared error between the predicted and

actual rates. Synaptic integration followed a threshold-linear

function, and we chose divisive or subtractive inhibition for

each inhibitory synapse type to minimize errors. The firing of

dLGN inputs h vð Þ s; rð Þ was modeled using a ratio of Gaussians

(Ayaz et al., 2013), with parameters (for both rest and locomotion

conditions) fit to the data of Erisken et al. (2014).

The model accurately predicted the size tuning of each class

for both centered and off-centered stimuli (Figure 6), but this suc-

cess was predicated on certain conditions. Specifically, to pre-

dict the strong response of Sst cells to large, off-center stimuli

(Figures 6D3 and 6D5), the model required external excitatory

input to these cells (e.g., from thalamus or from other cortical

layers), because large stimuli elicited little response in Pyr cells

(Figures 6A2–6A5). A good fit was only obtained if this feedfor-

ward input to Sst cells had broad size tuning, as would be

seen in thalamic neurons or perhaps in excitatory neurons of

other cortical layers (Figure 6D1). Moreover, to obtain similar tun-

ing ofPvalb and Pyr cells (Figures 6A and 6B), themodel required

these classes to have similar inhibition from Sst cells. The model

required Pyr neurons to lack Vip input. Finally, our parameter

search only gave good results with divisive inhibition from Sst

to Vip cells (Figure 6C1): subtractive inhibition could not produce

the observed sharp size tuning favoring small stimuli (Figures

6C2–6C5).

We next asked what modifications of the model parameters

could explain the effects of locomotion on the sensory re-

sponses of each cell type. Modeling the locomotor modulation

of size tuning required that locomotion change synaptic

strengths: for example, if we kept Pyr input synapses fixed be-

tween the stationary and locomotion conditions, we obtained a

poor prediction of their size-tuning modulation (Figure S15A).

To capture the effects of locomotion on each cell type, we

searched for all possible ways that locomotion could modulate

the thalamocortical and recurrent synaptic weights of each class

(Figures S15A and S15B).

For Pyr and Pvalb cells, we could prove analytically that the fit

quality depended only on the strength of their ‘‘effective connec-

tions’’ (gray connections in Figure 6; see STAR Methods), which

take into account the amplification caused by recurrent excita-

tion and Pvalb inhibition (Douglas et al., 1995). Thus, while the

model fit identified unique values of the effective connections,

these values could, in turn, be achieved through multiple

possible strengths of the synaptic parameters (Prinz et al., 2004).

Capturing the locomotor modulation of Pyr tuning required an

increase in effective connection from external inputs to Pyr cells

and a decrease in effective connection of Sst to Pyr cells.

Together, this produced the observed strong increase in re-

sponses of centered cells to medium-sized stimuli, along with

a milder increase in response to larger stimuli (Figure 6A2 versus

6A4). However, this change in effective connection strength did

not require a weakening of the physical Sst/Pyr connections:
the same change in effective connection could also be achieved

by an increase in external excitation together with a decrease in

recurrent excitation. Intriguingly, these two effects are precisely

those observed in vitro during cholinergic modulation of cortical

synapses (Gil et al., 1997).

Consistent with the close correlations of Pvalb and Pyr cells,

modeling the observed effects of locomotion on Pvalb size tun-

ing required similar modulations to those required for Pyr cells:

a decrease in effective inhibition from Sst cells. Again, however,

this did not necessarily require a weakening of Sst/Pvalb syn-

apses, as the same effect could be obtained via strengthening of

Pvalb/Pvalb connections and of the external input. Producing

the observed effects of locomotion on Vip cell tuning required

no further changes in effective connection: locomotion only

increased the responses of centered Vip cells to small stimuli

(Figure 6C2 versus 6C4), and this increase could be readily pro-

vided by increased activity of local Pyr cells. Finally, correct

modulation of Sst firing required boosting the external excitatory

inputs responsible for their responses to large stimuli (Figure 6D)

but did not require any change to their inhibitory inputs.

In summary, we were able to capture the effects of locomotion

on all cell types through a reweighting of feedforward and recur-

rent connections: an increase in external excitatory input to all

cell types, a decrease in recurrent excitation between Pyr cells,

and an increase in recurrent inhibition between Pvalb cells.

DISCUSSION

We have shown that locomotion does not simply increase or

decrease the activity of a particular cell class: its effects depend

on the precise sensory conditions and even on cortical depth.

The effect of locomotion on sensory responses was, on average,

an increase in all cell classes, but the increase varied with cell

type and stimulus, being largest in Sst responses to large stimuli

and in Vip responses to small stimuli. The effects of locomotion

on baseline neural activity (as assessed by gray screen viewing)

were more complex: locomotion increased activity in most Sst

and Vip neurons and had diverse effects on Pvalb and Pyr cells,

suppressing most Pvalb cells in superficial L2/3 and increasing

activity in deeper Pvalb cells.

Although studies on locomotor modulation of visual cortical

responses have given apparently contradictory findings, our re-

sults are, in fact, consistent with most of their observations once

differences in experimental methods are accounted for. While

the fraction of cells showing locomotor modulation in our data

might appear smaller than in previous electrophysiological re-

cordings (Niell and Stryker, 2010), this may reflect the increased

ability of two-photon microscopy to detect weakly responsive

cells. Additionally, two studies on the spontaneous activity of

Sst cells reported opposite effects of locomotion: increased

(Polack et al., 2013) and decreased (Fu et al., 2014) activity.

When we replicated their experimental conditions (gray screen

for the first study and complete darkness for the second), we re-

produced both observations in a common set of neurons. These

results reconcile the apparent contradiction between these

studies (see also Pakan et al., 2016). Our results also reinforce

the importance of correcting for out-of-focus fluorescence in

two-photon calcium imaging (neuropil correction). Indeed,
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Figure 6. A Recurrent Network Model Accurately Predicts the Visual Responses of Each Cell Type

(A1) Input synapses received by Pyr cells and their modulation by locomotion. Pyr cells receive feedforward visual excitatory inputs (e.g., from thalamus or other

cortical layers) and subtractive inhibition fromPvalb andSst cells. Locomotion increases the synaptic weights from external visual inputs to Pyr cells (filled circles)

while decreasing recurrent Pyr-to-Pyr connections (empty circles). Pyr cells integrate from a broad pool of Sst cells (large Gaussian curve). Gray indicates

connections that could be mathematically integrated out in the model when computing effective connections.

(A2–A5) Model fit (black curves) of the size-tuning data during stationary periods (A2 and A3) and locomotion (A4 and A5), visualized for centered cells (offset = 0, A2

and A4) and off-center cells (offset = 20, A3 and A5). Error bars correspond to standard error.

(B1) Input received by Pvalb cells. Locomotion boosts feedforward synaptic weights to Pvalb neurons while decreasing recurrent Pvalb-to-Pvalb synaptic

weights.

(B2–B5) Same as (A2)–(A5), but for Pvalb cells.

(C1) Input received by Vip cells. Vip cells receive divisive inhibition from Sst cells; no modulation of these synapses by locomotion is required to obtain a good fit.

(C2–C5) Same as (A2)–(A5), but for Vip cells.

(D1) Input received by Sst cells. In addition to inputs from Pyr and Vip cells, Sst cells receive a feedforward input that we propose to originate from thalamus or

other cortical layers. As with Pyr and Pvalb cells, the strengths of these synapses are boosted by locomotion.

(D2–D5) Same as (A2)–(A5), but for Sst cells.
without correcting for this confound, one would observe an arti-

factual negative correlation of fluorescence with running speed,

particularly in image regions with weak GCaMP expression

(Figure S2).
612 Neuron 98, 602–615, May 2, 2018
Our results are consistent with the ‘‘balanced inhibition’’

model, but only for Pvalb interneurons. In this model, the activity

of inhibitory cells tracks that of excitatory cells, thereby stabiliz-

ing network activity over a wide dynamic range of inputs (Shu



et al., 2003; van Vreeswijk and Sompolinsky, 1998; Wehr and

Zador, 2003). We found that the mean activity of Pvalb, but not

Vip or Sst, interneurons was in all cases linearly correlated with

the summed local excitatory population despite the heterogene-

ity of individual Pyr cell responses. These data are therefore

consistent with a primary role for Pvalb cells of stabilizing the ac-

tivity of the local circuit via tracking summed excitatory firing

(Cruikshank et al., 2007; Ozeki et al., 2009; Renart et al., 2010)

rather than directly sculpting visual preferences. Our model

was able to reproduce the similar tuning of Pvalb and Pyr cells

only if they received similar inputs from other inhibitory classes:

specifically, consistent with in vitro observations (Pfeffer et al.,

2013), it required that both Pyr and Pvalb cells received inhibition

from Sst, but not Vip, cells (data not shown). The linear relation-

ship of Pvalb and Pyr cells allowed us to greatly simplify our

network models by ‘‘integrating out’’ the activity of Pvalb cells

and recurrent excitatory connections so that Pyr activity could

be modeled using an ‘‘effective connection’’ from thalamic and

Sst cells only.

Our results suggest that previous theories, which operated at

the level of intuitive arguments, are not sufficient to explain the

role of interneuron classes in V1 function. One such theory holds

that size tuning is mediated by Sst neurons, which were reported

to show negligible size tuning (Adesnik et al., 2012). Our experi-

ments replicated this finding only when stimuli were poorly

centered on the receptive field. Inhibition of Pyr cells by local

Sst neurons therefore cannot be sufficient to explain size tuning,

as for stimuli of diameter > 30�, the responses of Pyr cells

continue to decrease with stimulus size, while Sst firing does

not increase. Furthermore, although off-center Sst neurons

respond to large stimuli, neither centered nor off-centered Pyr

cells respond strongly enough to drive them. Our network model

was able to replicate our experimental results but only under two

conditions that we propose as experimental predictions: that Pyr

cells integrate inhibitory input from spatially dispersed Sst neu-

rons and that Sst cells receive a feedforward sensory input,

i.e., an excitatory input conveying visual input other than from

local Pyr cells. Whether Sst cells receive direct thalamic inputs

is controversial (Cruikshank et al., 2010; Lee et al., 2013; Tan

et al., 2008). Evenwithout direct thalamic afferents, such an input

could be conveyed to superficial Sst cells via other cortical

layers. Interestingly, the optimal model parameters required

that the external inputs that Sst cells receive be spatially diffuse

as would be expected if this input had experienced an additional

round of divergence through Pyr cells of other layers.

A second theory is the ‘‘disinhibitory’’ hypothesis: that during

locomotion, increased Vip activity would inhibit Sst cells, thus

increasing Pyr activity (Fu et al., 2014). Although there is ample

evidence for inhibitory synaptic connections between Vip and

Sst cells, synaptic inhibition does not necessarily imply anticor-

relation: for example, in ‘‘inhibitory stabilized network’’ models

(Litwin-Kumar et al., 2016; Ozeki et al., 2009; Rubin et al.,

2015; Tsodyks et al., 1997), hyperpolarization of inhibitory cells

could cause a paradoxical increase in total inhibitory activity.

Our results pointed to a more complex picture than either

scenario, with the effects of locomotion depending on the

precise visual stimulation conditions. Consistent with previous

results (Fu et al., 2014; Pakan et al., 2016), we found that, in
darkness, locomotion weakly decreased activity in Sst cells.

However, locomotor modulation of stimulus responses was un-

correlated with modulation of spontaneous firing. Furthermore,

the effects of locomotion on sensory responses depended on

stimulus size, boosting Vip cells in the presence of small stimuli

and Sst cells in the presence of large stimuli.

Our network model was able to reproduce these results but to

do so required that locomotion change the effective synaptic

connections, i.e., the effect of one class on another after taking

into account amplification through recurrent excitation and inhi-

bition. These changes in effective connections could, in turn, be

instantiated through multiple possible modulations of physical

synaptic strengths. The activity produced by a neural circuit is

not always sufficient to constrain its underlying connectivity

(Prinz et al., 2004); for the current model, we could mathemati-

cally prove that multiple underlying connectivity patterns yield

identical sensory responses. Nevertheless, the parameter space

consistent with our experimental observations favored one

particularly attractive possibility, where locomotion would in-

crease external excitatory input to all cell types, decrease recur-

rent excitation between Pyr cells, and increase recurrent inhibi-

tion between Pvalb cells. The first two of these are known

effects of cholinergic modulation on cortical circuits (Gil

et al., 1997).

In summary, our results suggest a set of simple rules for the in-

teractions between pyramidal neurons and three classes of in-

terneurons in the cerebral cortex and for how behavioral corre-

lates such as locomotion may alter these interactions. We

derived these rules from observations and made these observa-

tions in primary visual cortex. Future work will be needed to test

these rules causally and to establish whether they describe a ca-

nonical circuit that is common to all of neocortex.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Non-Flex GCaMP6m University of Pennsylvania

Viral Vector Core

AAV1.Syn.GCaMP6m.WPRE.SV40

Flex GCaMP6m University of Pennsylvania

Viral Vector Core

AAV1.Syn.Flex.GCaMP6m.WPRE.SV40

Experimental Models: Organisms/Strains

tdTomato The Jackson Laboratory;

Madisen et al., 2010

Gt(ROSA)26Sor < tm14(CAG-tdTomato)Hze > ;

RRID: IMSR_JAX:007909

Pvalb-Cre The Jackson Laboratory;

Hippenmeyer et al., 2005

Pvalb < tm1(cre)Arbr > ; RRID: IMSR_JAX:008069

Vip-Cre The Jackson Laboratory;

Taniguchi et al., 2011

Vip < tm1(cre)Zjh > ; RRID: IMSR_JAX:010908

Sst-Cre The Jackson Laboratory;

Taniguchi et al., 2011

Sst < tm2.1(cre)Zjh > ; RRID: IMSR_JAX:013044

Gad-Cre The Jackson Laboratory;

Taniguchi et al., 2011

Gad2 < tm2(cre)Zjh > ; RRID: IMSR_JAX:010802

Emx-Cre The Jackson Laboratory;

Gorski et al., 2002

Emx1 < tm1(cre)Krj > ; RRID: IMSR_JAX:005628

Rasgrf Madisen et al., 2015 CamK2a-tTA; Ai94(TITL-GCaMP6s);

Rasgrf2-2A-dCre

Software and Algorithms

MATLAB MathWorks N/A

Suite2P Pachitariu et al., 2016 N/A

ScanImage Pologruto et al., 2003 ScanImage 4.2

Other

Nano-injector Drummond Scientific Company Nanoject II injector

Pipette puller Sutter P-97

High-power LED (central

wavelength: 560 nm)

Thorlabs M565L3

CMOS camera (for intrinsic imaging) Photonfocus MV-D1024E-160

Microscope objective (for intrinsic imaging) Olympus UPLFLN, 4x, NA: 0.13, FN: 26.5

Collimated infrared LED (peak = 850 nm) Mightex Systems SLS-0208-B

Collimated infrared LED controller Mightex Systems SLC-AA02-US

Monochromatic camera The Imaging Source DMK 21BU04.H

Zoom lens (for eye tracking) Navitar MVL7000

Long-pass filter (for eye tracking) The Imaging Source 092/52 3 0.75

Short-pass filter (for eye tracking) Thorlabs FES0900

Two-photon resonant-scanning

microscope

ThorLabs B-scope

Objective lens (for two-photon imaging) Nikon CFI75 LWD 16xW N.A.0.80, W.D.3.0mm

Piezo for z-scanning PI P-725.4CA (with E-665.CR controller)

Pockel’s cell Conoptics M350-80-LA-BK-02

Pockel’s driver Conoptics 302 RM

Multifunction I/O National Instruments PCIe-6321
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact Mario Dipoppa (m.

dipoppa@ucl.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were conducted according to the UK Animals Scientific Procedures Act (1986). Experiments were per-

formed at University College London under personal and project licenses released by the Home Office following appropriate ethics

review.

Mice
Experiments in which an interneuron class was labeled with tdTomato and recorded together with other cells were conducted in

double-transgenic mice obtained by crossing Gt(ROSA)26Sor < tm14(CAG-tdTomato)Hze > reporters (Madisen et al., 2010) with

appropriate drivers: Pvalb<tm1(cre)Arbr > (Hippenmeyer et al., 2005) (2 males, 3 females), Vip<tm1(cre)Zjh > (Taniguchi et al.,

2011) (3 males, 2 females), Sst<tm2.1(cre)Zjh > (Taniguchi et al., 2011) (2 males, 1 female), and Gad2 < tm2(cre)Zjh > (Taniguchi

et al., 2011) (2 females). Experiments in which indicator was expressed uniquely in one neuron class were conducted in single trans-

genic mice: Emx1-IRES(cre) (n = 1), Pvalb<tm1(cre)Zjh > (n = 1), Vip<tm1(cre)Zjh > (n = 1), Sst<tm2.1(cre)Zjh > (n = 3), referred to as

Vip-Cre and Sst-Cre respectively. Experiments in which pyramidal cells were labeled exclusively were conducted in CamK2a-tTA;

Ai94(TITL-GCaMP6s); Rasgrf2-2A-dCre triple transgenic mice (n = 3) (Madisen et al., 2015). Mice were used for experiments at adult

postnatal ages (P54-110).

Animal Preparation and Virus Injection
The surgeries were performed in adult mice (P35–P76) in a stereotaxic frame and under isoflurane anesthesia (5% for induction,

0.5%–3%during the surgery). During the surgery we implanted a head-plate for later head-fixation, made a craniotomy with a cranial

window implant for optical access, and, on relevant experiments, performed virus injections, all during the same surgical procedure.

In experiments where an interneuron class was recorded together with other cells, mice were injected with an unconditional

GCaMP6m virus, AAV1.Syn.GCaMP6m.WPRE.SV40 (referred to as non-flex.GCaMP6m). In experiments where an interneuron class

was labeled by unique expression, mice were injected with AAV1.Syn.Flex.GCaMP6m.WPRE.SV40 (flex.GCaMP6m) and AAV2/

1.CAG.FLEX.tdTomato.WPRE.bGH (flex.tdTomato); all viruses were acquired from University of Pennsylvania Viral Vector Core.

At the time of the injection, the mice were already adult, thus excluding the off-target expression that might occur in cells expressing

Cre only transiently during development (Hu et al., 2013). Viruses were injected with a beveled micropipette using a Nanoject II

injector (Drummond Scientific Company, Broomall, PA 1) attached to a stereotaxic micromanipulator. One to three boli of

100-200 nL virus (2.23x1012 GC/ml for non-flex.GCaMP6m; 2.71x1012 for flex.GCaMP6m) were slowly (23 nl/min) injected unilaterally

into monocular V1 (Wagor et al., 1980), 2.1-3.3 mm laterally and 3.5-4.0mm posteriorly from Bregma and at a depth of L2/3

(200-400 mm).

METHOD DETAILS

Intrinsic Imaging
Prior to performing calcium imaging experiments, we performed intrinsic imaging of the optically accessible cortex to confirm the

location of V1 within the cranial window (Figures S1A and S1B). The intrinsic imaging was performed in all mice (n = 22) about

7-14 days after the surgery. We illuminated the cortex through the epi-illumination path using a high-power LED (central wavelength:

560 nm, M565L3, Thorlabs, Ely, UK), and acquired images at 5 Hz at 1024 3 1024 pixels using a CMOS camera (MV-D1024E-160;

Photonfocus, Lachen, Switzerland) combined with a microscope objective (4x, NA: 0.13, FN: 26.5, UPLFLN, Olympus, Tokyo,

Japan). To prevent the light contamination from the computer monitors we optically shielded the recording chamber with a custom

black cone surrounding the objective.

Retinotopic Mapping from Intrinsic Imaging
To obtain retinotopic maps from intrinsic imaging we used the methods described in Pisauro et al. (2013). Briefly, we first removed

global fluctuations from the signal, which are not stimulus driven. The residual signal reflects the retinotopic, stimulus-evoked re-

sponses. Visual stimuli were periodic drifting and flickering bars (Kalatsky and Stryker, 2003). Flickering bars (flicker frequency

2 Hz) drifted (speed = 0.8 deg/s) across –135� to 45� of the horizontal visual field (with bars oriented vertically) and –45� to 45�of
the vertical visual field (with bars oriented horizontally) for 3 cycles. We calculated retinotopic maps using the method described

in Kalatsky and Stryker (2003). Retinotopic contours (Figure S1B) where obtained after removal of artifactual extreme values

(e.g., red regions in the top and bottom left corners of Figure S1A) and replacing the removed values by values interpolated using

sum of normalized Gaussian functions with standard deviation of 20 mmcentered on non-artifactual pixels. Consistent with a location

in V1, the imaged regions (Figure S1C) were within an area of diameter at least 2 mm where the gradient of vertical retinotopy was
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aligned from anterior to posterior (lower to higher values of elevation) and the gradient of the horizontal retinotopy was aligned from

medial to lateral (temporal to central).

Visual Stimuli
Stimuli were horizontal gratings drifting downward, presented in a location adjusted to match the center of GCaMP expression, on

one of two screens that together spanned �45� to +135� of the horizontal visual field and ± 42.5� of the vertical visual field (left and

central screens in Figure 1A1). During gray screen presentation, the screenswere set to a steady gray level equal to the background of

all the stimuli presented for visual responses protocols. Gratings had a duration of 1-2 s temporal frequency of 2 Hz and spatial fre-

quency of 0.15 cycles/deg. Note that during the presentation of all stimuli we switched off the red gun of the monitors in order to

reduce an artifact of light from the monitors contaminating the red fluorescent channel. Hence what we defined as gray screen actu-

ally corresponds to the color cyan.

Eye-Tracking Movie Acquisition and Analysis
For eye tracking we used a collimated infrared LED (SLS-0208-B, lpeak = 850nm; controller: SLC-AA02-US; Mightex Systems,

Toronto, Canada) to illuminate the eye contralateral to the recording site. Videos of eye position were captured at 30 Hz with a

monochromatic camera (DMK 21BU04.H, The Imaging Source, Bremen, Germany) equipped with a zoom lens (MVL7000; Navitar,

Rochester, NY), and positioned at approximately 50� azimuth and 50� elevation relative to the center of the mouse’ field of view.

Contamination light from the monitors and the imaging laser was rejected using an optical band-pass filter (700-900nm) positioned

in front of the camera objective (long-pass 092/52x0.75, The Imaging Source, Bremen, Germany; short-pass FES0900, Thorlabs,

Ely UK).

To calibrate pupil displacement relative to the mouse visual field, we recorded additional movies at the end of each experiment

while the mouse was still in exactly the same position as during the experiment. The eye was illuminated sequentially from a grid

of known locations, the reflections were captured by the camera, and then this reflected grid was used tomap the pupil displacement

in pixels to pupil displacement in degrees of visual field.

Movie processing was performed offline using custom code written in MATLAB (Mathworks, Natick, MA) on a frame-by-frame ba-

sis. Briefly, each frame wasmildly spatially low-pass filtered to reduce noise, then the pupil contour was detected by a level-crossing

edge detector, and finally the position and the area of the pupil were calculated from the ellipse fit to the pupil contour. The output of

the algorithmwas visually inspected, and adjustments to the parameters (e.g., spatial filter strength, or level-crossing threshold) were

made if necessary.

In Vivo Calcium Imaging
Experiments were performed 16-34 days after virus injection (P54-110). We used a commercial two-photon microscope with a reso-

nant-galvo scanhead (B-scope, ThorLabs, Ely UK) controlled by ScanImage 4.2 (Pologruto et al., 2003), with an acquisition frame rate

of about 30Hz (at 512 by 512 pixels, corresponding to a rate of 4-6 Hz per plane), which was later interpolated to a frequency of 10 Hz,

common to all planes. Recordings were performed in the area where expression was strongest. In most recordings (n = 16) this loca-

tion was in the monocular zone (MZ, horizontal visual field preference > 30�) (Wagor et al., 1980). Other recordings (n = 11) were per-

formed in the callosal binocular zone (CBZ, n = 4, 0-15�) (Wang and Burkhalter, 2007) and others (n = 7) in the acallosal binocular zone

(ABZ, 15-30�). We observed no difference in results between recordings in monocular and binocular zones (Figure S12).

QUANTIFICATION AND STATISTICAL ANALYSIS

Calcium Data Processing
Raw calcium movies were analyzed with Suite2p, which performs several processing stages (Pachitariu et al., 2016). First, Suite2p

registers the movies to account for brain motion, then clusters neighboring pixels with similar time courses into regions of interest

(ROIs). ROIs were manually curated in the Suite2p GUI, to distinguish somata from dendritic processes based on their morphology.

Cells expressing tdTomato were identified semi-automatically using an algorithm based on their average fluorescence in the red

channel. For spike deconvolution from the Calcium traces, we used the default method in Suite2p (Pachitariu et al., 2016). Whether

we performed spike deconvolution or analyzed raw calcium signals made no difference to our results (Figure S13).

Pixel Maps of Calcium Data
To confirm the correlation of running speed and fluorescence independent of ROI detection, we computed correlation maps (Fig-

ure S2C), showing for each pixel the Pearson correlation between the activity of the pixel and the running speed (c.f. Freeman

et al., 2014). Prior to correlation, the activity of each pixel was smoothed by convolving with a spatial Gaussian with standard devi-

ation equal to 1.5 pixels, and a temporal Hamming window of 1 s width.

The correlation of baseline fluorescence with running speed varied across the field of view. In regions where GCaMP expression

level was high, baseline fluorescence correlated positively with running speed, likely indicating an increase in axonal and dendritic

activity in locomoting animals. However, in areas where GCaMP fluorescence was weak, the correlation of the background with

running speed was negative, likely indicating that in absence of GCaMP the signal is dominated by increased hemodynamic filtering
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of the light due to stronger blood flow during running (Huo et al., 2015). To ensure this did not affect our results, we removed back-

ground fluorescence from the detected fluorescence of recorded neurons (see below).

Background Fluorescence Correction
With two-photon GCaMP imaging, an important concern is that out-of-focus fluorescence can contaminate the signal ascribed to

particular neurons; this is of particular concern in situations where the surrounding GCaMP-labeled neuropil may itself show mod-

ulation by stimuli or behaviors such as locomotion. In order to correct out-of-focus contamination, we adopted the method of Peron

et al. (2015). A ‘‘neuropil mask’’ was defined as the region up to 35 mm from the ROI border, excluding pixels corresponding to other

detected cells (Figure S2A1), and the fluorescence signal in this mask region was subtracted from that of the cell soma, weighted by a

correction factor aexp that was determined separately for each experiment.

To determine the correction factor, we estimated the linear relationship specifying the lowest possible somatic fluorescence

compatible with any value of fluorescence in the neuropil mask (Figure S2A2). To do so, for each cell i we binned the neuropil signals

NiðtÞ into 20 intervals, and for each one estimated the 5th percentile of the raw somatic fluorescence FiðtÞ. We computed ai by linear

regression, which accurately matched the lower envelope of the scatterplot of neuropil versus somatic fluorescence (Figure S2A2).

This method gave consistent results for sparse firing cells, but not always for densely firing cells for which a correlation of cellular

activity with the neuropil signal could lead to misestimated slopes, as densely firing cells might only rarely exhibit baseline fluores-

cence.We therefore computed the correction factor aexp for each experiment by averaging ai over cells with high skewness (> 4). The

corrected fluorescence was computed as FðtÞ � aexpNðtÞ (Figure S2A3). In experiments where only interneurons (and thus low

skewed cells) expressed GCaMP6, we used as a correction factor an average from all the other experiments equal to haexpi = 0:82.

Analysis of Neural Activity
The average fluorescence response to each stimulus was defined by DF/F0 = (F-F0)/F0, where F is the average raw calcium signal

during the first second of the stimulus presentation, and F0 is the global minimum of the fluorescence trace filtered with a Hamming

window of duration 0.5 s. The correlation of neural activity with locomotion speed during gray screen presentation was assessed by

the Pearson correlation coefficient between the calcium signal and the locomotion speed trace, on an interpolated timebase of 10 Hz,

smoothed (5 points) and decimated (1 Hz). To ascertain the significance of this correlation we used a shuffling method, in which the

speed trace was randomly circularly shifted relative to the fluorescence trace 1,000 times – this was necessary because serial cor-

relation in the time series of fluorescence and speed rendered successive samples statistically dependent.

The size of a cell’s response to a stimulus was defined by the difference ofDF/F0 between the first 1 s of the stimulus period, and the

1 s of baseline activity prior to stimulus presentation. We defined a neuron to have significant size tuning if it passed in at least one of

the two locomotion conditions (rest or running) a one-way ANOVA test (p < 0.05) comparing the mean visual responses to different

stimuli.

To measure each cell’s retinotopic location, in the majority of datasets (n = 24) receptive fields were obtained from responses to

sparse, uncorrelated noise. The screen was divided into squares of 5 by 5 degrees, and each square was independently turned on

and off randomly at a 5Hz overall rate. At any time, 5%of all squareswere on. Each cell’s response to each squarewas obtained using

stimulus-triggered averaging of the non-neuropil corrected trace. The RFs were smoothed in space and their peak was identified as

the preferred spatial position. In a subset of early experiments (n = 3), sparse noise was not presented, and RFs were assessed with

flickering vertical or horizontal bars appearing in different locations; we verified in a further n = 4 datasets that the two measures of a

cell’s receptive field were consistent.

When computing size tuning curves, we normalized the calcium activity (Figure 4, column 3 and Figure S12) or the spike rate (Fig-

ure S13) in the following way: for each cell, the response DF0 to the ‘‘blank condition’’ (i.e., a stimulus of contrast 0) during stationary

periods was subtracted from the raw cell response DF (1 s during stimulation minus 1 s of baseline activity): DF/DF �DF0. Then, for

each recording we computed the average hDFiall cells over all selected cells whose distance of the receptive field from the stimulus

center r was within a radius of 20�. Finally we divided the average response of either the centered cells (radius: r < 10�) or the
off-centered cells (radius: r > 10�, r < 20�) by the maximum value of all the cells combined: hDFicent:=maxðhDFiall cellsÞ or

hDFioff�cent:=maxðhDFiall cellsÞ. We then averaged these values across all recording sessions.

When computing the interaction between locomotion and size (Figure 4, column 4 and Figures S10A and S10B) we normalized the

responses of the individual cells for each experiment in the following way: after subtracting the average response to the blank during

stationary periods DF/DF � DF0, we divided the responses by the average minimal calcium trace across cells hF0icells within the

same experiment or mouse (Figures S10A and S10B).

The relationship between calcium fluorescence and spiking is not completely characterized and might differ between cell types;

nevertheless, we are confident that the specific measurements we perform here are unlikely to be affected by cell-type differences in

calcium handling. First, we do not attempt to estimate firing rates or exact spike times in the main text: the deconvolution method of

Figure S13 is not used for our main analyses (with the exception of Figures 5A–5D, column 1,2 as detailed in the methods), but in-

dicates that performing deconvolution analysis made no difference to our results. Second, even if the spike-to-GCaMP transform

were several times larger in one cell type than another, this would not affect our conclusions: our analyses of run-speed modulation

and size tuning always take place within a cell type, and correlations between cells (e.g., Figure 4) would not be affected by absolute

firing rate changes. Third, differences in the kinetics of calcium handling between cell types (in particular their relaxation dynamics)
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would not affect our results: we averaged calcium signals over the entire stimulus presentation, and used very long inter-stimulus

intervals (2-5 s), to make sure that even a very long-lasting effect of the response to previous stimulus would only minimally interfere

with the response to the current stimulus. Fourth, a difference in the nonlinearity of the spike-GCaMP coupling between cell types

could not change the direction of locomotor tuning in individual cells, nor the existence of size tuning or preferred size, although it

might exaggerate the ‘‘peakiness’’ of size tuning in some cell classes compared to others.While no systematic cell-type comparisons

of spike-GCaMP coupling have been carried out to our knowledge, the data of Chen et al. (2013) suggests a linear relationship be-

tween the number of action potentials and peak DF=F0, including at least Pvalb interneurons (their Figure S12F). In summary, we are

confident that our findings are robust to most conceivable differences in spike-GCaMP coupling between cell types.

Cell Selection
For characterization of skewness (Figure 1, columns 3 and 4) and spontaneous activity (Figure 2; Figure 5, columns 1 and 2) we

analyzed all detected cells.

For analysis of visual responses (Figure 3) and size tuning (Figure 4, columns 1–3; Figure 5, columns 3 and 4), we selected only

centered cells: we chose cells whose RF was within 10� of the stimulus center and in which the effect of size on visual responses

was significant during either stationary or locomotion periods (p < 0.05, significant effect of stimulus size, p < 0.05, 1-way

ANOVA). For analysis of the effect of locomotion on different stimulus sizes (Figure 4, column 4) we used the same selection criterion

of visual responses but the cells’ RF was allowed to be at a distance of 15� from the stimulus center.

To analyze how visual responses depended on both stimulus size and centering (Figure 6, columns 2–5) we used all detected cells.

We did not use orientation tuning as a criterion for cell selection in any of our figures.

Phase of Locomotion
Previous studies have suggested that the modulation of spontaneous activity by locomotion can depend on the phase of the loco-

motion period, with stronger responses at locomotion onset (Vinck et al., 2015). However, for all cell types we found similar corre-

lations between fluorescence and running speed after removing transition periods between locomotion and stationary periods

from the analysis (Figure S6).

Correlation of Running Modulation with Depth
To determinewhether runningmodulation of a given cell class varied significantly with cortical depth (Figure 2, column 2; Figure S7C),

we computed rðgrayÞ for each cell as the Pearson correlation of that cell’s neuropil-corrected fluorescence (without spike deconvo-

lution) and running speed. We then assessed a significant relationship of rðgrayÞ with depth using robust regression (bisquare-

weighting).

Modulation Index
To measure how locomotion modulated baseline and evoked activity (regardless of stimulus size), we computed two indicesMB and

MR. In order to compute MR we first computed, for each trial t, the baseline-subtracted responses DFt = F
ðpostÞ
t � F

ðpreÞ
t as the differ-

ence between the average activity during 1 s after the stimulus onset and the 1 s before the stimulus onset.We computed the average

response to each stimulus size s as DFs = hDFtit jSðtÞ= s, where SðtÞ represents stimulus size on trial t. We then computed each trial’s

residual response as dt = DFt �DFSðtÞ, and collected these residuals into a set for each locomotor condition (v = 0: stationary, v = 1:

locomotion): dðvÞ = fdtgt jVðtÞ= v. Finally, we computed the modulation index MR for each cell’s visual responses as MR =

ðhdð1Þi� hdð0ÞiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2½dð1Þ�+ s2½dð0Þ�

q
.

To compute the baseline modulationMB, we divided the period of uniform screen presentation into ‘‘virtual trials’’ of 1 s duration,

and computed the average activity Ft for each of these.We separated the virtual trials into two sets according to locomotion condition

V : FðvÞ = fFtgt jVðtÞ= v. We finally computed the modulation index MB on baseline (spontaneous) for each cell as MB =

ðhFð1Þi� hFð0ÞiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2½Fð1Þ�+ s2½Fð0Þ�

q
.

Curve Fitting
We fitted the size tuning curves of Figure 4 and Figures S4, S8, S9, S12, and S13 by least-squares with the following function family:

fðsÞ=R½erfðs=s1Þ � k erfðs=s2Þ�where erfðxÞ corresponds to the error function and s is the size of the stimulus. The free parameters of

the function are R, k, s1 and s2. To estimate nonlinear signal correlation curves (Figure 5, columns 3 and 4), we first smoothed the

responses to large sizes (diameter: s > 20�) for each population with a boxcar moving average method with span 25�. Then we

smoothed again the responses for all sizes with a boxcar moving average method with span 20�. Finally we interpolated the values

between the measured size with a shape-preserving piecewise cubic interpolation.

Size-Tuning Maps
To compute how size tuning depends on stimulus centering, we computed two-dimensional maps illustrating how each cell class’

average activity depends on stimulus diameter s, and the offset of the receptive field center from the stimulus center ri (Figure S11). To
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do so, we first computed for each cell i a normalized tuning curve ni;vðsÞ, where v represents locomotion condition, by using a shape-

preserving piecewise cubic interpolation of DF. Dependence on ri was estimated by smoothing: a two-dimensional map was made

for each cell as an outer product: fi;vðs;rÞ = ni;vðsÞgiðrÞ, where giðrÞ= e�ðr�riÞ2=2s2y is a Gaussian centered at the offset value ri of width

sy = 5�. We chose sy = 5� to match the size of the square pixels (5� width) used in the sparse noise stimulus. Then we summed the

maps belonging to one recording session j and divided by the sum of all the Gaussians centered at different offsets:

mj;vðs; rÞ=
P

i˛j fi;vðs; rÞ=
P

i˛jgiðs; rÞwhere the sumover i of giðs; rÞ corresponds to the density distribution of the cells across r; dividing

by
P

i˛jgiðs; rÞ is necessary to avoid edge effects, ensuring that the average visual response for each s and r is normalized by the

occurrence of cells having a particular value of r. We then normalized this value for each experiment by the value at stationary,

0� offset and diameter 10� fj;vðs; rÞ = mj;vðs; rÞ=mj;v= 1ðs = 10; r = 0Þ. Finally, for each cell class we obtained the size-tuning offset

maps by averaging across experiments: fj;vðs; rÞj.

Inter-population Correlation Analysis
To compute spontaneous correlations (Figure 5, columns 1 and 2), we first normalized the deconvolved spike trace S of each cell i

over time t: nði;tÞ = Sði;tÞ=maxtðSÞ. Then, for each experiment and each class c (interneurons or putative Pyr cells) we computed the

average population rate across cells i belonging to class c: RcðtÞ = hnði; tÞifig ˛c. We then smoothed RcðtÞ with a boxcar moving

averagemethodwith span of 1 s and then decimated the sampling rate to 1 point every 1 s. Tomake the plots of different experiments

visually comparable we normalized these responses: KcðtÞ = ðRcðtÞ� R0
cÞ=stðRcÞ. Where R0

c is the 1st percentile of Rc and stðRcÞ the
standard deviation of RcðtÞ across time.

To compute signal correlations (Figure 5, columns 3 and 4), for each experiment and each cell class c we first computed the

average population response for each stimulus size s and locomotion condition v (v = 0 stationary, v = 1 running) by averaging

over all cells i belonging to that class: DFcðs;vÞ = hDfði; s; vÞifig ˛c. To make the plots of different experiments visually comparable

we normalized the responses: DRcðs;vÞ = DFcðs;vÞ=ss;vðDFcÞ. Finally we subtracted the blank response during the resting condition:

DKcðs;vÞ = DRcðs;vÞ� DRcðs = 0;v = 0Þ.
To compute noise correlations (Figures S14A–S14D), for each experiment and each cell class c we first computed the average

population response for each trial t by averaging over all cells i belonging to that class:DFcðtÞ = hDfði; tÞifig ˛c. Then for each stimulus

and locomotion condition we subtracted the mean response from the related trials: DNcðt˛fs; vgÞ = DFcðt˛fs; vgÞ� hDFcit˛fs;vg.
Finally, to make the plots of different experiments visually comparable, we normalized the responses by z-scoring over all trials:

DZcðtÞ = ðDNcðtÞ� hDNcitÞ=stðDNcÞ.
Whenmeasuring signal and noise correlations and for both interneurons and putative Pyr neurons, we selected cells whose recep-

tive field center was within a radius of 10� from the stimulus center. For Figure 5 we selected putative Pyr cells as unlabeled (non

tdTomato) neurons whose skewness was >2.7. In a control analysis (Figure S14) we show that the value of the skewness threshold

makes little difference to these results and similar classification results have been obtained if using kurtosis instead of skewness

(Ringach et al., 2016). A skewness value of 0 corresponds to the case where we selected all unlabeled cells as putative Pyr cells.

Computational Model
We asked whether we could predict the mean size tuning of each cell class using a neural field theory model. In this model, the mean

firing rate of cells of type a is captured by a function faðs; rÞ, where s represents the stimulus size, and r represents position on

the cortical surface, measured in retinotopic coordinates. We model the external excitatory input arriving at point r (e.g., from

thalamus or other cortical layers) by a function hðs; rÞ, again in retinotopic coordinates.

We denote the experimentally measured responses of cell class a by f
ðvÞ
a ðs;rÞ, where v denotes locomotion condition (v = 0: sta-

tionary, v = 1: running). We assume that responses are circularly symmetrical, i.e., that responses depend on r only through the radial

distance of the receptive field center from the stimulus center, r. The response of each cell class f
ðvÞ
a ðs; rÞ is modeled by the following

equations: 8>><
>>:

fE =R½wEHh+wEEðGEE � fEÞ �wEPðGEP � fPÞ; wESðGES � fSÞ�
fP =R½wPHh+wPEðGPE � fEÞ �wPPðGPP � fPÞ; wPSðGPS � fSÞ�
fS =R½wSHðGSH � hÞ+wSEðGSE � fEÞ; wSVðGSV � fV Þ�
fV =R½wVEðGVE � fEÞ; wVSðGVS � fSÞ�

Only synaptic connections demonstrated in vitro (Pfeffer et al., 2013) are included in this equation; however, adding other potential

synapses (Vip->Pyr) did not improve the fit (Figure S15).

For each postsynaptic cell class we tested different combination of subtractive and divisive inhibition from Sst and Vip cells:

Rðx; yÞ=
8<
:

Px � yR+ subtractive�
x

1+ y

�
+

divisive

As we discuss later in the text, the model predicts a subtractive inhibition from Sst to Pyr and Pvalb cells and from Vip to Sst cells,

while it predicts a divisive inhibition from Vip to Sst cells.
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Here, fE , fP fS, and fV reflect the visual responses of the Pyr, Pvalb, Sst, and Vip cells respectively; z+ is the positive part of z;wab are

the peak synaptic weights between the presynaptic cell class b and the postsynaptic cell class a (which can in principle depend on

running condition n); Gab is a two-dimensional Gaussian function defined by GabðzÞ = exp½ � jz j 2=ð2s2abÞ�=ð2ps2abÞ, with radius sab

that can depend on the pre- and post-synaptic cell type; and * represents convolution over retinotopic space: ½Gab � fb�ðs; rÞ =R R
Gabðr� r

0 Þfbðs;r0 Þd2r
0
.

The equations describing the activity of the cell classes can be simplified with the following assumptions:

d cðv; s; rÞ; fE > 0; fP > 0 (Pyr and Pvalb cells are not suppressed by stimuli, as seen in the data).

d The recurrent connections of Pyr and Pvalb neurons, and the connection from Pvalb to Pyr are local:

GEEðrÞ=GEPðrÞ=GPPðrÞ= dðrÞ where dðrÞ is the Dirac delta function.

d fPzmfE (i.e., Pvalb activity closely tracks Pyr activity, as seen in the data).

We can then rewrite the equations as:8>><
>>:

fE =R½wEHh;wESðGES � fSÞ�=ð1�wEE +mwEPÞ
fP =R½wPHh+wPEðGPE � fEÞ;wPSðGPS � fSÞ�=ð1+wPPÞ
fS =R½wSHðGSH � hÞ+wSEðGSE � fEÞ;wSVðGSV � fV Þ�
fV =R½wVEðGVE � fEÞ;wVSðGVS � fSÞ�

We can further simplify this equation as:8>><
>>:

fE =R½ ~wEHh; ~wESðGES � fSÞ�
fP =R½ ~wPHh+ ~wPEðGPE � fEÞ; ~wPSðGPS � fSÞ�
fS =R½wSHðGSH � hÞ+wSEðGSE � fEÞ;wSVðGSV � fV Þ�
fV =R½wVEðGVE � fEÞ;wVSðGVS � fSÞ�

(1)

where ~wEH and ~wES are the ‘‘effective connections’’ from external inputs and Sst neurons to excitatory cells, given by

wEH=ð1�wEE +mwEPÞ and wES=ð1�wEE +mwEPÞ while ~wPH, ~wPE , and ~wPS represent the effective weights onto Pvalb cells, equal

to wPH=ð1 + wPPÞ, wPE=ð1 + wPPÞ, and wPS=ð1 + wPPÞ.

Estimation of Thalamic Input
The response to a stimulus of size s in thalamic cells with receptive fields located at position r in running condition nwasmodeled by a

function hðnÞðs;rÞ, estimated from the thalamic recordings of Erisken et al. (2014). We first estimated the firing of centered cells as a

function of stimulus size hðnÞðs;0Þ, for stationary and locomotion periods separately. We fit the empirical size tuning curve of each cell

ði = 1.21Þ using the same function as Erisken et al. (2014): h
ðvÞ
i ðs;0Þ = bi½erfðsi=miÞ�2=f1 + bi½erfðsi=miÞ�2g, and estimated the mean

thalamic response by averaging across all cells (after normalizing each h
ðvÞ
i ðsÞ by its maximum across s and v). The empirical data we

had were only of centered LGN neurons. To extrapolate to off-center responses, we used a Ratio-of-Gaussians model (Ayaz et al.,

2013) as a parametrized function: hðnÞðs; rÞ= a1uðs; r;s1Þ=½1+ a2uðs; r;s2Þ� with uðs; r;sÞ= erf½ðs+ rÞ=s�+ signðs� rÞerfðjs� r j =sÞ
fitted on the centered responses. The estimated parameters during the stationary periods were a1 = 1:2, a2 = 1:9, s1 = 36:7, and

s2 = 33:9 while during locomotion a1 = 0:5, a2 = 0:4, s1 = 24:7�, and s2 = 10:0�.

Estimation of Presynaptic Inputs
To fit the model, we clamped the firing rate functions f

ðvÞ
a ðs; rÞ in Equation (1) to their experimentally measured values, and fit synaptic

parameters to reduce the discrepancy between the right and left sides. To do so required extending our experimental data to contin-

uous functions of s and r. For retinotopic positions r < rL = 33o, fðs; rÞwas fitted from the data with a difference of Gaussians function:

fðs;rÞ = Rr ½erfðs=s1;rÞ� kr,erfðs=s2;sÞ�. Because our data for cells off-center by a radius of more than 33� were sparse, we extrapo-

lated the values for r > rL with a decaying exponential approximation: fðs;rÞzfðs;rLÞe�ðr�rLÞ=b, To obtain the parameter bwe first fit the

values fðs; rÞ in the range rm%r%rL (where rm is the offset value that maximizes the response of that cell class) with an exponential

decaying function with spatial coefficient cðsÞ for each stimulus size s. Thenwe estimated b as the average of cðsÞ between the values

0o%s%30o. The values of b that we obtainedwere 15.2� (stationary) and 13.5� (locomotion) for Pyr, 32.1� (stationary) and 20.1� (loco-
motion) for Pvalb, 22.3� (stationary) and 24.8� (locomotion) for Vip and 13.1� (stationary) and 21.5� (locomotion) for Sst cells.

Parameter Estimation
To estimate the parameters we minimized an objective function equal to the normalized mean-square error, plus additional penalty

terms to favor simpler models:

Err =

Dhbf ðvÞa ðs; rÞ � f ðvÞa ðs; rÞ
i2E

s;r;vD
varx

h
f
ðvÞ
a;xðs; rÞ

iE
s;r;v

+ l1nDw + l2ksab

sL

k
2

2

+ l3R
2
a
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Here, f
ðvÞ
a represents the measured firing rate, bf ðvÞa represents the right hand size of Equation (1) and varx½f ðvÞa;xðs; rÞ� denotes the vari-

ance of normalized visual responses for each value of s, r and v over all experiments x. Each experiment xwas performed in a different

field of view (and therefore different neurons), different days and group of experiments were performed in different mice. The normal-

ization factor of 1=hvarx½f ðvÞa;xðs; rÞ�is;r;v ensures that conditions with high inter-experiment variability do not overly influence the objec-

tive function; the normalized error can also be interpreted as the log-likelihood of the model fit under a Gaussian distribution esti-

mated from all experiments x. The averaging operator h:is;v;r runs over the space 0o%s%60o and 0o%r%33o, in both stationary

and locomotion conditions.

The last three terms represent regularization parameters. The first regularization term controls the number of synaptic strengths

that are allowed to change with locomotion, nDw (this L0 regularization method penalizes according to the number of non-zero

weights, without regard to their magnitude), and for the current analysis we used a value of l1 = 0:1. The second regularization

term controls the spatial distribution of synaptic weights; we used parameters sL = 40�, l2 = 0:01. The final term Ra, with l3 =

0:2, represents a factor to add biologically motivated constraints in the Pvalb and Sst equations.

We assume that Sst cells receive most of their input from a local area, therefore

RS =
X
v = 1;2

w
ðvÞ
SH

.�
w

ðvÞ
SE +w

ðvÞ
SV

�
:

The activities of Pyr and Pvalb are very similar, so to avoid fE dominating the fP equation we have

RP =
X
v= 1;2

~w
ðvÞ
PE

.�
~w
ðvÞ
PH + ~w

ðvÞ
PS

�
:

To determine the optimal parameters (reported in Table S1) of themodel we first performed an exhaustive search over the extent of

the spatial integration sab parameters of all the presynaptic cell classes for each postsynaptic cell class. For inputs from the visual

input and excitatory cells, we searched the ranges from 1� to 40� at 15 equally spaced steps. For inputs from Sst and Vip cells we

searched a range from 1� to 100� at 12 equally spaced steps (Figure S15C). For each combination of fsab1 ;sab2 ;.g we then found the

optimal synaptic strength parameters w
ðvÞ
ab (or effective strengths ~w for Pyr and Pvalb cells) using a combination of the trust region

reflective and Levenberg-Marquardt algorithms (MATLAB), after 50 random initialization of the initial parametersw
ðvÞ
ab . We then chose

the values of sab and w
ðvÞ
ab minimizing Err.

To fit the way locomotion affects synaptic strengths, we sequentially evaluated models of increasing complexity, each of which

was penalized by the L0 regularization penalty l1nDw. We first evaluated equal weights in locomotion and stationary conditions,

i.e., w
ð0Þ
ab =w

ð1Þ
ab and nDw = 0; next, we fixed all but one of the synaptic weights w

ðvÞ
ab (i.e., nDw = 1), and so on. We found the minimum

error for each value of nDw, and selected between these using the penalized total error function Err (Figure S15A).

DATA AND SOFTWARE AVAILABILITY

The data that support the findings of this study are available from the corresponding authors upon request.
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