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Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and
organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development
of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate
immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In
contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129
background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss,
denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This
suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In
contrast, infection of STAT12/2 mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100%
mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-
CoV infection in STAT12/2 mice caused disseminated infection involving the liver, spleen and other tissues after day 9.
These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon
receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also
protects mice via its role as an antagonist of unrestrained cell proliferation.
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Introduction

SARS Coronavirus (SARS-CoV) is a highly pathogenic

respiratory virus that emerged in China during the winter of

2002 and infected about 8,000 people globally and resulted in

,800 deaths, with greatly increased mortality rates in persons over

50 years of age (WHO). On initial isolation of SARS-CoV from

infected patients, it was identified as a novel Group 2 Coronavirus

and the genetic mechanisms governing the increased pathogenicity

of the virus remain undefined [1,2]. In severe cases, SARS-CoV

infection rapidly progressed to acute respiratory distress syndrome

(ARDS) during the acute phase of infection or to an organizing

phase diffuse alveolar damage following virus clearance; two

clinically devastating end stage lung diseases. The molecular

mechanisms governing these severe end stage lung disease

outcomes are unknown, although similar pathologies have been

reported following H5N1 and 1918 influenza virus infection.

The innate immune response is a key first line of defense against

invading pathogens and is dependent on various signaling

pathways and sensors that ultimately induce hundreds of anti-

viral proteins to establish a suboptimal environment for replication

and spread of invading pathogens [3,4]. During virus infection the

type I interferon (IFN) induction and signaling machinery is key to

the initiation of this response. IFN induced from either infected

cells or dendritic cells can activate an antiviral state in neighboring

cells to signal that a viral infection is under way[5]. Not

surprisingly, virus infections (mouse hepatitis virus, influenza virus,

RSV, alphaviruses, flaviviruses, etc.) of rodents that lack type I or
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type II IFN regulatory networks result in increased pathogenesis

and mortality, documenting the key role IFNs play in regulating

disease outcomes[6–12].

Given the importance of the IFN system in regulating virus

growth, many highly pathogenic viruses encode proteins that

antagonize components of the innate immune system. The Ebola

virus encodes VP35 which blocks STAT1 signaling[13,14],

influenza NS1 blocks IRF3 activation[15,16] and V proteins from

the Nipah and Hendra viruses induce STAT1 degradation[17].

Several IFN antagonist genes are encoded in the SARS-CoV

genome and target IFN sensing and signaling and NFKB

induction[18–21]. However, the role of IFN in regulating

SARS-CoV pathogenesis in vivo is less clear. From microarray

studies using RNA from PBMC’s for 50 SARS patients, Cameron

et. al. observed a robust type I IFN response early in the disease

and predicted that it was essential for viral clearance and clinical

recovery[22]. In addition to a strong IFN response, genes such as

CCL2 (MCP-1) and CXCL10 (IP-10) that are typically induced by

IFN were also up-regulated in patients at early times in SARS-

CoV disease. Interestingly, Cameron and colleagues suggested that

the IFN response that served to protect recovered SARS patients

could become a dysregulated cytokine storm in severe cases and

contribute to increased disease and a suboptimal adaptive immune

response. The innate immune response to SARS-CoV also

changes with age of the host; 12 month old BALB/c mice respond

to SARS-CoV with an exacerbated and faster innate immune

induction than 6 to 8 week old mice, potentially explaining their

increased susceptibility and lung pathology following infec-

tion[23,24].

Several studies have demonstrated the importance of the innate

response in viral clearance. Respiratory syncytial virus (RSV) and

SARS-CoV require MyD88 to produce an effective immune

response to control severe infection in the lung [25,26]. The Mx

gene product plays an important role in the susceptibility of

rodents to influenza virus infection and could regulate severity of

SARS-CoV disease in vivo as well[27]. Glass et al demonstrated that

SARS-CoV was cleared from the lungs of wildtype C57BL/6 mice

and strains that lacked that T, B and NK cells with similar kinetics,

suggesting that the innate immune response alone is sufficient for

viral clearance [28]. Hogan et. al. also demonstrated that STAT1,

a key modulator of IFN a/b, l, c signaling, was required for the

resolution of wildtype SARS-CoV infection, once again indicating

the importance of the innate response in the clearance of SARS-

CoV [29].

In this paper, we compare the pathogenesis of both the

epidemic virus (Urbani) and an isogenic, highly pathogenic mouse-

adapted SARS-CoV (rMA15) in different mouse strains, each

deficient in different innate immune signaling components.

Specifically, we tested the role of type I, type II, and type III

IFN and STAT1 in protection from SARS-CoV infection. We

have found that absence of the IFN a/b, IFNc and IFNl,

receptors alone or in some instances together, had a limited impact

on pathogenicity and clearance of the non-lethal and lethal strains

of SARS-CoV in mice. However, STAT1 deficient mice show

increased susceptibility, prolonged virus shedding and mortality

following infection with either virus. Importantly, STAT12/2

animals developed an organizing phase DAD, similar to lesions

noted in severe late stage human cases of SARS. Our data reveals

a new mechanistic pathway by which STAT1 regulates the

severity of viral pathogenesis in the lung. We show that SARS-

CoV pathogenesis is STAT1 dependent but independent of type I,

II and III IFN signaling, and we provide evidence consistent with

an essential role for STAT1 in the control of SARS-CoV

replication, cell proliferation, wound repair and progression to

severe organizing phase DAD and lethal disease.

Results

IFNa/b and IFNc receptor knockout mice and 129 WT
mice survive SARS-CoV infection

To understand the role of type I (IFNa/b) and type II IFN

(IFNc) in the response to SARS-CoV infection we infected IFN

receptor 2/2 mice with either a late phase SARS-CoV (Urbani)

virus or a recombinant isogenic mouse-adapted virus (rMA15) that

contained six virulence modifying mutations [30], anticipating that

the mouse-adapted virus may display more prominent pathoge-

nicity than the Urbani virus. The Urbani virus and the equivalent

recombinant icSARS viruses are not lethal in 10-wk old BALB/c,

C57BL6 and 129 WT mice, typically replicating in the lungs with

a peak titer at 2 days post-infection (dpi) before being cleared over

the next 2–4 days without clinical disease or mortality [26,30]. In

contrast, the rMA15 virus is lethal in 10-wk old BALB/c mice

causing greater than 20% weight loss by 4 days post-infection and

death by 4–5 days post-infection. We infected 129 WT, Type I

IFN receptor knockout mice (IFNAR12/2) and Type I/II double

IFN receptor knockout mice (IFNAGR2/2) with the Urbani

virus (Figure S1) and 129 WT, IFNAR12/2 and IFNGR2/2

with the rMA15 virus (Figure 1).

In 129 WT, IFNAR12/2 and IFNGR2/2 mice, clinical

findings including weight loss data and morbidity were identical

after infection with rMA15. 129 WT, IFNAR12/2 and

IFNGR2/2 mice infected with rMA15 virus lost ,15% of their

weight by day 4 and then steadily recovered over the next 5 days

(Figure 1). In contrast, Urbani virus infected mice continued to

gain weight through the course of infection (Figure S1). In both

cases, virus titers in the lungs peaked at day 2 post-infection,

approaching titers of ,5.06107 pfu or TCID50/g (rMA15 or

Urbani, respectively), and all were rapidly cleared by day 9 post-

infection. Although virus titers were ,5-fold higher in IFNAR12/

2 mice than titers in 129 WT mice on day 5 post-infection, we

found that IFNAR12/2 and IFNGR2/2 mice showed no

increase in susceptibility, pathogenesis or histological outcomes to

rMA15 or Urbani virus infection. To examine the importance of

cooperative IFN pathways in disease, IFN receptor double

knockout (IFNAGR2/2) mice were infected with the Urbani

virus; no increase in virus titer or weight loss was seen compared to

Author Summary

The SARS coronavirus is a highly pathogenic respiratory
virus that caused the first epidemic of the 21st century.
During the epidemic ,10% of those infected died and the
elderly were particularly vulnerable. Severe cases devel-
oped acute lung injury with pulmonary fibrosis and Acute
Respiratory Distress Syndrome (ARDS). Little is known
about the molecular mechanisms governing its virus
pathogenesis and high lethality. Using a mouse model of
infection with the epidemic strain of SARS-CoV (Urbani) as
well as a recombinant mouse adapted strain of SARS-CoV
(rMA15), we showed that a protein normally associated
with the innate immune response, STAT1, plays an
important role in the development of severe end stage
lung injury. However, the lack of a normal innate immune
type I, type II and type III interferon response did not
enhance virus pathogenesis. Our work suggests that
STAT1 may play a key role in development of acute lung
injury and other chronic lung pathology, most likely by
affecting cell proliferation and wound repair pathways.
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129 WT mice or the single IFN receptor knockout mice (Figure

S1). These data suggest that neither type I nor type II IFN

receptors are critical for the regulation of SARS-CoV infection

and pathogenic outcomes in mice.

STAT1 protects mice from rMA15 and Urbani virus
infection

In contrast to the results from IFN receptor knockout mice,

previous studies have suggested that STAT1 2/2 mice do not

clear the Urbani virus by day 22 post-infection[29]. We infected

STAT12/2 mice to evaluate whether the absence of a

downstream IFN signaling protein results in increased susceptibil-

ity to SARS-CoV infection, and to determine the course of

infection and pathologic changes associated with the virulent

mouse-adapted virus. Importantly, STAT12/2 mice infected

with rMA15 virus were more susceptible to disease than 129 WT,

IFNAR12/2 or IFNGR2/2 mice. Following rMA15 virus

infection, STAT12/2 mice lost 15% of their starting weight by

day 4 and continued to lose weight through day 9 post-infection

(Figure 1). As weight loss approached 30%, the mice were

moribund and succumbed to lethal infection. In stark contrast and

consonant with earlier reports, STAT12/2 mice infected with

Urbani virus initially gained weight as 129 WT mice did, through

day 12 post-infection (Figure S1). However, over the next 15 days

they displayed worsening clinical disease and lost significant body

weight. They did not recover by day 29 post-infection, and 30% of

them died.

Lung virus titers in STAT12/2 mice were also higher at each

timepoint tested compared to the titers seen in IFN receptor

knockout and 129 WT mice, (Figure 1B). When infected with

rMA15 virus, STAT12/2 mice showed higher peak virus titers in

the lungs at day 2 (,108 pfu/g) that remained as high as

.106 pfu/g at day 9 post-infection, while 129 WT mice had

cleared the virus by 9 days. Urbani virus infected STAT12/2

mice also showed increased and sustained virus replication in the

lungs as late as 15 days post-infection while virus was detectable

only through day 5 post-infection in the 129 WT mice (Figure

S1E). Taken together, these data suggest that a STAT1-

dependent, IFN type I and II receptor-independent pathway

plays a key role in regulating viral clearance and survival following

SARS-CoV infection.

Pulmonary disease associated with rMA15 virus infection
in 129 WT and IFN receptor and STAT1 knockout mice

Lungs from the various mouse strains infected with SARS-CoV

were analyzed for severity of histopathology (Figure 2). In the 129

WT mice, rMA15 virus caused a denuding bronchiolitis at 2 days

post-infection with significant apoptosis of airway epithelial cells

(noted by multilobed nuclei, condensed chromatin and nuclear

blebbing), accumulation of apoptotic debris within the airways and

perivascular cuffing caused predominately by lymphocytes. Similar

lesions have been noted in BALB/c and C57BL6 mice[26].

rMA15 virus infection was primarily localized in airway

epithelium at day 2 post-infection (Figure 3) and did not

disseminate to other areas of the lung or respiratory tract. Some

perivascular cuffing was noted in the vasculature by day 2 post-

infection as well. By day 5, the denuding bronchiolitis, obstruction

of the conducting airways by apoptotic debris and apoptosis of the

airway epithelium were rarely observed, although perivascular

cuffing and a mixed inflammatory response with lymphocytic

infiltration of eosinophils, neutrophils and macrophages was more

prominent. By day 9 post-infection, the remaining inflammation

caused by rMA15 virus infection was primarily found in

peribronchiolar areas (Figure 2).

Histologic changes in the lungs of IFNAR12/2 and

IFNGR2/2 mice were similar to 129 WT mice; the inflamma-

tion found in lung sections was temporally related to viral titer. At

day 2 post-infection, a denuding bronchiolitis characterized by

significant apoptosis and cell death in the airway epithelium was

observed and conducting airways were obstructed by apoptotic

debris. A mixed infiltrate composed of lymphocytes, neutrophils

and eosinophils was seen surrounding the bronchial epithelium. By

day 5 post-infection, significant inflammation was evident

throughout the lungs and alveoli, resulting in a mild to moderate

pneumonitis. As noted in lungs from 129 WT mice, the

inflammation was clearing by day 9 post-infection; minimal

Figure 1. Mouse adapted SARS-CoV (rMA15) infection of 129 WT, IFNAR12/2, IFNGR2/2 and STAT12/2 mice. A. 10 week old female
129 WT, IFNAR12/2, IFNGR2/2 and STAT12/2 mice were infected intranasally with 16105 pfu/ml rMA15 virus. Individual mice were weighed daily
and their average weight change from day 0 is presented. 10 mice per timepoint and strain were used in each group. The * = a p value of .001. B. At
days 2, 5 and 9 post-infection, groups of mice described in A were sacrificed and lungs were dissected, homogenized and supernatant used to titer
virus in a plaque assay on Vero cells. Plotted is the average pfu/g of lung for 5 mice per group for each timepoint. The # = a p value of .005 and the
* = a p value of .001. Each is a comparison of Day 9 WT compared to Day 9 STAT12/2.
doi:10.1371/journal.ppat.1000849.g001
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inflammatory infiltrates remained in the periphery of the lungs and

minor peribronchial lymphocytes remained.

At day 2 post-infection with rMA15 virus, lung lesions in

STAT12/2 mice were indistinguishable from those seen in 129

WT, IFNAR12/2 and IFNGR2/2 infected animals. By day 5

post-infection, lung lesions were more severe in STAT12/2

mice, consistent with persistently high virus titers (Figure 2). Two

features were notable; first, the extent of inflammation was more

severe in STAT12/2 mice, with a much greater number of

macrophages infiltrating into all areas of the lung, a finding that

Figure 2. Histopathology of rMA15 virus infected mouse strains. Mice were sacrificed at days 2, 5 and 9 post-infection for histopathological
analysis. Lung sections were stained with H&E and photomicrographs of individual airways are shown in the figure. The left side of each matched pair
is a 10X picture and the right side is 40X.
doi:10.1371/journal.ppat.1000849.g002
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was not seen in the other mouse strains. Second, thickening of the

alveolar septa was seen throughout the lungs with perivascular and

peribronchial thickening. By 9 days post-infection, the inflamma-

tion continued to increase in STAT12/2 mice while lung

inflammation was subsiding in 129 WT, IFNAR12/2 and

IFNGR2/2 infected mice. In STAT12/2 mice, inflammation

was pervasive throughout the lungs with densely packed

infiltrating cells especially prominent throughout the periphery

Figure 3. In situ hybridization of rMA15 infected mouse lungs. A. Paraffin embedded mouse lungs where sectioned and probed with S35

labeled probe complementary to SARS-CoV nucleocapsid RNA. Representative samples from days 2, 5 and 9 post-infection (dpi) are shown. Not
shown are slides probed with a non-specific probe, which showed no labeling at all. Mock infected samples also showed no labeling. B. High
magnification image of a 9 day post-infection STAT12/2 mouse lung with a corresponding H&E stained slide next to it. Note that areas with in situ
signal overlap with areas of infiltration in the H&E stained section.
doi:10.1371/journal.ppat.1000849.g003
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of the tissue. Macrophages continued to infiltrate with the majority

residing in the alveolar interstitium. Interestingly, large foci

containing densely packed fibroblasts, macrophages and lympho-

cytes were seen throughout the lungs and scattered atypical large

cells were found throughout the foci. A focal mixed inflammatory

infiltrate was found with extensive fibrin deposition. Pleuritis

signified by a breakdown of the pleura was seen in most samples as

well. This pathology was consistent with proliferative and

organizing phase diffuse alveolar damage (DAD). It is noteworthy

that similar pathologic lesions were seen in many fatal SARS cases

[31–34].

Pulmonary disease associated with SARS-CoV Urbani
virus infection in mice

Lesions developing from days 2 to 9 in 129 WT, IFNAR12/2

and IFNAGR2/2 mice inoculated with the Urbani virus were

similar to those seen in rMA15-infected 129 WT mice. At days 2–

3, there was diffuse bronchial and bronchiolar necrosis and

migration of leukocytes (CD3+ T-cells, neutrophils and eosino-

phils) through vessel walls to peribronchiolar and perivascular

areas but extension of lesions into the alveoli was not prominent

(Figure S1F). Viral antigen was seen within the bronchial and

bronchiolar epithelium (data not shown) as previously pub-

lished[35]. By day 5, less necrosis was seen in the bronchiolar

epithelium but peribronchiolar and perivascular cuffing remained.

At day 9, necrosis was not observed and only minor perivascular

cuffing was present. At days 15 and 22–29, the lungs were mostly

normal except for minor perivascular and peribronchiolar cuffing

of lymphocytes.

In STAT12/2 mice infected with the Urbani virus, there was

a similar distribution of bronchial and bronchiolar lesions in the

lung as seen in the 129 WT mice at day 3, but with more necrosis

and inflammation. Edema was observed around peribronchiolar

blood vessels and the larger inflammatory cell infiltrate contained

many lymphocytes, and neutrophils with a few eosinophils and

macrophages. Abundant viral antigen was seen in bronchiolar

epithelium (data not shown). By day 5, the bronchiolar epithelium

had foci of regeneration with little necrosis and the peribronchiolar

and perivascular inflammation was less severe than at day 3. Plugs

of cellular debris and fibrin filled some bronchioles. A blue tinge

was noted in the perivascular edema fluid, suggesting early

collagen deposition. Viral antigen was much less common in the

epithelium but was abundant in the cellular debris in the airways.

At day 9, inflammatory cells increased around residual inflam-

matory lesions, with abundant neutrophils and more macrophages

in the lesions. Marked epithelial hyperplasia was also seen in these

foci. Bronchiolitis obliterans was seen in a few airways and

interstitial lesions developed around some airway lesions, one of

which extended to the pleura and producing focal pleuritis. Much

of the lung parenchyma was, however, histologically normal. Only

a few cells or cell debris was seen expressing viral antigen. By day

15, a fibrinous pleuritis with pyogranulomatous lesions developed

in 2 of 3 mice, with focal resolving parenchymal lesions including a

few foci of chronic interstitial pneumonia but most of the lung

parenchyma remained fairly normal. From day 15–24, a fibrinous

peritonitis (Figure S2A), pleuritis and pyogranulomatous lesions in

spleen, liver and omentum developed as the major lesions that

likely contributed to illness and death in the STAT12/2 mice

(Figure S2B-F). These lesions were characterized by a central area

of necrosis with numerous neutrophils and an outer zone of

macrophages. Viral antigen was found in some of the macro-

phages in these pyogranulomatous lesions (Figure S2D, E). Plasma

cells became abundant in the splenic lesions by day 24 (Figure

S2G). Abundant fibrosis (detected by Masson’s trichrome stain)

was seen in the splenic and liver lesions at day 24 (Figure S2F).

The lungs of mice from days 15–24 were mostly normal with areas

of residual chronic inflammation and a few pyogranulomas, some

of which contained viral antigen. The pleura had nodules of

pyogranulomatous and fibrinous inflammation.

In situ hybridization of rMA15 virus infected lungs
We determined the localization of virus in infected lungs during

the course of infection by in situ hybridization. We used a

riboprobe complementary to the SARS-CoV nucleocapsid RNA

that was labeled with radioactive nucleotides to visualize viral

RNA in the tissue. In situ hybridization was performed on lungs

from 129 WT, IFNAR12/2, IFNGR2/2 and STAT12/2

mice harvested at days 2, 5, and 9 post-infection. In all 4 strains of

mice, the probe signal was predominantly localized in the airway

epithelial cells at day 2 post-infection (Figure 3A). This correlated

with the pathologic lesions in airway epithelial cells at day 2 post-

infection. By day 5 post-infection, viral RNA was virtually

eliminated from the control 129, and IFNAR12/2 mice and to

a slightly lesser extent in IFNGR2/2 mice. Occasionally, a few

cells with viral RNA were noted in the periphery, consistent with

the low titers of virus in these animals at day 5. By day 9, there was

no viral RNA signal found in the lungs of 129 WT, IFNAR12/2

and IFNGR2/2 mice, corresponding to the lack of viral

replication at this time point. In contrast, lungs of STAT12/2

mice showed significant viral RNA signal throughout the lungs,

including prominent distribution into the periphery of the lung at

early and late times post-infection. Surprisingly, but consistent

with the findings on histopathology, viral RNA signal was lost

from the airway epithelial cells in the bronchioles by day 9 in

STAT12/2 mice and was found throughout the periphery of the

lungs, prominently focused in large focal compactions of cells.

These foci correspond to the prominent focal lesions noted in

H&E stained sections of the lung, which are predominantly

composed of fibroblasts, macrophages and lymphocytes

(Figure 3B). Interestingly, cellular debris can be seen in these foci

that may represent lysed airway epithelial cells.

Characterization of inflammatory cell infiltrates
We observed marked differences in pathology of lungs from 129

WT mice compared to STAT12/2 mice after infection with the

rMA15 virus. To investigate whether STAT1 affected the

inflammatory infiltrate, we isolated leukocytes from enzymatically

disrupted mouse lungs harvested on day 8 post-infection and used

cell surface markers to quantify macrophage (CD11c2/CD11b+/

GR-1int/MHCII+), neutrophil (F4802/CD11b+/CD11c2/GR-

1+), and eosinophil (CD11c2/Siglec+/GR-12) populations in

129 WT and STAT12/2 mice. A greater than 10-fold difference

in leukocyte numbers was found between 129 WT and STAT12/

2 infected mice (Table 1). As shown in Table 1, the eosinophil

population increased from ,2% in 129 WT mice to ,30% in

STAT12/2 mice and neutrophils increased from 3% in 129 WT

mice to 35% in STAT12/2 mice. Additionally, the number of

macrophages in STAT12/2 mice was more than double that

detected in 129 WT mice. These numbers are concordant with the

histological findings by H&E staining at 9 days post-infection.

Cytokine and chemokine protein and gene expression
studies

We used real time RT-PCR and CBA analysis to quantify

changes in mRNA and protein expression levels of several innate

immune factors involved in pulmonary inflammation. Specifically,

we compared the induction of several pro-inflammatory cytokines

SARS-CoV Pathogenesis
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(TNFa, IL6, IFNc and MCP1) for changes in expression during

infection by analyzing lung homogenates by CBA (Figure 4A, B, C

and D) or quantitative RT-PCR to measure levels of mRNAs in

Urbani virus or rMA15 virus infected mice, respectively (Figure 4E,

F, G and H).

In Urbani virus infected lungs, minimal changes were seen in

129 WT, IFNAR12/2, IFNAGR2/2 mice for all 4 cytokines

(Figure 4A, B, C and D). However, in STAT1 2/2 mice,

significant increases in protein expression patterns were detected

across different time points, peaking between 9 and 15 days post-

infection. TNFa protein levels increased steadily from day 2

through day 29 post-infection while IL6 and IFNc protein levels

peaked at day 9, before reducing to levels seen in mock infected

animals. MCP1 protein levels were increased between days 5

through 22 but diminished by day 29 post-infection.

Cytokine induction following rMA15 virus infection was

compared with Urbani virus infection (Figure 4A–H). Comparing

cytokine transcript levels on days 2, 5 and 9 post-infection, we

noted some similarities and important differences. Following

rMA15 virus infection, 129 WT mice showed a 10-fold induction

of TNFa transcripts by day 2 post-infection, followed by

progressively reduced levels of expression that returned to baseline

by day 9. While IFNAR12/2 mice showed similar kinetics as 129

WT mice, infection in IFNGR2/2 mice resulted in a continued

rise in TNFa expression till day 9. In contrast, STAT12/2 mice

had low baseline levels of TNFa expression through day 5, after

which high levels of expression were noted at day 9, corresponding

to the peak time of inflammation in the lungs, just prior to death.

IFNc and MCP1 gene expression levels were similar in rMA15

virus-infected 129 WT, IFNAR12/2 and IFNGR-/mice.

Transcript levels were induced by day 2 and then decreased

through day 9. While STAT12/2 infected mice showed a similar

trend of increased transcript levels at day 2, expression levels of

IFNc and MCP1 continued to increase through day 9 post-

infection. Finally, IL6 expression showed similar kinetics in

rMA15 virus infected 129 WT control and IFNAR12/2 mice

with peaks at day 2 that decreased to baseline levels by day 5.

IFNGR2/2 mice showed similar kinetics, but with lower

expression levels at day 2. Comparatively, induction of IL6 in

STAT12/2 mice followed a different pattern, with high levels of

expression at day 2 post-infection and persistent high level

expression through day 9. IFNb, IFNa4, IL28B, IL18, IRF1

and OAS1 were analyzed by Real-time PCR from lung RNA

isolated during the rMA15 timecourse in WT, IFNAR2/2 and

STAT12/2 mice (Figure S3). IFNb, IFNa4, IL28B, IRF1 and

OAS1 show a peek of induction at 2dpi for all 3 strains with a

reduction throughout the timecouse with a few exceptions. IFNb,

IFNa4 and OAS1 show either a sustained or late burst in

expression of each in only the STAT12/2 mice. Interestingly,

IL18 shows minimal induction (,1.5 fold) in WT mice but even

less in the IFNAR2/2 and STAT12/2 mice. Thus, significant

differences in cytokine expression patterns were noted between

STAT1, WT and IFNAR deficient animals, where typically WT

and IFNAR2/2 mice had the same expression patters while

STAT12/2 mice were typified by perceived loss of regulatory

control and persistent high level expression.

Type III IFN does not play a role in SARS-CoV
pathogenesis

STAT1 is a mediator of Type III IFN (IFN L, Lambda)

signaling in addition to Type I and II IFN signaling. IFNL is

minimally but significantly upregulated during infection in WT

129 mice at day 2 post infection which decreases through the

course of 9 days post infection (Figure 5A). The receptor for IFNL

is a heterodimer of IL10Rb and IL28Ra. IL28Ra2/2 mice have

been generated on the BALB/c mouse background but not on the

129 WT mouse background. Thus, although direct comparison

with the other mouse strains is not possible, experiments with

SARS-CoV in these mice are still informative. As in the C57B6

background, the Urbani virus does not cause disease or weight loss

but the virus replicates in the lungs of BALB/c mice. Virus reaches

peak titer by day 2 post-infection and infection is resolved by day

7[36]. In contrast, rMA15 virus infection of BALB/c mice causes

death by day 4 or 5 post-infection[30]. We hypothesized that if

IFNL was important for protection from SARS-CoV infection, the

virus would be more virulent in mice lacking the IFNL receptor

and IFNL receptor knockout mice would show evidence of disease

while normal BALB/c mice would not. Further, rMA15 virus

infection of IL28Ra2/2 mice may result in enhanced pathology

with more weight loss, higher virus titer, or increased lung

pathology.

This hypothesis was tested by inoculating control BALB/c mice

and IL28Ra2/2 mice with the Urbani virus, rMA15 virus or

PBS. There was no weight loss in either BALB/c or IL28Ra2/2

mice infected with the Urbani virus (data not shown), thus the lack

of IFNl signaling did not potentiate clinical disease. Lungs from

Urbani virus infected BALB/c and IL28Ra2/2 mice were

harvested at 2, 4, 7 and 21 days post-infection. We found no

difference between the titers of virus in the lungs of BALB/c and

IL28Ra2/2 mice (Figure 5B). Lungs from infected mice were

analyzed by H&E staining. Urbani virus infection of IL28Ra2/2

mice produced mild inflammation that peaked at day 2 and

Table 1. Quantitation of the inflammatory cell infiltrate in the lungs of rMA15 virus infected STAT12/2 mice at 8dpi.

Percent (number) of cells in the lungs of indicated strains of mice following mock or rMA15 infection

129 + PBS STAT12/2 + PBS 129 + rMA15 STAT12/2 + rMA15

Total leukocytes isolated 12,702 14,823 13,211 160,561

Dendritic Cells 1.8% (236) 2.3% (110) 12.97% (1,713) 16.8% (26,902)

Macrophages 1.2% (154) 1.1% (53) 8.6% (1,137) 13.4% (21,490)

Neutrophils 2.6% (377) 3.3% (159) 2.2% (293) 30.8% (49,411)

Eosinophils 1.2% (150) 0.7% (337) 0.8% (107) 16.3% (26,119)

Analysis of inflammatory cell infiltrates during rMA15 infection of STAT12/2 mice. Lymphocytes from lungs of 129 WT and STAT12/2 mice infected with rMA15 or PBS
for 8 days, were isolated and labeled with antibodies to identify inflammatory cell populations by flow cytometry. Macrophages were identified as CD11c2/CD11b+/GR-
1int/MHCII+ cells, neutrophils as F4802/CD11b+/CD11c2/GR-1+ cells and eosinophils as CD11c2/Siglec+/GR-12 cells. The percent of total starting lymphocytes is shown
in the table for each cell type.
doi:10.1371/journal.ppat.1000849.t001

SARS-CoV Pathogenesis

PLoS Pathogens | www.plospathogens.org 7 April 2010 | Volume 6 | Issue 4 | e1000849



resolved by day 7 post-infection; replicating the pattern seen in

BALB/c mice (Figure S4A).

rMA15 virus infection caused .20% weight loss and/or death

by day 4-5 post-infection in BALB/c and similar findings in

IL28Ra2/2 mice (data not shown); both lost ,20% weight by

day 4 post-infection. Lungs were harvested at days 2 and 4 post-

infection and no differences in virus titers were observed

(Figure 5B). Both mouse strains showed peak virus titers at day

2 with a 2-3 log decrease by day 4. Lung pathology was analyzed

by H&E staining. Both BALB/c and IL28Ra2/2 mice showed

similar high levels of inflammation at 2 and 4 days post-infection,

but remarkably similar pathologic outcomes (Figure S4B). Taken

together, we found no role for IFNl in protection from infection

with either the Urbani or rMA15 strains of SARS-CoV.

IFNLR antibody in IFNAR12/2 mice
BALB/c and 129 WT mice respond differently to rMA15 virus

infection; rMA15 is lethal in BALB/c mice but only causes

transient weight loss in 129/Sv mice. To analyze the effects of

knocking out both Types I and III IFN signaling pathways, we

treated IFNAR12/2 mice (on the 129 background) with

neutralizing antibodies to IL28Ra, the receptor used by IFNl.

Figure 4. Protein and gene expression analysis of cytokines. A–D. A cytometric bead array was used to quantify the protein levels of
cytokines in lung homogenates after infection with the Urbani virus. Lung samples were homogenized and protein levels of (A) TNFa, (B) IFNc, (C)
MCP1 and (D) IL6 were quantified. E–F. Real-time PCR analysis was performed on RNA from infected mouse lungs. Mice were harvested at days 2, 5
and 9 post-infection and lung RNA isolated by Trizol. cDNA was made from 1ug of RNA of each and used in real-time analysis and the results for 3
mice per group were combined. Fold increase over mock-infected lungs of each cytokine is graphed for (E) TNFa, (F) IFNc, (G) MCP1 and (H) IL6.
doi:10.1371/journal.ppat.1000849.g004
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Mice were injected with 100 mg of anti-IL28Ra antibody at days -

1, 1, 3, 5 and 7 days post-infection as described in the

literature[37]. We found no difference in weight loss or

pathogenesis of rMA15 in these mice compared to mice injected

with PBS (Figure 6). Mice showed 15% weight loss by day 4 post-

infection but recovered by day 9, ending at their starting weight.

Lungs were analyzed at days 2, 4 and 9 post-infection and showed

no difference in pathology compared to IFNAR12/2 mice (data

not shown). Both groups of mice showed epithelial cell denudation

at 2 day post-infection and repair and clearance by day 9. Virus

titers were only slightly increased over PBS injected mice but the

difference was not statistically significant. This suggests that the

inhibition of both Type I and Type III signaling in mice does not

increase the pathogenesis of the rMA15 virus and neither protect

129 mice from disease.

Discussion

Paradigm of IFN signaling and protection
SARS-CoV infection in humans rapidly progressed from an

atypical pneumonia, to acute phase diffuse alveolar damage and

ARDS during the first 10 days of acute lung injury. In many

patients this is followed by the development of an organizing phase

DAD after virus clearance. Both pathologies were associated with

severe clinical outcomes and death, especially prominent in the

elderly. The molecular mechanisms and virus-host signaling

networks that regulate these progressive end stage lung diseases

are unknown but are of considerable importance, given the global

disease burden associated with them. Previous studies in our

laboratory have demonstrated that aged mice infected with

recombinant viruses encoding S glycoproteins from early phase

Figure 5. Pathogenesis of Urbani and rMA15 viruses in IL28Ra2/2 mice. BALB/c and IL28Ra2/2 mice were infected with 16105 pfu of
either Urbani or rMA15 virus. A. Real time analysis of IL28B transcripts was performed on WT 129 infected mice at 2, 5 and 9 days post infection.
Graphed is the fold increase over 18S RNA for each mouse with 5 mice at each timepoint averaged together. B. Titer of Urbani and rMA15 virus at
each timepoint. Lungs were homogenized and supernatant of each lung was titered by plaque assay on Vero cells. Shown is the average titer from 5
mice at each timepoint. The level of detection is shown by a dotted line at 100 pfu/ml.
doi:10.1371/journal.ppat.1000849.g005
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or zoonotic SARS-CoV strains developed ARDS, characterized

by hyaline membranes and DAD. In this report, we show that

STAT1 deficient mice are especially prone to the development of

organizing phase DAD.

The innate immune system plays a central role in regulating early

host responses to virus infection and promoting adaptive immune

responses. The Type I, II and III IFNs are typically produced by

different cell populations and use distinct membrane bound

receptors to gain entry into cells; Type I uses IFNAR1, Type II

uses IFNGR and Type III uses IL28Ra/IL10Rb. However, all

three share a common cytoplasmic signaling protein, called STAT1,

that is translocated to the nucleus and induces expression of

multiple, overlapping IFN regulated genes (ISGs)[38]. Deletion of

any or all of the signaling components involved in the STAT1

signaling pathway diminishes the innate immune response to

pathogens and increases susceptibility to several bacterial and viral

agents. Mice lacking IFN receptors show increased susceptibility to

West Nile[9], influenza[12,39], Ebola[11], Friend virus[40],

RSV[7,8] and Poliovirus[41] (reviewed in [42]). Moreover, the

same phenotypes are noted in STAT1 2/2 mice, demonstrating a

key role of the entire innate immune pathway in regulating disease

severity, viral titers, and pathology[10]. In stark contrast, we

demonstrate the paradoxical finding that SARS-CoV Urbani and

rMA15 viruses induce severe end stage lung disease by a STAT1

dependent mechanism that is independent of IFN receptor type I, II

and III signaling. The data point to a novel mechanism by which

STAT1 function regulates disease severity in the lung following

SARS-CoV induced acute lung injury.

New paradigms for STAT1 regulation of acute lung injury
In contrast to the existing paradigm, SARS-CoV infection is

successfully controlled and cleared in IFNAR12/2, IFNGR2/2,

Figure 6. IFNL receptor antibody treatment of IFNAR12/2 mice. IFNAR12/2 mice were treated with 100mg of anti-IL28Ra antibody and
infected with rMA15 virus. A. Mock infected (PBS) and antibody injected IFNAR12/2 mice were infected with 16105 pfu/ml rMA15 virus at day 0.
Average weights for each group are plotted compared to starting weights (5 mice per group). B. Mouse lungs were harvested at days 2, 4 and 9 post-
infection. Virus titer in lung homogenates were determined on Vero cells. 5 mice were used per timepoint and the average titer of the group of 5
mice is shown.
doi:10.1371/journal.ppat.1000849.g006
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IFNAGR2/2 and IFNLR deficient mice while deletion of STAT1

leads to increased virus replication, morbidity and mortality

following infection with either the human epidemic strain of

SARS-CoV (Urbani) or a mouse adapted strain (rMA15). These

results suggest a novel mechanism of STAT1 regulation of severe

end stage lung disease following SARS-CoV infection that is

independent of it’s roles in IFN signaling and ISG expression.

Although it is possible that cooperative combinations of several

IFNs (IFNa/b, IFNc, IFNl) that signal through STAT1 are

required to regulate SARS-CoV infection, we feel that the

possibility exists that STAT1’s role in controlling cell proliferation

and wound healing may be the base cause of the increased disease

seen in STAT12/2 mice. Nevertheless, the development of triple

knockouts affecting all 3 IFN receptors would address this

mechanistic possibility.

Alternative roles for STAT1
STAT1 functions a key gatekeeper in mediating IFNa/b, IFNc

and IFNl signaling into the nucleus to induce overlapping but

distinct ISGs. Less well appreciated in viral pathogenesis studies,

STAT1 also plays key roles in cell cycle arrest and cell

proliferation[43–45]. Thus, STAT1 defects may augment viral

lung disease by several potential mechanisms. STAT1 was shown

to be an important controller of tumor formation in several types

of cancers including lung, colon, pancreatic and brain cancers[46–

48] and its role in cell proliferation has been studied in the context

of pulmonary fibrosis[43]. STAT12/2 mouse fibroblasts showed

increased proliferation when exposed to growth factors compared

to WT mouse fibroblasts. Additionally, STAT12/2 mice

demonstrated a greater susceptibility to chemically induced

pulmonary fibrosis via bleomycin treatment. These data suggested

that outside of the innate immune response, STAT1 may function

as a key regulator of cell proliferation and of the wound healing

response[49]. Our data also suggest that STAT1 may regulate the

wound healing response following acute lung injury associated

with viral infection, similar to its cell cycle regulation seen in other

models of disease.

STAT1 and SARS-CoV
Lungs of STAT12/2 mice infected with rMA15 virus

progressed to an early stage pulmonary fibrosis-like disease in 9

days. The acute lung injury (ALI) seen in these lungs approximates

the damage seen in ARDS that was often seen in severe cases of

SARS in humans[50], especially in the elderly. We found

perivascular cuffing, collapse of alveolar parenchyma, invasion

and amplification of macrophages, neutrophils, eosinophils and

fibroblasts and most importantly, extensive fibrin deposition

throughout the lungs. These pathological findings mirror those

seen in ALI, pulmonary fibrosis and ARDS.

SARS-CoV, like many highly pathogenic viruses, expresses

several proteins that antagonize the IFN sensing and amplification

network. SARS-CoV ORF6 blocks STAT1 nuclear import[18],

PLP blocks IRF3 activation[51], NSP7[51], NSP15[51], ORF3b

and N have been shown to be IFN antagonists as well[19].

Importantly, these antagonists only function in the context of

SARS-CoV infection within discrete permissive cells. This suggests

that in infected cells, the multiple pathways that inhibit IFN

signaling may create essentially a STAT2/2 environment which

may contribute to the further pathology seen during disease. As

has been described with influenza, it is likely that a cytokine storm

significantly contributes to increased pathogenic outcomes by

targeting non-infected cells. The loss of STAT1 in other cells of

the knockout mouse may contribute as we have described here, to

loss of wound healing control and induction of fibrosis, leading to

the development of the lethal disease state after SARS-CoV

infection.

The molecular mechanisms governing SARS-CoV pathogenesis

have only recently begun to be evaluated using mice with targeted

genetic defects challenged with the rMA15 virus. Sheahan et. al.

identified a role for Myd88, an adapter protein of TLR signaling,

and RAG1, necessary for antibody production, in protection from

infection and disease. Myd88 2/2 mice showed an enhanced

susceptibility to rMA15 virus infection in C57/B6 mice[26] and

RAG12/2 mice showed no increased morbidity and mortality

from rMA15 virus infection, viral replication in the lungs was

detectable through 28 days post-infection[26]. These data suggest

that an intricate balance between the innate and adaptive immune

response is necessary for protection from SARS-CoV infection.

We are currently working on understanding how these two

processes interact in the host. Using proteomic and microarray

analyses Cameron et al[22] showed that individuals who survived

SARS-CoV infection had controlled innate immune, ISG and

cytokine responses while individuals who progressed to severe

disease demonstrated an uncontrolled innate immune response,

with high levels of ISG and immunoglobulin expression, increased

cytokine responses and poor antibody responses to the spike

protein. The cause of this lack of regulation is not understood.

Comparison of Urbani to rMA15 virus
Infection with the epidemic (Urbani) and mouse adapted strains

of SARS-CoV caused increased pathology in the STAT12/2

mice. Thus, it seems likely that the mouse adapted mutations in

rMA15 enhanced the intrinsic pathogenic properties of SARS-

CoV to produce severe end stage lung disease in the mice.

However, SARS-CoV Urbani spreads from the respiratory tract

into the spleen and liver of STAT12/2 mice. This suggests that

although the damage may have been induced by viral infection,

the pathology results from the host’s response to the infection,

though it is not clear whether this represents a normal pattern of

spread or whether mutations have evolved in the virus that

promote spread and distribution to other organs. Similar findings

were seen in autopsy samples from individuals who died from

SARS. Airways were intact and regenerated while acute cases

showed spread to the outer pulmonary parenchyma[52].

The similarities between STAT12/2 mice infected with

SARS-CoV and elderly individuals infected with SARS-CoV

during the epidemic are intriguing. Recent work has shown that in

cells from aged hosts, STAT1 signaling cascades are less

responsive to stimuli; STAT1 signaling in aged macrophages were

hypo-responsive to IFNc[49]. As observed in our study, IFNc
expression increases substantially in STAT12/2 mice. We

hypothesize that this may be in response to a lack of negative

feedback via the STAT1 signaling pathway. During the SARS

epidemic, aged individuals were the cohort with most severe

disease and highest mortality rates[53]. We propose that altered

STAT1 signaling in aged individuals may have lead to increased

susceptibility to severe disease.

We cannot rule out the possibility that all 3 types of IFN

receptors are redundant for SARS-CoV mediated disease and that

only by deleting all 3 types of receptors will be observe an increase

in pathogenesis. Proof must await the availability of a mouse strain

containing the deletion of all three receptors. However we find

that the type of pathology produced in STAT12/2 mice by both

WT and rMA15 SARS-CoV demonstrates a role for STAT1 in

non-innate immune processes that resemble those produced in

severely infected SARS-CoV patients.

We propose a new potential pathway by which STAT1

regulates end stage lung disease following viral infection. We
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hypothesize that the increased susceptibility of STAT12/2 mice

results from different roles of STAT1 in the cell. First, loss of

STAT1 results in a deficient IFN response that results in higher

titers of virus in the lungs. Secondly, loss of STAT1 allows for

unregulated cell proliferation in response to the innate immune

response, causing enhanced damage to the lungs and death of the

animals. Our findings also point to an increasing role of the cell

damage response to viral infection that can be potential targets for

therapy in highly pathogenic respiratory infections.

Methods

Ethics statement
All mice in this study were treated following IACUC guidelines.

For infection mice were pre-treated with Ketamine and Xylazine

as an anesthetic. Mice were euthanized if their weight dropped

below 20% of their starting weight or if clinical symptoms

warranted it per our IACUC approvals. Animal housing and care

and experimental protocols were in accordance with all UNC-

Chapel Hill Institutional Animal Care and Use Committee

guidelines or NIH guidelines, depending where the experiments

were performed.

Viruses and cells
Vero E6 cells were grown in MEM (Invitrogen, Carlsbad, CA)

supplemented with 10% FCII (Hyclone, South Logan, UT) and

gentamicin/kanamycin (Gibco-BRL). Stocks of the biological

SARS-CoV (Urbani), recombinant SARS-CoV (icSARS) and

mouse-adapted SARS-CoV (rMA15) were propagated and titered

on Vero or Vero E6 cells and cryopreserved at 280uC until use as

described [30]. All experiments with infectious virus were

performed in a Class II biological safety cabinet in a certified

biosafety level 3 laboratory containing redundant exhaust fans

with personnel wearing protective equipment including Tyvek

suits, hoods, and HEPA-filtered powered air-purifying respirators

(PAPRs) as described [30].

Mice
129S6/SvEv wildtype and STAT12/2 mice (catalog number

002045-M-F) were obtained from Taconic Farms (Germantown,

NY). For the mouse adapted SARS-CoV infections, Type I IFN

receptor deficient (IFN alpha/beta receptor) (IFNAR12/2) mice

were bred in at the UNC mouse facility (Chapel Hill, North

Carolina). Type II IFN receptor deficient (IFN gamma receptor)

(IFNGR2/2) mice (stock number 002702) were purchased from

The Jackson Laboratories (Bar Harbor, ME). For the Urbani virus

infections, IFNAR12/2 mice were obtained as a gift from Dr.

Joan Durbin at Ohio State University and IFN alpha/beta/

gamma receptor double knockout (IFNAGR2/2) mice were bred

at the NIH animal facility (Bethesda, MD). IFN-lambda receptor

knockout mice (IL28Ra2/2, Zymogen, Seattle, Washington)

were bred at the UNC Chapel Hill animal facility. Animal housing

and care and experimental protocols were in accordance with all

UNC-Chapel Hill Institutional Animal Care and Use Committee

guidelines or NIH guidelines, depending where the experiments

were performed. All animal studies were conducted in Animal

Biosafety Level 3 laboratories using SealSafe Hepa-filtered caging

and personnel wore personal protective equipment, including

Tyvek suits and hoods and positive pressure HEPA-filtered air

respirators. 10 week old mice were anesthetized with a mixture of

ketamine/xylazine or isoflurane and intranasally infected with

either PBS alone or 105 pfu/50 ml rMA15 or the recombinant or

biological epidemic virus, icSARS or Urbani, in PBS (Invitrogen,

Carlsbad, CA). Mice were monitored at 24 h intervals for virus-

induced morbidity and mortality. Subsets of mice were euthanized

at days 2, 5, and 9 post-infection (dpi) for characterization of

rMA15 infection, while the less pathogenic Urbani virus infected

animals were sampled on days 2, 3, 5, 9, 15, 22 and 29 post-

infection. All tissues were analyzed for histopathology changes and

for viral titers.

Viral replication in organs
To quantify the amount of infectious virus in tissues from

rMA15 infection, each organ was weighed, placed in 0.5 ml

DPBS, homogenized, and titered via plaque assay on Vero E6 cells

as previously described [26]. For Urbani infection, supernatants of

10% (w/v) lung homogenates were prepared and titrated on Vero

cell monolayers in 24- and 96-well plates as previously described

[40]. Virus titers are expressed as TCID50 per g of tissue. The

lower limit of detection was 101.5 TCID50/g.

Histological analysis
Lung tissues were fixed in PBS/4% para-formaldehyde, pH 7.3,

embedded in paraffin, and 5 mm sections were prepared by the

UNC histopathology core facility. To determine the extent of

inflammation, sections were stained with hematoxylin and eosin

(H & E) and scored in a blinded manner.

BD Cytometric Bead Array (CBA) for protein expression
Supernatants of 20% (weight/volume) lung homogenates were

used for detection of cytokines and chemokines using BD CBA kits

(BD Biosciences) according to the manufacturer’s instructions. The

lower limit of detection for each protein is included in the kit

protocol.

In situ hybridization
35S-UTP-labeled riboprobes specific to the N gene of SARS-

CoV (Urbani) or to the EBER2 gene from Epstein-Barr virus

(negative control probe) were generated with an SP6-specific

MAXIscript in vitro transcription kit (Ambion) and in situ

hybridization was performed as described previously[26]. Briefly,

deparaffinized tissue sections were hybridized with 56104 cpm/ml

of 35S-labeled riboprobes overnight. Tissues were washed,

dehydrated through graded ethanol, coated in NTB autoradiog-

raphy emulsion (Kodak), and incubated at 280uC for 7 days.

Following development, sections were counterstained with hema-

toxylin and silver grain deposition was analyzed by light

microscopy. rMA15-specific signal was determined by comparing

silver grain deposition on parallel sections hybridized with the 35S-

labeled riboprobe complementary for the EBER2 gene of Epstein-

Barr virus.

Real-time PCR analysis
Lungs from mock or SARS-CoV infected mice were removed

and homogenized directly in 1 ml of Trizol reagent (Invitrogen)

and total RNA was isolated following manufacturer’s instructions.

Complementary cDNA was generated from 1 mg of total RNA

using 250 ng random primers (Invitrogen) and Superscript II

reverse transcriptase (Invitrogen). Real-time PCR experiments

were performed using Taqman gene expression assays and an ABI

Prism 7300 (Applied Biosystems). 18S rRNA was used as an

endogenous control to use for normalization in all assays. The

relative fold induction of amplified mRNA were detected using the

Ct method. Taqman primer sets used were 18S (#Hs03003631

Applied Biosystems), IFNc (Mm00801778 Applied Biosystems),

TNFa (Mm99999068 Applied Biosystems), MCP1 (Mm99999056

Applied Biosystems), IFNB (Mm00439552 Applied Biosystems),
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IFNA4 (Mm00833969 Applied Biosystems), IL28B (Mm00663660

Applied Biosystems), IL18 (Mm00434225 Applied Biosystems),

IRF1 (Mm01288574 Applied Biosystems) and OAS1

(Mm00449297).

Flow cytometry
Mice were inoculated as described above, sacrificed by

exsanguination at 2 and 4 days post-infection, and lungs were

perfused via cardiac puncture with 16PBS. Lungs were dissected,

minced, and incubated for 2 hrs with vigorous shaking at 37uC in

digestion buffer [RPMI, 10% FBS, 15 mM HEPES, 2.5 mg/ml

collagenase A (Roche), 1.7 mg/ml DNase I (Sigma)]. Cells were

passed through a 40 micron cell strainer, resuspended in RPMI

media, layered on 5 ml lympholyte-M (Cedarlane), and centri-

fuged 30 min at 2500 rpm. Cells were collected, washed in wash

buffer (16 HBSS, 15 mM HEPES), and total viable cells were

determined by trypan blue exclusion. Isolated cells were incubated

with anti-mouse FccRII/III (2.4G2; BD Pharmingen) for 20 min

on ice and then stained in FACS staining buffer (16 HBSS, 1%

FBS, 2% normal rabbit serum) with the following antibodies from

eBioscience: anti-F4/80-FITC, anti-Gr-1-PE, anti-CD11b-APC,

anti-CD11c-PE, anti-Ly-6C-FITC, anti-CD3-FITC, anti-CD8-

APC, anti-CD4-PerCP, and anti-NK1.1-PE. Cells were fixed

overnight in 2% paraformaldehyde and analyzed on a Cyan

cytometer (Dako) using Summit software.

Statistical analyses
Percent starting weights, viral titers and inflammatory cell

numbers were evaluated for statistically significant differences by

the non-parametric Mann-Whitney test within GraphPad Prism or

unpaired t-tests using GraphPad InStat3 software. P values of

#0.05 were considered significant.

Supporting Information

Figure S1 Urbani virus infection of 129 WT (A), IFNAR12/2

(B), IFNAGR2/2 (C) and STAT12/2 (D) mice. Mice were

infected with the Urbani virus and weighed each day for 29 days.

Shown is their average weight change from day 0 across each

group (n.5). E. Mice were harvested at each timepoint and lung

homogenates determined in Vero cells are expressed as mean

TCID50 per gram of lung for each group. F. Urbani virus infected

mouse lungs stained with H&E. A representative lung from each

mouse strain across the timecourse is shown. Note the increased

inflammation in the lungs of STAT12/2 mice through the

course of disease, especially at day 15 post-infection.

Found at: doi:10.1371/journal.ppat.1000849.s001 (6.33 MB TIF)

Figure S2 Gross pathology of lungs and peripheral organs of

Urbani virus infected mice. A. Gross lesions in organs from an

Urbani virus infected STAT12/2 mouse 15 dpi showing a

fibrinous exudate on the spleen and nodules on the liver. B. Lung

from a STAT12/2 mouse 24 dpi displaying a pyogranulomatous

nodule. H&E, X100. C. Spleen from a STAT12/2 mouse 24 dpi

showing the central area of the pyogranuloma with neutrophils on

left and macrophages on the right side. H&E, X400. D. Liver of a

STAT12/2 mouse stained with anti-SARS-CoV antibody

showing viral antigen in macrophages on edges of pyogranuloma.

Hematoxylin, IHC, X400. E. Spleen of STAT12/2 mouse 24

dpi, showing many pyogranulomas. H&E, X40. F. Spleen of

STAT12/2 mouse at 24 dpi stained with Mason’s Trichome

stain, showing collagen (blue) in zones around the pyogranulomas,

X100. G Spleen of STAT12/2 mouse infected with Urbani virus

22 dpi stained with anti-kappa light chain, showing numerous

plasma cells adjacent to the pyogranuloma. Hematoxylin, IHC,

X200.

Found at: doi:10.1371/journal.ppat.1000849.s002 (7.14 MB TIF)

Figure S3 Real Time analysis on innate immune response

genes. RNA from rMA15 infected WT, IFNAR2/2 and

STAT12/2 mice was extracted and used for Realtime analysis

of (A) IFNB, (B) IFNA, (C) IL18B, (D) IL18, (E) and (F) OAS1.

Graphed is the fold increase over 18S rRNA for each sample at 2,

5 and 9 days post infection. For each timepoint, RNA from 5 mice

was harvested and the average is shown with the standard

deviation of each sample set.

Found at: doi:10.1371/journal.ppat.1000849.s003 (0.48 MB EPS)

Figure S4 A. Lungs from mice infected with Urbani virus were

harvested at days 2, 4, 7 and 21 post-infection (n = 5 for each

timepoint). Shown are representative sections from IL28Ra2/2

mouse lungs stained with H&E at each timepoint. B. Mice were

infected with rMA15 virus and lungs were harvested at days 2 and

4 post-infection. The infection was lethal for both BALB/c and

IL28Ra2/2 mice by day 4 post-infection. Uninfected BALB/c

mouse lungs are shown as a comparison.

Found at: doi:10.1371/journal.ppat.1000849.s004 (4.65 MB TIF)
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