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Abstract

Misleading graphs are a source of misinformation that worry many experts. Especially peo-

ple with a low graph literacy are thought to be persuaded by graphs that misrepresent the

underlying data. But we know little about how people interpret misleading graphs and how

these graphs influence their opinions. In this study we focus on the effect of truncating the y-

axis for a line chart which exaggerates an upgoing trend. In a randomized controlled trial, we

showed participants either a normal or a misleading chart, and we did so in two different con-

texts. After they had seen the graphs, we asked participants their opinion on the trend and to

give an estimation of the increase. Finally we measured their graph literacy. Our results

show that context is the only significant factor in opinion-forming; the misleading graph and

graph literacy had no effect. None of these factors had a significant impact on estimations

for the increase. These results show that people might be less susceptible to misleading

graphs than we thought and that context has more impact than a misleading y-axis.

Introduction

Graphs can misrepresent the underlying data in many ways, and this worries experts in differ-

ent fields, from health communication [1] to data visualization [2].

Misleading graphs were omnipresent in the media during the covid pandemic, both in

(social) media and governmental communications [3, 4]. Earlier it was shown that even in the

scientific journal ‘Science’ 30% of all graphs contained errors [5], and a later study showed that

31% of the graphs in the Journal of American Medicine were ambiguous [6].

There are many ways for a graph to be ’wrong’. For example, there can be inconsistencies

within a graph, such as a y-axis label contradicting the title or the y-axis being flipped [7].

There have been many attempts to categorize misleading graphs. For instance, [8] considers

seven types of distortion where the first type is manipulating scale ratios: for instance, by trun-

cating a y-axis such that it does not start at zero. A recent overview [2] also includes this error,

along with many others. This study will focus on one specific form of misleading graphs: line

charts that truncate the y-axis. We focus on line charts as these are some of the most com-

monly used types of visualization [9].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0265823 June 15, 2022 1 / 9

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Driessen JEP, Vos DAC, Smeets I, Albers

CJ (2022) Misleading graphs in context: Less

misleading than expected. PLoS ONE 17(6):

e0265823. https://doi.org/10.1371/journal.

pone.0265823

Editor: Carlos Gracia-Lázaro, University of

Zaragoza, SPAIN

Received: November 19, 2021

Accepted: March 4, 2022

Published: June 15, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0265823

Copyright: © 2022 Driessen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data have been

uploaded as part of the submission. Upon

acceptance, we will put the data in a public

repository or upload it as supplemental material to

the paper; whatever the editor prefers.

https://orcid.org/0000-0003-1743-9493
https://orcid.org/0000-0002-9213-6743
https://doi.org/10.1371/journal.pone.0265823
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265823&domain=pdf&date_stamp=2022-06-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265823&domain=pdf&date_stamp=2022-06-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265823&domain=pdf&date_stamp=2022-06-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265823&domain=pdf&date_stamp=2022-06-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265823&domain=pdf&date_stamp=2022-06-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265823&domain=pdf&date_stamp=2022-06-15
https://doi.org/10.1371/journal.pone.0265823
https://doi.org/10.1371/journal.pone.0265823
https://doi.org/10.1371/journal.pone.0265823
http://creativecommons.org/licenses/by/4.0/


Graph literacy

Graph literacy is the individual’s ability to read, process, and comprehend data visualisations

[10]. In general, people interpret graphs in a few steps [11]. At first, they identify the visual fea-

tures, such as the direction or colour of a line. Secondly, they interpret the relations that the

visual features represent. Lastly, they match these interpretations with the labelled variables.

Individuals with higher graph literacy can process graphs with greater ease and have an

expected higher comprehension of the graph’s content [10]. Eye-tracking studies confirmed

this effect and moreover found that people with low graph literacy have an overreliance on

spatial-to-conceptual mappings, whilst people with high graph literacy spend more time look-

ing at features such as the numbers on the scales and the axis labels [7].

There are multiple tests available to determine the level of graph literacy of an individual.

For example, the objective graph literacy scale [12] is a test with 13 items. It is a reliable indica-

tor of an individual’s graph literacy level, but it takes around ten minutes to complete, which is

not manageable for some studies. The four-item short graph literacy test scale (SGL) [13] is a

shortened version of the objective graph literacy scale with still sufficiently good psychometric

properties.

The interpretation of misleading graphs

A few studies have studied the interpretation of conflicted graphs or other types of misleading

graphs, which usually covered only bar charts. For instance, [14] researched bar graphs’ inter-

pretation when shifting the y-axis, but with a sample size of only nine participants. [15] studied

tilted bar charts and found that these seem to be interpreted similarly to the original bar charts.

An older study that used different types of misleading bar charts showed that these improperly

designed charts can influence decision making [16]. [10, 17] studied the interpretation of

graphs with 3D effects and concluded that in general 2D bar charts result in higher compre-

hension than 3D bar charts.

Experiments showed that individuals with high graph literacy have a more accurate inter-

pretation of self-conflicting graphs [7]. [18] found that bar charts with a truncated y-axis were

found to be significantly less credible than proper graphs, but the information reproduction of

skewed graphs was significantly higher.

Graphs in context

In real-life situations, graphs are used in a context, and we know that prior knowledge about a

subject influences the reader’s interpretation of graphs [19]. The study by [18] also looked at

graphs in different contexts: both deceptive and non-biased graphs were shown in a general

news and a political news setting to communication students. In both settings, they found that

‘a student sample was effectively unfazed by a deceptive graphic’. They recommend that their

study should be replicated in a random, representative sample.

It is known that people who do not have a strong opinion on a subject are more susceptible

to persuasion using charts [20]. Therefore we decided to do a follow-up study to [18] with a

random, representative sample and graphs in a made-up context that people would not have

existing strong opinions on. Furthermore, we focus on line graphs since they are understudied

in the current literature.

Research question and hypothesis

In this paper, we study the interpretation of line graphs. Specifically, we study whether and

how truncating the y-axis and the context the graph is presented in influence the
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interpretation. We check whether this influence is moderated by graph literacy. Our expecta-

tion is that (i) non-shifted line graphs are better interpreted than shifted line graphs, (ii) that

the context influences the judgement, and (iii) that these relations are stronger in participants

with low graph literacy.

Methods

Design

The current study uses a quantitative survey-based research design with four distinct surveys.

The surveys can be separated on two between-person factors, namely, context and graphical

representation.

The contextualisation presents the participants a narrative that focuses on the fictional

’Bluebeak’, a non-native bird in Denmark. One story about the ’Bluebeak’ is that the bird is

endangered, whereas the other story focuses on the disruption the ’Bluebeak’ causes to Den-

mark’s eco-system. Both narratives are provided in S1 Appendix.

The graphical design element accompanies the ’Bluebeak’ contextualisation, where one

group of each contextualisation gets a different graph presented. The first possible graph being

a line graph at which the y-axis starts at zero, whilst the other group gets a line graph that starts

two standard deviations below the mean (in line with the suggestion by [14]). However, apart

from the scaling of the vertical axis, both graphical representations are the same (see Fig 1).

Population & sample assignment

Data collection is done through Prolific (www.prolific.co), which uses representative samples

from adult US citizens to fill out surveys and compensate them for their time. Prolific ran-

domly assigns each participant to one of the four groups. The questionnaire (see S1 Appendix)

is filled in unsupervised and online through Prolific.

Participants provided written informed consent. The Ethics Committee Psychology of the

University of Groningen has approved this study (PSY-1920-S-0441).

Measurement

Variables. The study uses two grouping factors, contextualisation and graphical represen-

tation. Additionally, we ask the participants to make a judgement call about the displayed situ-

ation, with scores ranging from 1 (very bad) to 5 (very good).

Participants are asked to estimate the proportional increase of the number of ’Bluebeaks’ in

the previously presented graph to determine which type of graph the participants give the

most accurate proportional increase estimation. Graph literacy is measured using the SGL

scale (see: Instruments) to determine whether varying levels of graph literacy influence their

judgement and estimation of Denmark’s ’Bluebeak’ situation.

Finally, a set of demographics are included to have options for control and evaluations of

sample balance. The demographics are age, gender, and educational level. Age is measured on

a categorical scale ranging from 1 (18–25) to 7 (66 +), and is assumed to be continuous within

the analysis. Gender has options male, female and other. Education level is measured on a

7-point scale.

Instruments. The short graph literacy scale consists of four items with different types of

graphs displayed [13]. For instance, a pie chart is displayed and the reader is asked to assess the

size of a slice of the pie. The possible scores on the short graph literacy scale range from 0 to 4,

where zero indicates low graph literacy and a score of four indicates high graph literacy.
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Data analysis plan. Descriptive statistics for all variables are provided. Outliers are

detected and removed based on two criteria. To avoid non-serious participants, all those with

a participation duration exceeding the mean duration plus three times the standard deviation

are excluded. Furthermore, outliers are detected using the MAD (median absolute deviation)

on the percentage estimation variable since this is the sole variable that took manual input

from the participant. For the MAD, the threshold of 2.5 is chosen, which is classified as a

mildly conservative criterion [21].

The relation between axis type, context, judgement and interpretation is analysed via multi-

ple linear regression. Two sets of models are built, one using judgment and the other using

estimated proportional increase as the dependent variable. The percentage variable is centred

around the correct answer; this way, the estimates received by the model are interpretable as

the amount which the given estimates diverge from the correct answer.

For both sets of models, we make versions with (i) the main effects of axis-type and context,

(ii) as (i) but with the inclusion of SGL as moderation variable, (iii) as (ii) but including the

interaction between axis type and context. In all three models, age, education level, and gender

will be included as covariates.

Fig 1. The two alternative visualizations.

https://doi.org/10.1371/journal.pone.0265823.g001
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Power and sample size. A posthoc power analysis is conducted for 247 participants, at

which the multiple regression with α = .05 can discover slopes with small effects f2 = .05 with a

power of .968.

Results

Descriptive statistics

In total, 313 people started with the questionnaire. A total of 66 participants were excluded

due to the following reasons: not completing the questionnaire (13), not providing consent

(1), exceeding our participation duration threshold (5), not specifying gender (6) and provid-

ing scores exceeding the MAD-threshold (41). Data for 247 participants were included.

Descriptive statistics are provided in Tables 1 and 2 for these n = 247 participants.

None of the bivariate Pearson correlations between pairs of the variables in Table 2 is signif-

icant. (r(judgment, percentage) = -0.002, t(245) = -.0.026, p = .979, 95% CI [-0.12; 0.123];

r(judgment, SGL) = 0.059, t(245) = 0.929, p = .353, 95%CI [-0.066; 0.183]; r(percentage, SGL)

= -0.000, t(245) = -0.005, p = .996, 95%CI [-0.125; 0.124]), indicating no direct linear relations.

Linear regression

Two multiple regression models are fitted to assess the possible association between variables,

one with judgment and the other with the centred percentage estimate as the dependent vari-

able. For both models, the underlying statistical assumptions have been checked, and there

were no reasons to abandon the choice for multiple linear regression. The results are given in

Tables 3 and 4.

As predictor variables, the model has the type of graph (shifted vs non-shifted), the type of

context (invasive vs endangered), the score on the short graph literacy (SGL) test and its inter-

action with the type of graph, and the demographic variables education level, age and gender.

When looking at the model with judgment as the dependent variable, context clearly is sig-

nificant, with the average score in the endangered group 1.86 points higher than the ecosystem

group (95% CI [1.64, 2.07], p< .001). None of the other variables is significant. When SGL is

not included in the model, graph type is significant (with shifted graphs scoring, on average,

Table 1. Descriptive statistics (mean score and standard deviation; the percentage for ‘male’) of the demographic characteristics.

Variable Normal graph Shifted graph

Invasive Endangered Invasive Endangered

Age 4.14 (1.92) 4.41 (1.78) 3.53 (1.84) 3.90 (1.99)

Education 3.56 (1.80) 4.20 (2.27) 3.43 (1.87) 3.95 (2.21)

Male 48% 47% 60% 47%

n 63 71 53 60

https://doi.org/10.1371/journal.pone.0265823.t001

Table 2. Descriptive statistics of the other variables.

Variable Normal graph Shifted graph

Invasive Endangered Invasive Endangered

Judgement 2.21 (0.70) 4.07 (0.76) 2.43 (0.95) 4.28 (0.78)

Percentage 21.52 (11.10) 17.31 (10.31) 29.21 (15.13) 28.37 (13.42)

SGL 1.65 (0.48) 1.80 (0.40) 1.72 (0.50) 1.77 (0.46)

n 63 71 53 60

https://doi.org/10.1371/journal.pone.0265823.t002
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0.25 higher than normal graphs (95% CI [.03, .46], p = .023), but this effect vanishes when

graph literacy is included.

A similar picture arises when looking at the model with the percentage estimate centred

around the correct answer (approximately 16%) as the dependent variable. Here none of the

variables is significant. (The age group 46–55 differs (p = .039) from the reference group, but

this effect is non-significant when correcting for multiple comparisons.) When SGL is

excluded from the model, the variable graph does become significant, with shifted graphs scor-

ing 9.12 percentage points higher than non-shifted graphs (95% CI [5.86, 12.39], p< .001) but

also here, the effect vanishes when SGL is included in the model.

Conclusion & discussion

This study looks at how a truncated y-axis, context, graph literacy and demographics influence

the judgment and interpretation of graphs.

When participants are required to make a judgement call based on a displayed graph, it

becomes apparent that the story itself matters more in the decision-making process than the

shape of the graph’s y-axis. This is in contrast to the conclusions of [22], who reported that dis-

torted graphs influence both judgement and comprehension. The deviating results could be

due to different choices in the operationalisation of the studies. For instance, [22] studied bar

graphs, whereas we focused on line graphs.

Table 3. Model summary for the multiple linear regression model with judgment as the dependent variable.

Predictors Estimate 95% CI p
GraphA 0.38 [-0.43; 1.19] .359

StoryB 1.86 [1.64; 2.07] < .001

EducationC

High school -0.28 [-0.98; 0.42] .430

Secondary -0.06 [-0.75; 0.62] .861

Technical 0.06 [-0.67; 0.79] .872

Undergraduate -0.30 [-1.20; 0.59] .504

Graduate -0.37 [-1.52; 0.77] .523

Doctorate 0.01 [-0.71; 0.73] .974

AgeD

26–30 0.13 [-0.27; 0.53] .527

31–35 0.04 [-0.37; 0.45] .836

36–45 -0.01 [-0.40; 0.38] .948

46–55 0.03 [-0.34; 0.41] .857

56–65 0.05 [-0.37; 0.46] .820

66+ 0.05 [-0.37; 0.47] .825

Gender 0.05 [-0.16; 0.26] .643

SGL -0.07 [-0.39; 0.26] .690

Graph�SGL -0.07 [-0.53; 0.38] .745

R2 .596

Adj. R2 .566

n 247

A normal graph is the reference group
B Invasive is the reference group
C No formal education is the reference group
D 18–25 is the reference group

https://doi.org/10.1371/journal.pone.0265823.t003
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For the interpretation of the graph, truncating the y-axis does have a significant impact on

percentage estimates, which is in line with [14], who claimed that the y-axis of a line graph

should start at least 1.5 standard deviations to be interpreted correctly. However, we see that

the influence of the truncated y-axis vanishes when we include graph literacy as a variable,

which confirms that people with a low graph literacy have more problems with interpreting

misleading graphs [7, 10, 23].

All in all, our randomized experiment on a representative sample of the US population con-

firms the hypothesis by [18] that people are unfazed by misleading charts—except for people

with a low graph literacy when it comes to making estimations.

One limitation of our study is that some of the participants did not seem to be used to work-

ing with percentages and gave unreasonably high estimates (for instance, one participant esti-

mated 3,000% for an increase that was, in reality, 19.4%). An explanation for these very high

estimates could be that the upper bound of the line graphs was 3,000. Maybe these participants

thought the exercise was to state to which value the number of ‘bluebeaks’ had increased.

These outliers did not influence our conclusions, and we kept them in our data set, but it

might be good to realise that there might be a deeper misunderstanding hidden between the

variables we measure.

Another limitation is that in our study large groups of participants had the same level of

graph literacy. Even though the Short Graph Literacy test graphs are very basic graphs, 75%

Table 4. Model summary for the multiple linear regression model with percentage as the dependent variable.

Predictors Estimate 95% CI p
GraphA 5.68 [-6.86; 18.22] .373

StoryB -2.78 [-6.04; 0.48] .095

EducationC

High school 1.14 [-9.73; 12.00] .837

Secondary -3.05 [-13.64; 7.54] .571

Technical -1.94 [-13.20; 9.32] .734

Undergraduate -0.90 [-14.71; 12.91] .898

Graduate -10.83 [-28.56; 6.90] .230

Doctorate 0.64 [-10.47; 11.74] .910

AgeD

26–30 -1.09 [-7.31; 5.14] .731

31–35 -4.84 [-11.16; 1.49] .133

36–45 -4.11 [-10.16; 1.93] .181

46–55 -6.09 [-11.86; -0.32] .039

56–65 -5.47 [-11.89; 0.96] .095

66+ -2.29 [-8.77; 4.19] .487

Gender -0.04 [-3.25. 3.17] .979

SGL 0.46 [-4.54; 5.46] .857

Graph�SGL 1.96 [-5.03; 8.91] .582

R2 .184

Adjusted. R2 .123

n 247

A normal graph is the reference group
B Invasive is the reference group
C No formal education is the reference group
D 18–25 is the reference group

https://doi.org/10.1371/journal.pone.0265823.t004
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percent of the participants answered only 1 or 2 questions correctly. This either means that

many people do not know how to read and interpret simple graphs, which is in line with [24].

Furthermore it is in line with [25] who found statistical literacy in general, to be low, especially

in the US population. It could also mean that the wording or topics of the exercises make them

more difficult than they are supposed to be. Only a quarter of the participants demonstrated a

decent graph literacy level. The Short Graph Literacy test [13] might be too short to separate

between different levels of graph literacy. This might explain why graph literacy did not influ-

ence the judgement in our study. For follow-up studies, we would recommend using a more

extensive graph literacy test.

For future research on this subject, it would also be interesting to see which kinds of contex-

tualization lead to under or overestimating the correct answer. Furthermore, it might be good

to see if these results hold for other graph types, such as bar charts.

Finally, we want to emphasize that although truncating the y-axis seems to have less influ-

ence on people’s judgement and understanding than previously thought, it is in no way an

excuse to make or use misleading graphs.
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