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ABSTRACT

We describe a new algorithm for design of strand sets,
for use in DNA computations or universal micro-
arrays. Our algorithm can design sets that satisfy
any of several thermodynamic and combinatorial
constraints, which aim to maximize desired hybrid-
izations between strands and their complements,
while minimizing undesired cross-hybridizations.
To heuristically search for good strand sets, our algo-
rithm uses a conflict-driven stochastic local search
approach, which is known to be effective in solving
comparable search problems. The PairFold program
of Andronescu et al. [M. Andronescu, Z. C. Zhang
and A. Condon (2005) J. Mol. Biol., 345, 987–1001;
M. Andronescu, R. Aguirre-Hernandez, A. Condon,
and H. Hoos (2003) Nucleic Acids Res., 31, 3416–
3422.] is used to calculate the minimum free energy
of hybridization between two mismatched strands.
We describe new thermodynamic measures of the
quality of strand sets. With respect to these measures
of quality, our algorithm consistently finds, within
reasonable time, sets that are significantly better
than previously published sets in the literature.

INTRODUCTION

The design of DNA and RNA sequences is a key step in many
biotechnological applications. Uses of DNA microarrays
rely on accurate design for probes that are immobilized on
a surface and bind specifically to complementary targets in a
complex solution. In the case of universal DNA microarrays,
probes are not designed to bind to a genomic sequence or
product, but instead probe complements are ligated to the
genomic sequences, and the ligated product is captured on
the array via specific hybridization between the probe and
its complement (1). DNA strands are also designed for use
in DNA-templated organic synthesis and DNA display,

whereby the ‘template’ DNA strands direct the production
of a library of small polymers (2,3). In DNA computing experi-
ments (4), short oligonucleotides, called words, are units of
information storage. Words are concatenated into long strands
which store several bits of information. In a surface-based
computation (5), words, or their complements, are typically
immobilized on a planar surface—just like oligonucleotide
probes on a DNA microarray chip. In this paper, we consider
the problem of designing moderate-sized, high-quality sets of
strands for such applications. For notational consistency with
the accompanying paper (6), in the context of microarray
applications, we use word to mean a probe and word comple-
ment to mean a target, and strand design may refer to design of
words or word complements. In what follows, we will focus on
design of words, and they are meant to be attached to a surface.

Specific hybridization between a word and its complement
is the means for reading bits of information in a DNA com-
putation and for attaching data to a microarray. Therefore, it is
important that the word oligonucleotides are designed so as to
(i) maximize desired hybridization, i.e. specific hybridization
between a word and its perfect complement, and (ii) minimize
undesired hybridization, i.e. non-specific cross-hybridization
between a word and the complement of a distinct word, or
between two complements under fixed environmental condi-
tions such as temperature. In this work, we assume that words
are immobilized on a surface and cannot hybridize to each
other.

To design good strand sets computationally, it is important
to have a reliable predictor of the quality of a set—that is,
how well the set meets goals (i) and (ii) experimentally. With
respect to a given measure of quality, a key algorithmic
challenge is to design a high-quality strand set, when the
length of the strands and the size of the set are specified.
An alternative formulation of the challenge is to design a
set of strands of a given length whose quality meets a certain
threshold, and which is as large as possible.

This strand design problem is computationally difficult
because the size of the solution space—all possible sets of
strands of the specified length and size—can be enormous
(e.g. for strands of length 10, there are more than 10370 strand
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sets of size 100), and there is no known efficient procedure that
is guaranteed to find optimal strand sets even for the simplest
design criteria. As a result, heuristic algorithms are used for
strand design.

Combinatorial criteria have been widely used in the design
of word sets (7–12); criteria include uniform GC-content
across words (so that desired hybridization between words
and their complements have similar melting temperature)
and a large number of mismatches between two words. In
addition, heuristic algorithms which search for word sets
satisfying such combinatorial criteria have been proposed.
Of these, Tulpan et al. (13) did an empirical evaluation of
a stochastic local search algorithm and showed that the
algorithm could find sets whose quality (measured using
the combinatorial criteria) matched or exceeded previously
reported constructions.

However, combinatorial criteria alone can be a poor meas-
ure of the quality of a set. Garzon et al. (14) and Rose et al. (15)
proposed thermodynamically based measures of quality that
are based on statistical mechanics principles. But it is difficult
to computationally measure the quality of a set using their
criteria for many reasons. First, the evaluation of all possible
structural configurations of the reactants and products present
in a reaction is computationally intractable. Second, even if the
sets of thermodynamic parameters for all possible nearest-
neighbor interactions (including all sizes of internal and
multi-loops) would be completely known, the direct calcula-
tion of the ‘computational incoherence’ measure introduced by
Garzon et al. requires the computation of the concentrations of
all possible reactants and products of a reaction. To obtain the
values of all concentrations in a generalized hybridization
reaction, where all products, reactants and their alternate states
coexist, it is necessary to solve massive systems of coupled
quadratic equations, which is still a challenge nowadays.

Fan et al. (1) used thermodynamic criteria for design of
probes for universal microarrays, but provided little detail
of their method or design criteria. Penchovsky and Ackermann
(16) combined combinatorial and thermodynamic criteria to
design sets of sequences for molecular computations. They
required that the melting temperature of words in a set lie
within a small range, in order to maximize desired hybrid-
ization. In addition, they introduced a new ‘free energy gap’
measure of the quality of a set, which is denoted by d*
throughout our paper: to avoid undesired hybridization, the
gap between the largest MFE (minimum free energy) of any
duplex formed from a word and its complement, and the smal-
lest MFE of any mismatch duplex formed from a word and the
complement of a distinct word, should be as large as possible
(d* is defined precisely in Materials and Methods). They also
developed a heuristic algorithm to design word sets. A weak-
ness of their algorithm is that their means for measuring the
free energy of a duplex secondary structure with mismatches
relies on a program for measuring the free energy of a single-
stranded molecule, requiring the linking of the strands with
an artificial hairpin structure. Another weakness of their
random search algorithm lies in the search strategy, which
works as a generate-and-test mechanism (a simplification of
hill climbing)—this type of simple search mechanism is gen-
erally known to achieve poorer results than more advanced
stochastic local search methods, such as the one underlying the
strand design algorithm presented here (17). Also, Penchovsky

and Ackermann do not provide comparisons of the quality of
sets obtained using their algorithm with those constructed
using previous methods.

The main contribution of this paper is a new algorithm for
design of strand sets, which produces high-quality sets within
a reasonable running time. The algorithm builds on that of
Tulpan et al. (13), but takes thermodynamic as well as
combinatorial quality criteria into account in a flexible way.
The PairFold software of Andronescu et al. (18,19) is used to
calculate the minimum free energy of a duplex, in a manner
that is more accurate than the approach of Penchovsky and
Ackermann. Our algorithm uses a stochastic local search
approach to heuristically search for good sets, which is
known to be effective in solving comparable complex search
problems (17).

To test the quality of our algorithm, we compare sets pro-
duced by our algorithm with seven sets from the literature,
in the following referred to as ‘control sets’. Braich et al. (20)
found the solution of an NP-complete problem on a DNA
computer, using a set of 40 15mers. Brenner et al. (21)
used a set of 8 4mers as a DNA vocabulary that helps to
build a larger library of longer strands (�17 million 32mers),
which in turn were used to identify and extract genes that are
differentially expressed. Faulhammer et al. (22) used an RNA
library of 20 15mers to solve an instance of a computation-
ally hard problem (‘Knights Problem’). Frutos et al. (23)
developed a DNA set of 108 8mers, which can be used to
store and manipulate information in DNA molecules attached
on surfaces. Penchovsky and Ackermann (16) developed a set
of 24 16mers, which can be used to encode binary information
in DNA molecules. Shortreed et al. (6) developed two sets of
64 12mers and 16mers, which can be used to encode large
amounts of information using DNA strands.

We used our algorithm to design both sets of the same size
and satisfying the same constraints, but of higher quality as the
seven control sets, and also to design sets of the same quality
but of larger size than the control sets. We incorporated the
combinatorial, melting temperature and other thermodynamic
design criteria used in the design of the control sets. To com-
pare the quality of the sets generated by our algorithm with
the control sets, we use a variant of the free energy gap
criterion proposed by Penchovsky and Ackermann (Materials
and Methods for details), as well as new measures, introduced
in this paper [and in the accompanying paper (6)], of the
pairwise sensitivity, specificity and discrimination of pairs
of words or complements.

We consider a system with one word wi and two competing
complements ci and cj, which reaches equilibrium. We use a
notion of pairwise sensitivity to measure the degree to which,
when in competition with cj, the complement ci properly
hybridizes to the word wi, and a notion of pairwise specificity
to measure the degree to which the complements cj remain
unhybridized (and thus free to bind with wj). We also use a
notion of pairwise discrimination that is the ratio [wici]/[wicj]
of concentrations of desired versus undesired hybridizations
to the word wi.

We obtain sets that are at least as good as the respective
control sets in all cases, and significantly better in most cases.
For example, Ackermann and Penchovsky reported a set of 24
words of length 16, with a free energy gap d* of 8.12 kcal/mol,
whereas our algorithm produced a set of 24 oligos of length
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16 satisfying the same combinatorial constraints as that of
Penchovsky and Ackermann, but having a narrower melting
temperature range, a free energy gap d* of 9.2 kcal/mol, and a
pairwise discrimination that is 1.6 times better. Also, our algo-
rithm produced a set of 44 strands of roughly the same quality
as the Penchovsky and Ackermann set, yet whose pairwise
discrimination is 1.2 times bigger. Overall, we obtained sets
that improve on the free energy gap d* from 0.77 kcal/mol for
the set by Brenner et al. (21), to 4.81 kcal/mol for the set by
Faulhammer et al. (22).

Although our algorithm and analysis focus on the design of
word sets when the measure of quality is based on interactions
between pairs of words and/or complements, in DNA com-
puting applications, it is also important that when the words
are concatenated to store several bits of information, comple-
ments are unlikely to hybridize anywhere on the longer strands
(including junctions between pairs of words), and that the
longer strands do not form undesired secondary structure.
We developed a heuristic approach for arranging strands in
a set, and also report on additional measures of the quality of
sets of concatenated strands. In some, but not all, cases, we
were able to obtain improved partitionings of the control sets
using our algorithm. In Discussion, we suggest ways in which
better partitionings might be possible.

In the following section, we describe our algorithm, the
combinatorial and thermodynamic design criteria that are
incorporated into our algorithm, and our measures of quality
of word sets. We then provide a detailed analysis of our results,
compared with sets previously reported in the literature.

MATERIALS AND METHODS

Throughout the paper, we use symbols w1,w2, . . . , wk to denote
words and c1,c2, . . . , ck to denote the corresponding comple-
ments. Thus, word wi and complement ci form a perfect match
(duplex), whereas word wi and complement cj, where j 6¼ i, and
complements ci and cj, form mismatches. In this paper, we
design for strands attached to surfaces, and we call them
words, thus being consistent with the accompanying paper (6).

Design constraints

Our algorithm can design a set S of equally long DNA strands,
being either words or complements, where S is of specified set
size N. In this section, we list the combinatorial and thermo-
dynamic constraints that are supported by our algorithm. The
user of the algorithm may choose which constraints should be
used in the design of a set. Table 1 (see ‘In silico experimental
protocols’) summarizes which of these constraints have been
previously used in the design of control sets.

Combinatorial constraints

C1: Direct mismatches. The number of mismatches in a per-
fect alignment of two strands must be above a given threshold.
Here, in a perfect alignment of bases from two strands, the ith
base of the first strand is aligned with the ith base of the second
strand, and a mismatch is an alignment of two distinct bases.
For example, G aligned with A, C, or T is a mismatch whereas
G aligned with G is a match. (This constraint can be applied to
pairs of words only, to pairs of complements only or to both
pairs of words and complements.)

C2: Complement mismatches. The number of mismatches in a
perfect alignment of a strand and a complement of a strand
must be above a given threshold.

C3: Slide mismatches. The number of mismatches in a slide of
one strand over another must be above a given threshold.
A slide of strand S over another strand S0 (both of equal length)
is an alignment of S and S0, in which, for some i, the first base
of S is aligned with the ith base of S0, the second base of S is
aligned with the (i+1)th base of S0, and so on, so that the first
i�1 bases of S0 and the last i�1 bases of S are unaligned. For
example, the strands S ¼ 50-ACC-30 and S0 ¼ 50-TGC-30 can
overlap in three, two, one or zero positions. If i ¼ 2 (we start
counting from zero, i.e. no slides), base ‘A’ of strand S is
aligned with base ‘C’ from strand S0.

C4: Consecutive matches. The maximum number of con-
secutive matches between all slides of one strand over the
other must be in a given range.

C5: GC content. The number of Gs and/or Cs in a word must
be in a given range. For example, all words presented in (24)
have 4, 5 or 6 Cs.

C6: Forbidden subsequences. Each strand must not contain
given undesired subsequences either along the whole strand,
at the 50 and 30 ends and/or in the middle of the strand, as
required.

C7: Alphabet size. All strands must contain bases belonging to
a given non-empty subset of the alphabet {A,C,G,T}. It is a
common practice to design DNA strands over the {A,C,T}
alphabet in order to minimize undesired structures, such as
G-quartets, that can be caused by the presence of Gs.

Constraint C5 can be used to attain desired hybridization
(goal 1). Roughly, the stability of a word–complement pair
increases as the content of Gs and Cs within sequences
increases. Constraint C5 is also used to ensure uniform melting
temperatures across desired word–complement pairings. Con-
straints C1–C4, C6 and C7 can be used in various combina-
tions to avoid undesired hybridization (goal 2). As is widely
known, the strength of hybridization between two sequences
(or between bases of the same sequence) depends roughly on
the number of nucleotide bonds formed (longer stems are more
stable than shorter ones; this is modeled by C1–C4 and C6),
and on the types of nucleotides involved in bonding (Cs and Gs
bind more strongly than As and Ts, due to an extra hydrogen
bond; this is modeled by C7).

Thermodynamic constraints

These constraints rely on the thermodynamic nearest-neighbor
model introduced by Crothers and Zimm (25) and Tinoco and
coworkers (26) in the 1960s. We use the DNA parameters of
SantaLucia (27) (some parameters are unpublished) and
the PairFold v1.1 implementation of Andronescu et al. (18)
to calculate minimum free energies of duplexes. We use the
parameters and equation (3) of SantaLucia and Hicks (28) to
calculate melting temperature, assuming a 1 M salt concen-
tration and 1 · 10�7 M concentration of both words and com-
plements (for a total concentration of 2 · 10�7 M). The melting
temperature is only calculated for perfectly matched duplexes.
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Throughout, we use the following notation. T denotes
the temperature of the reaction, R ¼ 1.98717 cal/(mol K) is
the gas constant, DG0(x,y) is the minimum free energy of the
duplex xy at standard conditions, and TMi denotes the melting
temperature of word wi.

T1: Perfect match free energy. The free energy of a word and
its complement must be in a given range: for any i,

DGoðwi‚ciÞ 2 DGo
min1‚DGo

max1

� �
:

T2: Complement mismatch free energy. The free energy of a
word and the complement of a distinct word must be in a given
range: for any i, j 6¼ i,

DGoðwi‚cjÞ 2 DGo
min2‚DGo

max2

� �
:

T3: Complement–complement mismatch free energy. The free
energy of a complement–complement duplex must be in a
given range: for any i, j,

DGoðci‚cjÞ 2 DGo
min3‚DGo

max3

� �
:

T4: Word–word mismatch free energy. The free energy of
a pair of words must be in a given range: for any i, j,

DGoðwi‚wjÞ 2 DGo
min4‚DGo

max4

� �
:

T5: Melting temperatures. The melting temperature for each
word and its complement must be in a given range: for any i,

TMi 2 TMmin5‚TMmax5½ �:

Constraint T5 can be used to select words with uniform
melting temperatures, with a higher degree of accuracy than
by using GC content (C5), by choosing TMmax5 � TMmin5 to

be small. Constraint T1 can further help in selecting sequences
by measuring the strength of the bonds (free energy) that
form between each sequence and its perfect match, regardless
of the number of matches or the individual nucleotides that
take part in bonding (16).

Constraints T2, T3 and T4 are used to restrict undesired
hybridization, which can occur between a word and the com-
plement of a different word (T2), or between two distinct
complements (T3) or words (T4). Typically, the given ranges
should not overlap with the range for T1. (Because in this
work, we focus on applications where words are affixed to
a surface, we do not consider constraint T4 for the set designs
used in our empirical study, but the current version of our set
design software supports its use.)

Evaluation criteria

We use several measures to gauge the quality of a word set.
Two of them account for the free energy gaps, denoted by d
and d*. d represents the free energy gap between perfect
matches and imperfect matches of a word (see Figure 1).
For every word wi in the set, we consider the difference
between the perfect match free energy, DG0(wi, ci), and the
minimum free energy of a mismatch involving wi or ci. The
minimum such difference, over all wi in the set, is denoted by d:

d :¼ min
1<i‚ j<N‚ i6¼j

ðminfDGoðwj‚ciÞ‚DGoðwi‚cjÞ‚DGoðci‚cjÞ‚

DGoðci‚ciÞg�DGoðwi‚ciÞÞ: 1

Note that the rightmost min takes into account three types of
mismatches, namely mismatches between ci and a word wj

with j 6¼ i, between cj and a word wi with j 6¼ i, and also
mismatches between a complement ci and itself or another
complement cj.

Figure 1. Positive free energy gaps of correct and incorrect word–complement pairs for set S5 Penchovsky. The three curves represent (from left to right) the
cumulative distribution of the free energy values of all correct word–complement hybrids, of all incorrect word–complement hybrids and of all (incorrect)
complement–complement hybrids. The two dots represent the specific values of i and j that determine the free energy gap as defined in Equation 1.
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A related quantity of interest, previously proposed by
Penchovsky and Ackermann (16), is d*, defined as follows. Let

DGo
1 :¼ max

1<i<N
DGðwi‚ciÞ 2

DGo
2 :¼ min

1<i‚ j<N‚ i6¼j
DGðwi‚cjÞ‚ and 3

DGo
3 :¼ min

1<i‚ j<N
DGðci‚cjÞ: 4

Then

d* :¼ minfDGo
2‚DGo

3g � DGo
1: 5

The value d* is of interest because the thermodynamic con-
straints T1–T3 allow one to directly design a set for which d*
is above a certain threshold. Moreover, since d > d*, it fol-
lows that d* provides a useful lower bound on the (true) energy
gap d between competing desired and undesired hybridiza-
tions. Penchovsky and Ackermann (16) use d* as a measure
of the quality of their set. Roughly speaking, the larger d and
d* are, the larger the gap between the free energy of desired
and undesired hybridizations, and thus the better the set is.

Then, we measure the melting temperature interval width,
r, for perfect matches (word–complement duplexes), which is
defined as the difference between the highest and the lowest
melting temperature values of all word–complement duplexes.

r :¼ max
1<i<N

TMi � min
1<i<N

TMi 6

The third type of measure that we use provides insight on
the relative abundance of desired versus undesired interac-
tions. To define these measures, which are pairwise specificity,
sensitivity and discrimination, we consider the following inter-
actions, which can occur between words and complements
in a set:

I1: wi + ci Ð wici. A word wi perfectly matches the corres-
ponding complement ci (desired hybridization).

I2: wi + cj Ð wicj. A word wi imperfectly matches a comple-
ment cj, where i 6¼ j (undesired hybridization).

I3: ci + cj Ð cicj. A complement ci imperfectly hybridizes
with a complement cj, where i 6¼ j (undesired hybridization).

I4: wi + wj Ð wiwj. A word wi imperfectly hybridizes with a
word wj, where i 6¼ j (undesired hybridization).

I5: c Ð cfolded. The MFE structure for a complement contains
base pairs, i.e. a subsequence of a complement c hybridizes
with another subsequence belonging to the same complement
(undesired hybridization).

I6: w Ð wfolded. The MFE structure for a word contains
base pairs, i.e. a subsequence of a word w hybridizes with
another subsequence belonging to the same word (undesired
hybridization).

For simplicity, we ignore interactions among three or more
strands. (A limited form of interaction between three strands
will be discussed later, in Discussion). In the following
analysis, we will also ignore interactions of type I4, as in a
surface-based application, words are fixed on surfaces and
so cannot interact with each other. However, the method of
analysis could be extended to model such interactions if

needed. (We note that our algorithm can design strand sets
so that undesired interactions between words are unlikely; it is
just in the modeling step that such interactions are ignored.)
We will also ignore for now undesired hybridization of types
I5 and I6, and address these separately in Discussion.

Therefore, to model competition between a word wi and two
distinct complements ci and cj, we consider a 6-phase model:

wi þ ci Ð wici 7

wi þ cj Ð wicj 8

ci þ cj Ð cicj 9

Equations 7–9 describe desired (I1) and undesired (I2, I3)
hybridization between words and complements.

Let [wi]
0, [ci]

0 and [cj]
0 represent the initial strand concen-

trations (which are known quantities, i.e. 1 · 10�7 M each in
our case), and let [wi], [ci] and [cj] represent the equilibrium
strand concentrations (unknown quantities). Let [wici], [wicj]
and [cicj] be the equilibrium concentrations for the hybridiza-
tion products wici, wicj and cicj. The following system of
equilibrium equations describes the relationships between
concentrations, free energies and reaction temperature for
single strands and hybrids.

½wi�0 ¼ ½wi� þ ½wici� þ ½wicj� 10

½ci�0 ¼ ½ci� þ ½wici� þ ½cicj� 11

½cj�0 ¼ ½cj� þ ½wicj� þ ½cicj� 12

½wici�
½wi�½ci�

¼ e�DG0ðwi‚ ciÞ=ðR · TÞ 13

½wicj�
½wi�½cj�

¼ e�DG0ðwi‚ cjÞ=ðR · TÞ 14

½cicj�
½ci�½cj�

¼ e�DG0ðci‚ cjÞ=ðR · TÞ 15

In our software, the system of Equations 10–15 is implemented
and solved using Maple v9.

We are interested in maximizing the number of comple-
ments ci that are properly hybridized to wi, as opposed to being
unhybridized or hybridized to another cj. In this context, we
consider duplexes wici to be true positives, and single strands
ci and duplexes cicj to be false negatives (since in these, ci is
not hybridized as desired), and so we define the pairwise
sensitivity as follows:

pairwise sensitivity :¼ min
1<i‚ j<N‚ i 6¼j

½wici�
½wici� þ ½ci� þ ½cicj�

16

Similarly, we are interested in maximizing the number
of complements cj that are not hybridized. In this context,
we consider single strands cj to be true negatives, while
duplexes wicj and cicj are considered false positives (since in
these cases, there is undesired hybridization involving cj).
Thus, we define the pairwise specificity as follows:

pairwise specificity :¼ min
1<i‚ j<N‚ i 6¼j

½cj�
½cj� þ ½wicj� þ ½cicj�

17
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Clearly, pairwise sensitivity and specificity values are always
between 0 and 1; the closer these values are to 1, the better the
quality of the set, at least with respect to competition between
ci and cj for wi.

We are also interested in maximizing the ratio of correctly
formed duplexes, i.e. true positives to incorrect duplexes, i.e.
false positives. Thus, we define the pairwise discrimination as
follows:

pairwise discrimination :¼ min
1<i‚ j<N‚ i 6¼j

½wici�
½wicj�

18

For each of our strand sets, we measure the pairwise sensit-
ivity, specificity and discrimination assuming that initial
concentration of words and complements is 1 · 10�7 M each.

The DNA design algorithm

Our DNA design algorithm is based on a stochastic local
search approach described in greater detail in Tulpan et al.
(13). It takes as input the desired strand length l and set size N,
along with a specification of which constraints the set must
satisfy (see algorithm outline in Figure 5 for further details),
and attempts to find a set that meets these requirements. The
algorithm performs a search in a space of DNA strand sets of
fixed size that may violate the given constraints, using a search
strategy that combines randomized iterative improvement and
random walk.

The algorithm is initialized with a randomly selected set of
N DNA strands, all of which are selected to fulfill any com-
bination of single-strand constraints (C5, C6, C7, T1, T5). Our
implementation also provides the possibility to initialize the
algorithm with a given set of strands, obtained using other
methods. If such a set has less than N strands, it is expanded
with randomly generated strands such that a set of N strands is
always obtained. Then, repeatedly, a conflict—that is, a pair of
strands, x,y, that violates one or more constraints—is selected
and the conflict is resolved by replacing one of the conflicting
strands, e.g. x, with a new strand, say x0. The replacement is
done so that all constraints of type C5, C6, C7, T1 and T5 are
satisfied by the strand x0, and with a probabilistic bias towards
maximally reducing the overall number of violated constraints
(conflict-driven search). In each search step, the conflict to be
resolved is performed uniformly at random, and the new strand,
x0, is selected as follows, from a larger pool of strands M
(generated uniformly at random) that fulfills all single-
strand constraints. With a fixed probability, q, x0 is selected
from M uniformly at random, regardless of the number of other
constraint violations that will result from it. In the remaining
cases, each replacement strand in M is assigned a score,
defined as the net decrease in the number of constraint viola-
tions caused by it, and a strand with maximal score is selected.
(If there are multiple replacement strands with the same score,
one of them is chosen uniformly at random.) The parameter q,
also called the noise parameter, controls the balance between
the greediness and the randomness of the search process;
the optimal value for q when using relatively large random
neighbor sets M was shown to be close to zero (29). The
algorithm terminates when a set of DNA strands that satisfies
all given constraints has been found, or after a specified
number of search steps (cutoff) have been completed.

Our algorithm has been implemented in C/C++ and has been
compiled and run under SuSe Linux 9.1, kernel version 2.6.5.
Since no system-specific libraries are used, the algorithm
should compile on most operating systems supporting stand-
ard C/C++ language compilers. Academic users can obtain
our software from http://www.cs.ubc.ca/labs/beta/Software/
DnaCodeDesign. The source code and precompiled libraries
for PairFold v1.1 have been made publicly available at http://
www.rnasoft.ca. Since for this paper, we used some unpub-
lished parameters of John SantaLucia Jr., the online version
contains a complete set of publicly available DNA nearest-
neighbor parameters kindly provided by David Mathews.

In silico experimental protocols

The results presented in this paper were obtained by in silico
DNA design. Our software was run on a PC with dual 2 GHz
Intel Xeon CPU (only one of which was used in our experi-
ments), 512 KB cache and 4 GB RAM, running SuSe Linux
9.1 (kernel 2.6.5). To test the ability of our algorithm to design
DNA sets with various sizes and properties, we first selected
seven representative sets from the literature as controls (these
are denoted by S1 . . . S5, S7 and S8 in our tables). We evalu-
ated each control set using the measures discussed in this
paper. All values are presented in Table 1.

We used the following general protocol to design improved
and enlarged sets. For each set, we used constraints C6, C7,
T1–T3 and T5. Constraints C6 and C7 have been set to match
the original constraints used in the design of the controls (see
Table 1). Constraints T1–T3 and T5 have been initialized as
described at the bottom of Table 1. A detailed description of
the design protocol follows next.

To design sets of the same size, but higher quality than the
respective control set, we used the following protocol. For each
set, we performed 20 independent runs with specific parameter
settings, and with a maximum cutoff of 12 CPU hours per run.
For the first run, the algorithm was initialized with the max-
imum and minimum values of T1, T2, T3 and T5 of the control
sets. Then, in any consecutive run, we set DG0

min 1 to a very
small value, and we decremented the value of DG0

max 1 in steps
of 0.25 kcal/mol, thus increasing the free energy gap d*. We
reported the best of the sets obtained from these 20 runs (these
are the sets S1-1, S2-1, . . . , S8-1 in our tables). We reported
also the CPU time required to design the best sets as being the
sum of all independent CPU times spent by the algorithm to
obtain incrementally improved sets up to the one reported in
Table 2. The reported run time does not include the time to
evaluate the quality of the designed sets.

To obtain bigger sets (which we denote by S1-2, S2-2, . . . ,
S8-2 in our tables) with approximately the same quality as the
control sets, we used a slightly different protocol. For each set,
we performed 20 independent runs; starting with the size of
the control set, we incremented the size of the target set by
5 in each run. For sets S1-2, S3-2, S4-2, S5-2, S7-2 and S8-2,
we initialized the T2, T3 and T5 range values with the ones
corresponding to control sets S1, S3, S4, S5, S7 and S8,
respectively. The T1 constraint values have been initialized
as follows. The minimum perfect match free energy was ini-
tialized with DG0

min 1 � X, and the maximum was initialized
with DG0

max 1 � X, where X ¼ d � d*. In this manner, we
enforced d* of the newly designed set to be bigger than d
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of the control set, thus using a much harder constraint than for
the design of better sets. For S2-2, the method described above
did not provide bigger sets in <12 CPU hours on our reference
machine, so we followed the same strategy as the one used to
design better sets, i.e. initialized DG0

min1 and DG0
max1 with the

corresponding values for the control set. One minor modifica-
tion of this protocol was needed in the context of set S2-2. In
this case, due to range overlaps in T1 and T3 in the control set,
the constraints T1, T2, T3, and T5 (initialized with the values
from the control set) were insufficient to ensure the uniqueness
of the strands in the set. Thus, we removed any strands that
occurred more than once in S2-2, trimming the set from 43
strands (with duplicates) to only 13 unique strands. We note

that the duplication of strands could also be prevented in
the stochastic local search (SLS) algorithm, e.g. by using
Hamming distance constraints.

In addition, we generated 10 random sets using only the C7
constraint. We reported the best random set (S6) out of 10; this
set is used as an additional control in our experiments. Table 1
provides references for these control sets and summarizes
which constraints were originally used in their design.

RESULTS

The results of the two computational experiments described in
the previous section are summarized in Table 2. As can be seen

Table 2. Comparison of the quality of the control sets and our improved and enlarged sets

Sets comparison
Set Word

length
No. of
words

d [d*]
(kcal/mol)

r (�C) Pairwise
sensitivity

Pairwise
specificity

Pairwise
discrimination

CombFold
MFE (kcal/mol)

t [t*]
(kcal/mol)

Run time
(CPU s/m/h)

S1 Braich 15 40 6.25 [4.28] 9.11 0.95 1.00 354.36 �1.25 4.10 [1.84]
S1-opt 15 40 4.97 [3.78]

S1-1 15 40 7.57 [7.55] 1.79 1.00 1.00 939.63 �0.09 1.72 [1.36] 2.6 h
S1-1-opt 15 40 3.93 [3.79]

S1-2 15 114 6.42 [6.33] 5.20 0.99 1.00 377.32 �0.64 1.53 [1.53] 1.8 h
S1-2-opt 15 114 2.44 [2.12]

S2 Brenner 4 8 �0.19 [�0.85] 19.12 0.00 1.00 0.73 �3.19
S2-1 4 8 �0.08 [�0.08] 13.49 0.00 1.00 1.30 0.00 4 s
S2-2 4 13 �0.47 [�0.67] 17.23 0.00 1.00 0.82 �3.04 12 s

S3 Faulhammer 15 20 6.13 [3.65] 17.33 0.78 1.00 968.14 �0.46 3.93 [�0.06]
S3-opt 15 20 5.43 [0.94]

S3-1 15 20 8.59 [8.46] 3.81 0.99 1.00 5324.62 �1.63 5.84 [5.32] 15.6 min
S3-1-opt 15 20 6.24 [6.16]

S3-2 15 110 6.25 [6.13] 11.56 0.97 1.00 986.16 �4.28 2.28 [1.80] 4.7 h
S3-2-opt 15 110 3.33 [2.47]

S4 Frutos 8 108 �0.21 [�2.22] 10.28 0.00 0.95 6.25 �11.19
S4-1 8 108 1.28 [0.89] 6.67 0.04 0.99 7.70 �11.58 4 min
S4-2 8 173 1.59 [0.73] 5.71 0.06 0.99 15.67 �13.07 1 h

S5 Penchovsky 16 24 8.79 [8.12] 3.50 1.00 1.00 3569.76 0.00 6.88 [5.78]
S5-opt 16 24 7.09 [6.14]

S5-1 16 24 9.27 [9.20] 1.95 1.00 1.00 5704.45 0.00 5.83 [5.79] 1.5 h
S5-1-opt 16 24 6.14 [6.08]

S5-2 16 44 8.90 [8.82] 3.45 1.00 1.00 4163.51 0.00 4.57 [4.16] 17 h
S5-2-opt 16 44 5.61 [5.20]

S6 Random 16 24 6.10 [4.39] 18.67 0.90 1.00 522.73 �2.34 3.74 [1.90] 0.01 s

S7 Shortreed1 12 64 2.87 [2.84] 1.11 0.79 0.97 23.20 �1.03 2.91 [2.76]
S7-opt 12 64 2.91 [2.76]

S7-1 12 64 3.72 [3.65] 1.07 0.88 0.98 49.59 0.00 0.23 [�0.64] 1.9 h
S7-1-opt 12 64 0.23 [�0.64]
S7-2 12 144 3.01 [2.85] 1.11 0.79 0.97 27.74 �3.94 0.00 [�1.83] 2.7 h
S7-2-opt 12 144 0.00 [�1.83]

S8 Shortreed2 16 64 6.77 [6.39] 0.96 0.99 1.00 4739.83 �5.50 5.59 [5.25]
S8-opt 16 64 5.59 [5.25]

S8-1 16 64 8.15 [8.09] 0.94 0.99 1.00 5057.76 �2.52 2.78 [2.74] 1.7 h
S8-1-opt 16 64 3.55 [3.49]
S8-2 16 80 7.91 [7.85] 0.95 0.99 1.00 4093.02 �4.32 3.69 [3.50] 8.2 h
S8-2-opt 16 80 3.69 [3.50]

Each pair of rows (between delimiting lines) corresponds to one set, and lists quality measures for the control set, the improved set (indicated by the suffix ‘�1’) and the
enlarged set (indicated by the suffix ‘�2’). Improvements over the control set are highlighted in boldface. The columns, from the left, give (i) set ID, (ii) the strand
length for the set, (iii) the number of strands in the set, (iv) the free energy gapsd andd*, (v) the melting temperature interval width, (vi) the pairwise sensitivity, (vii) the
pairwise specificity, (vii) the pairwise discrimination, (ix) the minimum free energy value as computed with CombFold v1.0 (19), (x) the minimum free energy gaps t
and t* for junctions, and (xi) the run time, measured as total CPU time on our reference machine for running the respective experimental protocol until the given set was
obtained. (See Materials and Methods for details). In the melting temperature column, the measurements were obtained using a function of the PairFold v1.1 package
(18). Si-opt MFE values for junctions have been obtained after optimizing the arrangement of strands in subsets such that t* is maximized (where t* is the free energy
gap that accounts for junctions, as defined in Equation 20).
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from Table 2, our algorithm is effective in designing sets of the
same size as the control sets but with larger free energy gaps,
d*, between correct and incorrect word–complement pairs.
Note that larger d* values imposed as design constraints
when generating the new sets using our algorithm induce
larger d values, as well as improved pairwise specificity, sens-
itivity and discrimination values. The actual free energy gaps,
d, are positive for all of these improved sets, except for the set
S2-1, indicating that for every word complement, the hybrid
formed with its correct word is more stable than the hybrid
with any incorrect word, while in some cases (notably, for
control sets S2 and S4), the bounds on the gap, d*, are neg-
ative. Also, pairwise specificity is always at least as high, and
often higher, as sensitivity, which indicates that (under the
conditions studied here, in which all initial concentrations
are equal) instability of correct word–complement hybrids
tends to pose more of a problem than the stability of incorrect
hybrids.

We also note that for all sets shown in the table, the melting
temperature range r for correct word–complement pairs is at
least as narrow for our new sets as for the control sets. In two
cases, the melting temperature range for each of our improved
sets is more than four times narrower than for the respective
control sets, although such a reduction was not explicitly
specified as a design constraint.

The results from our second experiment, in which we
used our algorithm to design larger sets with thermodynamic
properties comparable with the control sets, are also shown
in Table 2. Note that in all cases, we were able to obtain
substantially larger sets without any loss of quality (except
for S8-2, whose pairwise discrimination is slightly lower),
as measured by d, r, pairwise sensitivity, specificity and
discrimination.

It may be noted that the CPU time required for finding our
improved sets varies substantially between the different sets,
but is in most cases substantially <10 CPU hours, and always

<20 CPU hours on our reference machine. Due to the highly
randomized nature of our SLS algorithm, its run-time over
multiple runs on exactly the same input data is quite variable
(with standard deviation values in the same order as the run-
times shown here)—this is typical for SLS algorithms in gen-
eral and does not impact their ability to consistently solve hard
combinatorial problems such as the strand design problems
studied here (17).

DISCUSSION

The computational results reported in the previous section
clearly demonstrate the ability of our SLS algorithm to design
high quality DNA strand sets, where quality is assessed using a
variety of measures.

As previously noted, in our algorithm we only control the
location and minimal size of the free energy gaps between
correct and incorrect word–complement hybrids and the free
energy range for correct hybrids, but not for the pairwise
specificity, sensitivity or discrimination. However, consider-
ing the nature of Equations 10–15, there is a tight correlation
between d (and likewise, d*) and the relative concentrations
of correct versus incorrect hybrids, as directly measured by
pairwise discrimination (see Equation 18). Figure 2 shows this
correlation for sets S5 and S5-1; every point in this correlation
plot corresponds to a positive solution of the equilibrium
Equations 10–15 for one combination of a word, its correct
complement and a distinct complement. The discrimination
values within both sets vary over several orders of magnitude,
and the overall pairwise discrimination is determined by a
small number of relatively stable undesired hybrids.

Our accompanying paper (6), introduces D, a variant of our
notion of pairwise discrimination. We did not compute D
for the sets reported in this paper since we did not model
interactions involving more than one word, but the results

Figure 2. Correlation between pairwise discrimination values and duplex free energy gaps for sets S5 Penchovsky (control) and S5-1 (improved); each point in the
plot corresponds to the discrimination and free energy gap values of a given word and an incorrect complement.
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in the accompanying paper indicate that D and our pairwise
discrimination measure are quite similar.

To further investigate how our quality measures depend on
the free energy gap d, we studied, for pairs of words wi and
complements cj, the dependence of the equilibrium concen-
trations of the single DNA strands and hybrids, as determined
by Equations 10–15, on the respective free energy gap values.
Figure 3 illustrates the results of this analysis for sets S5 (top)
and S5-1 (bottom). Clearly, the concentrations of the desired
products, namely the correct hybrid, [wici], and the unbound

incorrect complement, [ci], are consistently several orders of
magnitude higher than the concentrations of any undesired
products ([wi], [ci], [wicj] and [cicj]). Interestingly, undesired
hybridization between complements is insignificant compared
with the impact of incorrect word–complement hybrids. This
means that for our sets, the competitive reactions wi + ciÐwici

and wi + ciÐwicj dominate the more complex equilibria con-
sidered in our model; in particular, as clearly illustrated in
Figure 3, the difference dij in free energy between correct
and incorrect hybrids, wici and wicj, mostly determines the

A

B

Figure 3. Concentration of words, complements, perfect and imperfect matches as a function of duplex free energy gaps for sets (a) S5 Penchovsky (control), and (b)
S5-1 (improved); each point in the plot corresponds to the equilibrium concentration of one single strand or duplex.
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relative concentrations of correct versus incorrect hybrids, and
hence the pairwise discrimination measure. This justifies the
approach of Shortreed et al. (6) to ignore such interactions.
However, there are cases where the product cicj can become
significant, such as when the initial complement concentra-
tions are significantly greater than the word concentrations,
or when words are designed over a 4-base, rather than a 3-base,
alphabet.

As can be seen from Figures 2 and 3, the improved set
generated by our algorithm has higher pairwise discrimination
because the relative concentrations of the worst (i.e. most
stable) undesired hybrids have been reduced, as a result of
the respective increased free energy gaps. At the same time, as
a side effect, the concentrations of the most stable (undesired)
complement–complement hybrids are also reduced. It may
also be noted that compared with the reference sets, our
new sets show more even distributions of the free energy
gaps and pairwise discrimination values, as well as reduced
variations in the concentrations of the words and complements
obtained from our equilibria analyses. Although our model
makes a number of simplifying assumptions, in particular,
equal initial concentrations and independence of the individual
equilibria, we expect to find similar differences in more real-
istic models, whose analysis is currently beyond our reach.

It may be noted that given these observations, pairwise
sensitivity mainly depends on the stability of the correct
word–complement hybrids. This is clearly reflected in the
results from Table 2 which show that pairwise sensitivity
correlates strongly with the melting temperature of the correct
hybrids, TM. Note that in the case of S4 and the corresponding
new sets, the relatively low TM values are a consequence of the
small strand length and recall that in the original application,
these strands are concatenated with strand labels, which effect-
ively increases their length and the stability of the correct
duplexes. Pairwise specificity, on the other hand, mainly
depends on the concentration of incorrect word–complement
duplexes, and hence improves as a result of increasing the free
energy gap d.

While these observations confirm the effectiveness of the
free energy gap as a design constraint, it may be noted that
highly constrained designs may not always be required in
order to obtain good strand sets according to our quality meas-
ures. For example, we generated a set S6 of 24 strands of
length 16 under the sole constraint that only the bases A,T
and C may be used (C7), and found it to be quite reasonable
with respect to our quality measures and as compared with
some of our other sets (see Table 2). Constraint C7 is widely
used in the design of DNA and RNA strand sets; this constraint
substantially reduces the potential for forming stable incorrect
complement–complement (or word–word duplexes, if word
interaction is not precluded by immobilization on a surface),
since such duplexes cannot contain any energetically favor-
able G–C pairs. Our results suggest that while simple com-
binatorial constraints such as C7, or similarly C4, may be
sometimes sufficient for obtaining strand sets of reasonable
quality (particularly, when only relatively small sets of reas-
onably long strands are required), better and larger strand sets
can be found using high-performance algorithms that directly
support thermodynamical design constraints.

As previously described, in DNA computing applications
(as well as in the context of biomolecular tagging), words are

not used in isolation, but words or their complements are rather
concatenated to form longer strands. These concatemers rep-
resent strings of data, and the values that may occur at each
position of such a string are encoded by a group of DNA
words. For example, Braich et al. (20) used bit strings of
length 20 in their DNA computation. These were represented
as concatemers of 20 DNA words, where a different word was
used for each bit at each of the 20 positions. Hence, they
partitioned their set of 40 words of length 15 (S1 in
Table 1) into 20 groups of two words each, and used the
220 strands of length 300 obtained by concatenation of one
word from each group to represent the 220 bit strings of length
20. Similarly, the sets of Faulhammer et al. and Penchovsky
et al. (S3 and S4) are partitioned into ten and twelve groups
respectively, each consisting of two words, yielding a total
of 210 and 212 long strands which encode bit strings of length
10 and 12, respectively.

The concatemers thus obtained need to satisfy two
additional constraints. First, concatemers that can form
stable secondary structures should be avoided as much as
possible, because such secondary structure within a long
strand may interfere with desired hybridizations between
words and their complements. Second, undesired hybridiza-
tions between complements and any region between two adja-
cent words (or vice versa) on a long strand should also be
avoided. Neither of these constraints is explicitly enforced
in our design algorithm, although the slide mismatches con-
straint (C3) can help reduce hybridization of complements
between words.

To evaluate our new sets with respect to the first additional
constraint, we used the CombFold v1.0 algorithm (the soft-
ware CombFold v1.0 is available upon request from the
authors) by Andronescu et al. (19) to find the minimum
free energy secondary structure over all concatemers that
can be formed based on a given partitioning into groups.
For the control sets, we considered the original partitionings
reported in the literature, while for our new sets, we considered
random partitionings with the same number and size of groups
as used for the respective control sets. The results from the
CombFold analysis of these sets and partitionings are shown in
Table 2; they clearly demonstrate that for our improved and
enlarged sets, the potential for concatemers with undesired
stable secondary structures is not significantly higher than
for the control sets. The worst values from the CombFold
analysis are for the S4 sets (Frutos et al.), and these are the
only sets which are designed over a 4-letter ({A,C,G,T}),
rather than a 3-letter ({A,C,T}) alphabet; this suggests that
a 3-letter alphabet is preferable.

The second additional constraint, on undesired hybridiza-
tions between complements and junctions of two concatenated
words, can be formalized in two ways, as follows (analogous
to d and d* defined earlier): for a given set whose words are
partitioned into ordered groups, if words wi and wj are adjacent
on a long strand (obtained by concatenating one word per
group in order), we let wiwj denote the strand obtained by
concatenating wi and wj. Let T be the set of triples (i, j, k)
such that i, j and k are distinct, and the sequence wiwj appears
on some long strand. We let

DGo
4 :¼ min

ði‚ j‚ kÞ2T
DGoðwiwj‚ckÞ: 19
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Let t* be the gap between the free energy of desired hybrid-
izations and undesired hybridizations at junctions, which now
is as follows:

t* :¼ DGo
4 � DGo

1‚ 20

where DG0
1 is as defined in ‘Evaluation criteria’.

Also, we let t be the gap between the free energy of desired
hybridizations and undesired hybridizations at junctions,
defined as follows:

t :¼ min
ði‚ j‚ kÞ2T

ðDGoðwiwj‚ckÞ�DGoðwk‚ckÞÞ: 21

Just as for d and d*, t* is a lower bound for t. Table 2 shows
measurements of t and t* for sets S1, S3, S5, S7 and S8 and
our respective improved and enlarged sets, using the same
partitioning into groups as in the original references (for the
control sets) or random partitionings into the same number of
groups as for the control sets (for our new sets).

The partitioning of strands into groups can have a substan-
tial impact on t and t*, and hence the potential for incorrect
word–complement junction hybridizations. In order to find
improved word partitionings, we developed a simple stoch-
astic local search algorithm that takes as input a set of words, a
desired group size and a value v, and partitions words into
ordered groups of the desired size so that the value of t* for the
set with respect to these ordered groups is at least v (or if not,
as close to v as possible). The algorithm starts with an initial
arbitrary partitioning of words into groups. Then, the algo-
rithm repeatedly swaps two strands from different groups, so
as to ultimately reduce the value of t*. Details are given in
Figure 4; in our use of the algorithm, we chose the value 0.2 for
the probability y, which controls whether a ‘worse’ partition-
ing P0 replaces the current partitioning P at an iteration of the
algorithm. The value 0.2 was inferred from multiple runs of
the algorithm on different strand sets. We simply selected the
probability value that allows the algorithm to find a solution in
the lowest number of iterations. Using this algorithm, we
organized the words in sets S1, S3, S5, S7, S8 and our cor-
responding improved and enlarged designed sets—into

ordered groups of size 2. For each set, over several runs,
we gradually increased the input value v in increments of
1 kcal/mol, six times or until the algorithm did not succeed
in finding a grouping for which t* > n.

In Table 2, we report the t and t* values obtained by opti-
mizing the control sets as well as our respective new sets
using this algorithm. We exclude the S2 [Brenner et al. (21)]
and S4 [Frutos et al. (23)] sets, since these sets were not
designed with the goal of concatenating strands in the sets.
For three of the five sets, we were able to find new partitionings
of the control sets which have improved t and t* values.
Additionally, for these three sets, our new sets have t* values
that are better than those of the control sets, although in just
one of these cases was the t value of our new set better than
that of the control set. We note that our algorithm optimized
for t* rather than t; we expect that we would obtain further
improvements on the t values if our algorithm optimized for t.
However, our new sets S7 and S8 have poorer t and t* values
than the control sets of Shortreed et al. (6). An important
feature of the Shortreed et al. approach to grouping words
in order to form concatemers is that the concatemers are
formed from a pool of words that is larger than needed.
This technique could be incorporated into the approach of
this paper, and may yield better values of t. Alternatively,
our SLS algorithm for strand design (see Figure 5) could be
adapted to take partitioning into account, although this would
add to the complexity of that algorithm.

Overall, compared with the algorithm presented in the
accompanying paper [Shortreed et al. (6)], the SLS-based
design algorithm presented here is conceptually more com-
plex, but based on a comparison between the S7 and S8 sets,

Figure 4. Outline of the stochastic local search procedure used to partition
strands into groups for use in DNA computations. A ‘bad junction’ is a junction
with MFE lower than v.

Figure 5. Outline of the stochastic local search procedure for DNA strand
design.
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produces sets with better free energy gap (d), and pairwise
discrimination, sensitivity and specificity. Moreover, it has
better scaling behavior (particularly with respect to the mem-
ory requirements for longer words and the incorporation of
additional constraints) and so it can be applied to a wider range
of DNA word design problems. The approach of Shortreed
et al. to partitioning strands in order to form concatemers has
some strong features, such as the use of a pool of words that
is larger than needed, which results in partitioned sets of the
highest quality in many cases.

CONCLUSIONS

In this work, we introduced a new approach for DNA strand
design that integrates thermodynamic as well as combinatorial
constraints and uses a stochastic local search strategy that
is effective at finding sets that satisfy these constraints. Fur-
thermore, we showed that our design constraints are well
correlated with measures of quality of a set, such as pairwise
sensitivity, specificity and discrimination.

The current algorithm can easily be adapted to design
strands for universal microarrays or molecular beacons with
specific capture-probe capabilities. Constraints on interactions
between strands that are immobilized on a surface, as well as
between those in solution, are supported by the algorithm and
can be integrated into our model in a straightforward way. Our
model for evaluating quality of sets can support analysis when
the initial concentrations of words and complements are not
equal; particularly in the context of iterative DNA computa-
tions during which target concentrations vary, it would be
useful to consider the quality of sets under uneven and varying
word and complement concentrations.

In future work, we will investigate how our algorithm can
be further adapted so that much larger sets, such as used in
microarray applications, can be designed efficiently. In a pre-
liminary study, we were able to design sets of 1000 20mers
with a melting temperature range of 5�C and a free energy gap
d* of 5 kcal/mol in 2.7 CPU hours on our reference machine
(averaged >10 independent runs). To design even larger sets,
the memory requirements of our present algorithm need to be
reduced; this can be achieved by using optimized or partial
representations of the constraints between pairs of DNA
strands during the search process. Alternatively, by using a
slightly different approach, based on the local optimization of
subsets of strands, it should be possible to obtain sets of tens of
thousands of strands. We have also performed preliminary
tests on the scaling of our algorithm’s performance with strand
length and sets of 50 50mers and 60mers with free energy gaps
d* > 3.00 kcal/mol in 6 and 10 CPU minutes, respectively, on
our reference machine (averaged >10 independent runs).

A relatively straightforward extension of our approach
would be to additionally model interactions of type I4, in which
words interact with each other. In this context, it would be
particularly interesting to use a model that applies to the situ-
ation of densely packed surfaces, as encountered in DNA
microarray and surface-based DNA computing applications;
unfortunately, we are currently unaware of such a model.

Another direction for future work is to use the ensemble free
energy, as given by the partition function, instead of the MFE
calculations (provided by PairFold) in our approach. In this
context, a reasonably efficient algorithm for calculating the

partition function on pairs of strands is needed; to our best
knowledge, no such algorithm is currently publicly available,
but in principle, as soon as this situation changes, it will be
easy to integrate such a procedure into our software.

Finally, it may be noted that our current thermodynamic
model is limited to interactions between one word and two
complements, and makes the simplifying assumption that the
equilibria between any such triplet of strands are independent
of each other. In future work, we intend to extend this model
to more complex equilibria, which may, for example, capture
competitive hybridization within a set comprising several
words and complements. Ultimately, our goal is to devise a
model that is accurate enough to allow quantitative predictions
of the desired and undesired hybridizations within a given set
of words and complements, and to support the computational
design of DNA codes based on that model. We believe that the
work presented in this paper represents a first important step
towards achieving this larger and more ambitious goal.
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