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Objective: Fluid therapy for sepsis patients has always been a problem that puzzles

clinicians, that is, knowing when patients need fluid infusion and when they need negative

fluid balance. Different clinicians may have different judgment criteria and make different

decisions. Recently, studies have suggested that different fluid treatment strategies can

cause different clinical outcomes. This study is intended to establish and verify a model

for judging the direction of fluid therapy based on machine learning.

Method: This study included 2705 sepsis patients from the Peking Union Medical

College Hospital Intensive Care Medical Information System and Database (PICMISD)

from January 2016 to April 2020. The training set and test set (January 2016 to

June 2019) were randomly divided. Twenty-seven features were extracted for modeling,

including 25 state features (bloc, vital sign, laboratory examination, blood gas assay and

demographics), 1 action feature (fluid balance) and 1 outcome feature (ICU survival or

death). SARSA was used to learn the data rules of the training set. Deep Q-learning

(DQN) was used to learn the relationship between states and actions of the training

set and predict the next balance. A double-robust estimator was used to evaluate the

average expected reward of the test set in the deep Q-learning model. Lastly, we verified

the difference between the predicted fluid therapy model and the actual treatment for

the patient’s prognoses, with sepsis patient data from July 2019 to April 2020 as the

validation set.

Results: The training set and test set were extracted from the same database, and

the distribution of liquid balance was similar. Actions were divided into five intervals

corresponding to 0–20, 20–40, 40–60, 60–80, and 80–100% percentiles of fluid balance.

The higher the reward of Q(s, a) calculated by SARSA from the training set, the lower the

mortality rate. Deep Q-learning indicates that both fluid balance differences that are too

high and too low show an increase in mortality. The more consistent the fluid balance

prediction with the real result, the lower the mortality rate. The smaller the difference

between the prediction and the reality, the lower the mortality rate. The double-robust
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estimator shows that the model has satisfactory stability. The validation set indicates that

the mortality rate of patients in the “predicted negative fluid balance and actual negative

fluid balance” subgroup was the lowest, which was statistically significant, indicating that

the model can be used for clinical verification.

Conclusion: We used reinforcement learning to propose a possible prediction model

for guiding the direction of fluid therapy for sepsis patients in the ICU. This model may

accurately predict the best direction for fluid therapy, thereby improving patient prognosis.

Keywords: sepsis, fluid therapy, machine learning, prognosis, model prediction

INTRODUCTION

Fluid resuscitation is the basic treatment for sepsis. However,
in recent years, clinicians have found that an inappropriate
infusion of large amounts of fluid may cause volume overload,
which has become an independent risk factor for disability
and death during critical illness (1–4). In the early treatment
of sepsis, to improve organ perfusion, fluid therapy should
be performed in a timely manner, but continuous positive
fluid balance is not advocated. With the infusion of a large
amount of fluid, a positive balance may cause treatment-
related damage, such as capillary leak syndrome and pulmonary
edema (5). In fact, an increasing number of studies suggest
that having a negative fluid balance during the late treatment
of sepsis can improve overall prognosis (6). However, how
to prevent and address the fluid balance problem caused by
volume therapy in clinical practice has become a problem
that puzzles clinicians. Recently, physicians have used several
methods to investigate resuscitation strategies for septic shock
patients. Ma et al. (7) used finite mixture modeling and K-means
clustering to identify subclasses of septic shock and dynamic
treatment regime was used to give customized fluid volume
and norepinephrine dose prescription for each patient. Lu et al.
(8) explore the sensitivity of Dueling Double Deep Q-Networks
to data preparation and modeling decisions in the context of
hemodynamic management in septic patients. In this paper,
we would like to explore fluid therapy balance strategies for
ICU sepsis patients based on SARSA Algorithm, Q-learning and
DQNmodel.

OBJECTS AND METHODS

Patient Enrollment, Data Extraction, and
Interventions
Inclusion and Exclusion Criteria

Patients who were diagnosed with sepsis between January
2016 and April 2020 at the Department of Intensive Care,
Peking Union Medical College Hospital, were included in
this study. Informed consent was given by patients (or
their legally authorized representative/next of kin if the
patients were dead) before any data extraction. Patients
were excluded from this study if they met any of the
following criteria: (1) they were younger than 18 years

old or (2) they were admitted to the ICU for fewer
than 24 h.

Definition of Sepsis and Initial Time of Fluid

Resuscitation

The initial timing of fluid resuscitation is when patients are
diagnosed as “sepsis”. Specifically, definition of sepsis is the time
when both “infection is diagnosed” and “new onset of 1SOFA
≥ 2” are reached (9). Infection was defined as follows: (1) if an
antibiotic was used first, the etiology was obtained within 24 h
after antibiotic treatment OR (2) if the etiology was noted first,
the antibiotic was used within 72 h.

Data Extractions

Data were extracted from the Peking Union Medical College
Hospital Intensive Care Medical Information System and
Database (PICMISD). The parameters extracted from the
database included demographics, vital sign data collected by
bedside monitoring, laboratory examination data, blood gas
analysis, microbiological examination results, antibiotic usage
and total fluid balance. Notably, data de-identification was
performed before any further analysis.

Ethical Approval

The authors assert that all procedures contributing to this
work comply with the ethical standards of the relevant national
and institutional committees on human experimentation and
with the Helsinki Declaration of 1975, as revised in 2008. All
the experimental protocols were approved by the Institutional
Research and Ethics Committee of Peking Union Medical
College Hospital, which approved this study for human
subjects (No. SK-1241).

Data Collection and Cleaning Strategy
A total of 2,705 patients were included based on sepsis 3.0.
The average ICU time was 4.3-day, as calculated by PICMISD.
We included patient data over each 6 h period up to 108 h (4.5
days), for 18 periods in total. For patients who transferred out
of the ICU or died within 108 h, the last period was their last
record in the ICU. The values of each feature are the average
value for each period. The final outcome was patient death or
survival over the last period, that is ICU survival or death. Death
includes clinical death and the withdrawal of treatment without
any further action. Each 6 h is identified as a block, which is
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abbreviated as “Bloc”. Because the laboratory features do not
need to bemeasured frequently, the missing values were forward-
filled. Missing values of other features with <30% missing
rate were filled by KNN. Twenty-seven features were used for
modeling, including 25 state features (bloc, vital sign, laboratory
examination, blood gas and demographics), one action feature
(fluid balance), and one outcome feature. We included 2,443
sepsis patients, with 2,095 survivors and 348 non-survivors. Each
group of data includes all 27 features for one period for one
patient. Each patient could contribute 18 groups of data at most
depending on their ICU time. There were 31,425 groups of
data generated from 2,443 patients (the data selection strategy
is shown in Figure 1). The features and outlier manipulation
criteria are shown in Table 1.

State, Action, and Rewards
Q-Learning is a basic form of Reinforcement Learning which
uses Q-values (also called action values) to iteratively improve
the behavior of the learning agent. Q-Learning technique is an
off-Policy technique and uses the greedy approach to learn the
Q-value. SARSA technique, on the other hand, is an On Policy
and uses the action performed by the current policy to learn the
Q-value. DQN model is based on Q-learning, which we use to
uncover the relationship between states and actions, obtain new
knowledge from existing data and find the best treatment plan to
predict the reasonable range of fluid balance.

The purpose of reinforcement learning is to obtain an optimal
policy for a specific problem to maximize the reward obtained
under a given strategy. A strategy is mapped from state to action,
which can determine what behavior to choose under a certain
state and then enter the next state. The transition in the state is
equivalent to adding a reward to the Markov decision process.
Hence, the next state is related not only to the current state but
also to the current action. Every decision consists of a status,
behavior and reward. Given that the prediction is the interval of
fluid balance, which can be divided into five intervals, we used
the value iteration method of reinforcement learning.

In this research, each data point is a group of states, which
includes 25 features except the balance and outcome. The action
refers to how much liquid should be given under a certain state,
which is divided into five groups by 0–20, 20–40, 40–60, 60–
80, and 80–100% of the percentiles of fluid balance. Each group
of actions and the corresponding balance is shown in Table 2.
“Rewards” refers to a survival-derived score. At the terminal
timestamp of each patient, we issued a reward of +15 if they

survived their ICU stay and a reward of−15 if they died. The
rewards were all 0 at the other timestamps.

Algorithm Description
All the patients were divided randomly 8:2 into a training
set and test set, corresponding to 2,095 (25,149 blocs) in the
training data and 348 patients (6,326 blocs) in the test data.
We needed to evaluate the expected reward when performing
an action in a certain state; the higher the expected reward is,
the better the effect of performing this action. The reward is
called Q(s, a), with s being the current state and a being the
performing action. Q(s, a) is also the q-value performing action a
in state s. All Q(s, a) are initialized as 0, and Q′(s, a) is updated by
performing different actions under different states and obtaining
rewards from different next states. Then, the model can learn the
possibilities of different Q(s, a) under a certain state and choose
the action with the highest possibility as the next action.

There are two methods to update Q′(s, a): SARSA and
Q-learning (10).

The formula for updating the Q′(s, a) in SARSA is as follows:

Q′(s, a) ← Q(s, a)+ α[r + γQ(s′, a′)− Q(s, a)]

s ← s′; a← a′

The formula for updating the Q′(s, a) of Q-learning is as follows:

Q(s, a) ← Q(s, a)+ α[r + γmaxa′Q(s
′, a′)− Q(s, a)]

s ← s′

where r is the reward of the current action and α and γ are the
parameters of 0–1.

When updating the Q′(s, a), SARSA chooses a′ from all
possible next actions to the next state s′ and obtains Q′(s′, a′).
Then, it performs a′ in state s to state s′. Q′(s, a) will be updated
in the next iteration from one next action in state s′. Q-learning
updates Q(s, a) with the highest Q′(s′, a′) in state s, but the next
action will be chosen in another way in the next iteration rather
than using the a′ of Q′(s′, a′). In general, the a′ in state s is chosen
randomly; in this case, we could find out how much balance
(a1) the patients have in state s1, then enter state s2, but if the
action is random (such as a2), and all patients in state s1 did
not have the balance a2 in the existing data, we would not know
what the next state could be. Thus, the next state should be
chosen from the given sequence of data. The updated strategy for
Q(s, a) with SARSA is exactly the same as the actual implemented

FIGURE 1 | Data selection strategy.
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TABLE 1 | Missing rate and outlier manipulation criteria of the modeling features.

Feature Description Missing rate Outlier manipulation method

Invasive mean pressure (mmHg) Vital sign 0.033 Exclude data with values below 0 and the value is 0 but not dead

Invasive systolic blood pressure (mmHg) Vital sign 0.034 Exclude data with values below 0 and the value is 0 but not dead

Invasive diastolic blood pressure (mmHg) Vital sign 0.034 Exclude data with values below 0 and the value is 0 but not dead

Temperature (◦C) Vital sign 0.004 -

Breathe rate (bpm) Vital sign 0.0002 Exclude data with values above 100 and the value is 0 but not dead

Oxygen concentration (%) Vital sign 0.204 Set the values below 21 to 21. Exclude data with values above 100

Perfusion index Vital sign 0.004 Exclude data with values above 50

CVP (mmHg) Vital sign 0.250 Exclude data with values below or equal to 0

SPO2 (%) Vital sign 0.001 Exclude data with values of 0 or greater than 100

Heart rate (bpm) Vital sign 0.0002 Exclude data with values of 0 but not dead

White blood cell (×109/L) Laboratory examination 0.581 -

Neutrophilic granulocyte percentage (%) Laboratory examination 0.583 Exclude data with values of 0

Hemoglobin (g/L) Laboratory examination 0.581 -

Blood platelets (×109/L) Laboratory examination 0.581 -

Creatinine (mmol/L) Laboratory examination 0.675 -

Total bilirubin (mmol/L) Laboratory examination 0.725 -

pO2 (mmHg) Blood gas 0.074 -

pCO2 (mmHg) Blood gas 0.074 -

BE Blood gas 0.096 -

pH Blood gas 0.074 Exclude data with values below 6.7

Lactate (mmol/L) Blood gas 0.074 Exclude data with values above 30

Gender Demographics - -

Age (yrs) Demographics - -

Weight (kg) Demographics - -

bloc - -

Balance (mL) Output volume-input volume - Exclude data with outputs or inputs below 0 or above 5,000 and empty values

Outcome Dead or survived - -

TABLE 2 | Fluid balance as the division of actions.

Actions Action 0 Action 1 Action 2 Action 3 Action 4

Fluid balance intervals (mL) <-110.68 −110.68 to −45.68 −45.68 to −0.67 −0.67 to 45.00 >45.00

strategy, which is called on-policy, while inconsistent with Q-
learning, which is called off-policy. SARSA is aimed at learning
the characteristics of the original data, and Q-learning tends to
discover new strategies (11).

Data Evaluation
First, we used SARSA to learn the characteristics of the
original data to then obtain the relationship between reward
and mortality to evaluate whether the rewards were reasonable.
Q(s, a) is the expected reward. The relationship between the
expected reward and mortality could be acquired by calculating
the mortality rate of each data point in Q(s, a). Ideally, the higher
the expected reward is, the lower the mortality rate. We used the
training set to build the SARSA model. Since the state cannot
be exhaustive, we used a function (neural network) as the state
to build a reinforcement learning model. The neural network
consists of 1 input layer, two hidden layers, and one output layer.
The input layer consists of 25 features (25 nodes). Each hidden

layer has 128 hidden nodes. The output layer is the probability of
Q(s, a) corresponding to the five action categories, and softmax is
used to select the highest probability action as the final output.

Each node of the neural network represents a function and
includes weights w and biases b. The weights are different in
different nodes, and the biases are the same in the same layer and
different in different layers. w and b are initialized as randomly
generated decimals of a normal distribution with a mean value
of 0 and a standard deviation of 1, generally within the interval
[−1,1]. Due to the size of the training set, data are usually
trained in small batches in a fixed-size sample that is randomly
selected from all training data for each iteration. The sample
size is called the batch size, and the batch size of this project is
32. First, the network receives the input and calculates using the
received input and parameters, comparing the estimated output
with the real output, it obtains the mean square error, and then
it updates the parameters of each node according to the error.
The learning rate for updating the parameters is 0.0001 to ensure
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that the amplitude of each update parameter will not be too
large so that the current parameters can gradually approach the
best parameters. Normally, the error will keep decreasing during
training, and the decrease will be fast and then slow. When the
error becomes stable as the training times increase, the training
can be stopped to avoid overfitting.

Figure 2 shows the approach of SARSA updates Q(s, a). In
the project, there are five actions, a1, a2, a3, a4, a5. Suppose
the states are s1,s2,s3.... Each data point includes a state and
action group. The updating order is the same as the data
order. As shown in Figure 2, suppose the first state is s1,
the action to be performed is a2, and we update Q(s1, a2).
With first input s1, we could have five Q values of five
actions, then we could obtain s2 as the next state and a1 as
the next action, using Q(s2, a1) to update Q(s1, a2). Then, we
would update Q(s2, a1)... in the same way until the end of
the iterations.

Balance Prediction
Next, we used deep Q-learning (DQN) based on Q-learning to
uncover the relationship between states and actions, obtain new
knowledge from existing data and find the best treatment plan
to predict the reasonable range of fluid balance. We used the
training set to train themodel and the test set to make predictions
on the trained model.

Figure 3 describes the approach of DQN updates with Q(s, a).
The updating order of Q(s, a) is also the same as the data order;
unlike SARSA, DQN uses the highest Q(s, a) among five Q(s, a)
to update Q(s1, a2). Suppose the highest Q(s, a) is Q(s2, a4), and
we use Q(s2, a4) to update Q(s1, a2).

The principle of updating Q(s, a) with DQN and Q-learning
is the same. Both use the max method. However, there will be an
overestimation problem. If the data are noisy, the best Q(s, a) is
not the largest Q(s, a). There may be biases after each iteration,
and the biases will approach Q with greater values (12).

FIGURE 2 | SARSA updates approach.
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FIGURE 3 | DQN updates approach.

To solve the problem, we use double deep Q-learning
(DDQN). The method of updating Q(s, a) with DDQN is
as follows:

Q(st , at) ← Q(st , at)+ α[Rt+1 + γQ′(st+1, a)− Q(st , at)]

a = maxaQ(st+1, a)

The method of calculating losses with DQN and DDQN is shown
in Figure 4.

θ is the parameter of the neural network; the method of
obtaining Q is called selection, and the calculation loss is called
an evaluation. DDQN implements the two methods with two Q
networks, avoiding the risk of using the same Q network.

We define two identical structured Q networks, the primary
QN and target QN, train with the primary QN and evaluate with
the target QN (13). The calculation process is as follows:

(1) Use the primary QN to select the action with the highest
Q(s, a) in st+1, where Q(s, a) is called q1;

(2) Use target QN to evaluate the Q(s, a) of the action, and the
evaluated Q(s, a) is called q2;

(3) Set the difference between q2 and q1 as the loss, update the
parameters of the primary QN with back propagation, and
do not update the parameters of target QN;

(4) Repeat (1) (2) (3) until convergence.

Algorithm Evaluation
The algorithm evaluation method compares the original average
reward and the average reward calculated by the model on the
test set. If the average reward calculated by the model is higher
than that of the original test set, we can argue that the model has
an effect on optimizing treatments. However, because the model
is built on the training set, we cannot ensure that the distribution
(probability of occurrence) of the test set is the same as that of
the training set, and it is inaccurate to use the mean prediction
rewards for comparison. To ensure that the two groups of data

Frontiers in Medicine | www.frontiersin.org 6 April 2022 | Volume 9 | Article 766447

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Su et al. Fluid Therapy by Reinforcement Learning

FIGURE 4 | Calculating loss with DQN and DDQN.

are unbiased, the inverse probability score (IPS) is generally used
for approximating the test set to the training set distribution.

The formula of the IPS is as follows:

Vπ
IPS =

1

|N|

∑N

i= 1

Airi

πi(xi)
(1)

where A is whether an event occurs or not, r is the reward, and
πi(xi) is the probability of an event occurring. If the probability
on the test set is lower than that of the training set, as the
denominator, r will be multiplied by a multiple greater than 1,
which is the inverse. If the probability of an event occurring
is correct, the test set will be unbiased. However, there are
two problems. First, we cannot ensure that the probability is
completely correct. Second, the variance will be too large if the
probability is very small.

We can also use regression-based model m(xi) for prediction,
and the formula is as follows:

m(xi) = E(r|A = 1, x) (2)

where A indicates whether AI policy is consistent with clinical
policy, 1 indicates consistency and 0 indicates inconsistency.

Vmodel =
1

N

∑N

i=1
[Airi + (1− Ai)m(xi)] (3)

If A= 1, (1− Ai) is 0, and according to the formula, the original
reward will be used. If A = 0 and Airi is 0, the predicted reward
will be used. Similarly, if the model is correct, the result will
be unbiased.

A double-robust estimator is the combination of IPS and a
regression model. The formula is as follows:

Vπ
DR =

1

|N|

∑N

i=1
[
Ai(ri −m(xi))

πi(xi)
+m(xi)] (4)

OR:

Vπ
DR =

1

|N|

∑N

i=1
[
Airi

πi(xi)
−

Ai − πi(xi)

πi(xi)
m(xi)] (5)

wherem(xi) is themodel, which is used for predicting the reward.
If the model is correct, according to formula 4, the model is
able to predict ri, and if ri − m(xi) = 0, Vπ

DR =
1
|N|m(xi), the

result is unbiased. If the model is not correct, the probability of
an event occurring is correct. According to formula 5, Vπ

DR =
1
|N|

∑N
i=1

Airi
πi(xi)

, and the result is also unbiased. In other words,

at least one of the models and the event probability estimation is
correct, and the result is unbiased (doubly robust) (14–17).

Model Validation
Patient data from July 2019 to April 2020 were extracted from
PICMISD as the validation set. We compared the predictions
and actual clinical conditions and prognoses of four different
types of negative fluid balance and fluid infusion in the validation
set. The preprocessing method of the validation set is the same
as that used for the data collection and cleaning strategy in
Section 2. Lastly, the validation set included 399 sepsis patients
(representing 5269 time-blocks) were used for verification,
with 357 survivors (including 4677 time-blocks), and 42 non-
survivors (including 592 time-blocks). We divided the predicted
and clinical 5-group fluid balance into two groups based on the
total amount of fluid (positive or negative balance). The previous
categories 0, 1, and 2 correspond to the new category 0, indicating
negative fluid balance (negative balance), and categories 3 and
4 correspond to the new category 1, indicating fluid infusion
(positive balance). In addition, the actual negative fluid balance
and fluid infusion were determined according to the actual
clinical PICMISD records. We calculated the morality of the four
combinations of prediction and clinical results. The mortality
rate is the lowest when the predicted fluid management strategy
is the same as the actual strategy.

Statistical Analysis
All statistical analyses were performed using SPSS Statistics for
Windows (version 19.0, IBM Corporation, Armonk, NY) and
R 3.4.3. Student’s t-test or the Wilcoxon rank sum test was
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used to compare continuous variables. The categorical data
were compared using the chi-square test or Fisher’s exact test.
The Kruskal-Wallis test was used to compare differences in
continuous parametric variables with abnormal distributions.
Differences in the variables between the groups were considered
statistically significant at the a p level of < 0.01.

RESULTS

General Description
Table 3 shows the significant difference between each feature
of the training set and test set. The p-values of all the features
are greater than 0.01, which means that there is no significant
difference between the two datasets.

Data Distribution
As shown in Figure 5, from left to right, the first row shows
the fluid balance distribution, action distribution and reward
distribution of the training set based on the frequency. The test
set shown in the second row follows the same distribution. Each
data point represents the data from each period for each patient.
The balance distribution figure shows that most patients had
a balance of ±500, with the highest being 1608.92 and lowest

being −1097.58, which was similar to those in the test set. The
action distribution figure shows that although the balance of each
patient for each period is mostly different, the percentage of each
action in the training set and test set are basically the same. The
number of each group of actions in the training set and test set
are the same. In the reward distribution figure on the training
set, the rewards of 2,095 individuals are alive, and 348 individuals
died. In addition, most of the rewards were 0. The proportion of
rewards in each part of the test set is basically the same as that of
the training set. The results above show that the distributions of
the training set, test set, and validation set are basically the same.

Prediction of SARSA
Each training dataset includes a group of states and actions
Q(s, a). Figure 6 describes the mortality and expected reward of
the training set. Clearly, the higher the expected reward is, the
lower the mortality rate, and the reward value is properly set.

Prediction of Q-Learning
Figure 7B shows the predicted action distribution of the test set.
Action 2 has the highest amount among the five actions, and the
corresponding balance is−45.68 to−0.67. Action 0 and action 4
have the lowest amount, which corresponds to too little and too

TABLE 3 | Comparison of 27 features of the training set and test set.

Features* Training set Test set Validation set p-value (training p-value (training vs.

median (25th, 75th) median (25th, 75th) median (25th, 75th) vs. test set) validation set)

Invasive mean pressure 88.33 (81.56–95.57) 89.25 (81.76–97.12) 83.74 (78.0–89.9) 0.1320 0.1320

Invasive systolic blood pressure 131.57 (120.47–143.62) 132.91 (121.83–145.56) 122.56 (112.02–135.0) 0.2992 0.2992

Invasive diastolic blood pressure 67.33 (60.75–74.22) 68.45 (61.41–76) 64.29 (58.79–69.58) 0.0144 0.0144

Temperature 37 (36.5–37.5) 37 (36.55–37.5) 37.0 (36.5–37.5) 0.2956 0.2956

Breathe 18.08 (15.86–20.83) 18.12 (15.71–21.1) 17.33 (15.38–20.2) 0.4522 0.4522

Oxygen concentration 31 (28–38.75) 31 (27.76–39.21) 36.29 (30.53–43.12) 0.1943 0.1943

Perfusion index 1.5 (0.79–2.4) 1.6 (0.81–2.63) 1.13 (0.64–1.87) 0.0224 0.0224

CVP 8 (6.5–9.64) 8 (6.33–9.61) 8.33 (7.0–10.0) 0.1711 0.1711

SPO2 (%) 98.64 (97.45–99.6) 98.38 (97.14–99.29) 98.4 (96.84–99.5) 0.0500 0.0500

Heart rate 92.86 (82.5–103.67) 93.45 (82.33–105) 94.56 (85.1–102.97) 0.1275 0.1275

White blood cell 11.8 (8.49–16.59) 11.22 (7.94–15.47) 11.61 (7.71–16.29) 0.2308 0.2308

Neutrophilic granulocyte percentage 86.1 (80.6–90.2) 86.2 (80.46–90.4) 88.05 (82.3–92.03) 0.0163 0.0163

Hemoglobin 96 (86–109) 97 (88–110) 91.0 (83.67–100.46) 0.0190 0.0190

Blood platelets 144 (89–208) 138 (80–208) 93.0 (63.67–140.92) 0.0660 0.0660

Creatinine 86 (60–138) 79 (55–139) 106.0 (79.0–164.0) 0.0221 0.0221

Total bilirubin 16.9 (11.4–30.9) 16.7 (11.2–30.1) 28.1 (15.3–59.49) 0.2970 0.2970

Lac 1.3 (0.9–1.83) 1.30 (1–2) 1.6 (1.13–2.59) 0.3278 0.3278

pO2 92.80 (79.3–111) 92.91 (79.5–110) 94.72 (79.26–117.0) 0.4295 0.4295

pCO2 39.05 (35.8–42.6) 39.3 (35.95–43.1) 39.85 (36.26–43.0) 0.3987 0.3987

BE 3.03 (0.4–5.47) 3.17 (0.6–5.9) 3.0 (0.0–5.6) 0.4494 0.4494

pH 7.45 (7.42–7.48) 7.45 (7.41–7.48) 7.44 (7.41–7.47) 0.3254 0.3254

Age 62 (48–70) 62 (50–70) 59.0 (50.0–68.0) 0.2671 0.2671

Weight 65 (58–75) 65 (58–75) 65.0 (60.0–74.0) 0.4209 0.4209

Bloc 8 (4–13) 8 (4–12) 9.0 (4.0–13.0) 0.1800 0.1800

Fluid balance −20.83 (−90.66–32.87) −19.24 (−90.25–37.31) −31.19 (−109.05–36.81) 0.1606 0.1606

*All parameters do not obey normal distribution.
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FIGURE 5 | Frequency distribution for the balance distribution, action distribution, and reward distribution of the training set, test, and validation set.

much balance. In comparing the origin distribution in Figure 7A,
the amount of balance that was too high and too low decreased
significantly. Figure 7C shows the APACHE II score of these
different actions.

Figure 8 shows the relationship between fluid balance
difference and mortality. We used the median fluid balance
interval as the predicted value, and the difference was the
predictive value minus the actual value. The closer the model is to
the clinical fluid balance difference, the lower the mortality rate.
This trend shows that the model is able to conclude clinical rules.
However, a fluid balance difference that is too high or too low is
not good for patients. Mortality is higher in patients with a lower
fluid balance difference than in those with a higher fluid balance
difference. The supplemental figure shows the predicted - real
fluid balance difference and APACHE II score.

Evaluation
A double-robust estimator was used to calculate the average
expected reward [Q(s, a)] of the original test set, and the average

predicted reward was calculated by the Q-learning model. The
result is shown in Table 4. The results show that the average
reward keeps increasing as the iterations increase. The increase is
significant at the beginning, while the number of iterations rises
from 20,000 to 30,000. Compared to the first 10,000 iterations, the
increase in the average reward is much lower and could gradually
become stable in future iterations. There could also be a risk of
overfitting. Thus, we chose the model with 30,000 iterations as
the final model.

Validation
As shown in Figure 9A, patient mortality was lowest when
negative fluid balance was predicted to be the same as clinical
in both the validation set and the test set. The mortality is
lower when the reinforcement strategy is the same as the clinical
strategy. When the reinforcement strategy is different from the
clinical strategy, it is more serious to predict negative fluid
balance as fluid infusion than to predict fluid infusion as negative
fluid balance, and the mortality of the former is lower than that
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of the latter. The results are shown in Figure 9B, which show the
high value of the model in reality.

DISCUSSION

Our study indicates that the use of reinforcement learning
methods can clearly predict a patient’s future liquid treatment
strategy. To our knowledge, clinical decision-making is a process
that usually not gives immediate feedback. A certain treatment
strategy may improve or worsen the state of illness. However,
it does not mean the treatment prior to change of the illness
is right or wrong. In clinical practice, a series of treatment
procedures work together to accomplish the therapeutic effect.
Hence, clinical decision-making in ICU is not a simple static
classification problem. Instead, it is a dynamic process which we
should learn through environmental rewards and punishments.

FIGURE 6 | Mortality and expected reward.

Under this circumstance, reinforcement learning should be
used to maximize rewards or achieve specific goals through
learning strategies in the interactive process of the environment.
The SARSA model can be used to simulate the equation
between expected mortality and actual mortality during the
liquid treatment process. The Q-learning model shows that as the
model prediction and actual intake and output become closer, the
mortality rate decreases. Additionally, if the intake and output are
too high or too low which caused abnormal fluid imbalance, the
mortality rate would be higher. Patients with higher positive fluid
imbalance may have higher mortality than those with a higher
negative fluid imbalance. We used a double-robust estimator to
calculate the average expected reward of the test set in the Q-
learning model after training 30,000 times as the final prediction
model. Using a validation data set, the results suggest that if
the model predicts that the patient should be dehydrated while
the patient is dehydrated under actual treatment, the fatality
rate is significantly lower compared with other circumstances. In
particular, these data are from the first 108 h of entering the ICU
ward, which suggests that the resuscitation is not a positive mass
fluid resuscitation. This is worth thinking about for the clinicians.

Fluid overload is related to the prognosis of severely ill patients
with septic shock and/or acute respiratory distress syndrome
(ARDS). Excessive fluid load may lead to a vicious cycle in which
interstitial edema causes organ dysfunction, leading to fluid
accumulation, organ edema and dysfunction. All the potentially
harmful consequences of fluid overload in different end-organ
systems have an impact on patient morbidity and mortality.
Therefore, although infusion is advocated in early resuscitation
strategies, the side effects of inappropriate or excessive infusion
are increasingly recognized by practitioners. Fluid therapy can
be considered a double-edged sword. In 2000, a retrospective
cohort study conducted by Alsousand et al. indicated that
patients with a negative fluid balance for at least one day
during the first 72 h of septic shock had a better prognosis
(OR 5.0; 95% CI 2.30–10.9, p < 0.001) (18). In 2006, the
FACTT study showed that although negative fluid balance had
no effect on the mortality rate, it can significantly reduce the
time of mechanical ventilation and the ICU stay in critically
ill patients (19). Since 2006, more studies have focused on

FIGURE 7 | (A) Action distribution of clinical policy on the test set. (B) Action distribution of AI policy on the test set. (C) Action distribution of APACHE II on the test set.
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FIGURE 8 | Predicted - real fluid balance difference and morality.

the relationship between fluid balance and mortality in sepsis,
suggesting the disadvantages of positive fluid balance for patients
with sepsis from the perspective of evidence-based medicine
(1–4). A recent systematic review involving fluid balance and
prognosis in critically ill children suggests that after initial
resuscitation, these children may develop edema and progress
to fluid overload. More evidence shows that fluid overload
causes more complicated treatment and serious outcomes, which
could increase morbidity and mortality (20). Therefore, when
treating patients with sepsis, we should be alert to the “reinjury”
caused by excessive volume load, and more methods should
be used to identify and assist in decision-making about fluid

therapy strategies. In particular, our research has found that
early infusion does not require a large amount of fluid infusion

for the ICU admission in the real world. If fluid therapy
can be performed more appropriately and a negative balance

can be reached earlier, patients will ultimately benefit. For

critically ill patients, at the beginning of ICU admission, it is
necessary to choose an assessment every 6 h. Regarding the
liquid usage within these 6 h period, actual fluid balance rather
than the actual amount of input and output is the core of the
resuscitation treatment. Our study provided effective treatment
decision-making recommendations that have good predictive
performance based on fluid balance and each time interval. For
example, patients with “recommended negative fluid balance but
actual negative fluid balance” have a better prognosis, while those
with “recommended negative fluid balance but actual positive
fluid balance” have the worst prognosis.

TABLE 4 | Average expected reward.

Items Average reward

Original data from test set 4.07

Q-learning model (3,000 iterations) 4.05

Q-learning model (10,000 iterations) 9.06

Q-learning model (20,000 iterations) 10.37

Q-learning model (30,000 iterations) 10.47

The average infusion volume of patients with severe infection
and septic shock on the first day of admission to the ICU is
lower than recommended by the Surviving Sepsis Campaign
bundle. An infusion of more than 5 L of fluid on the first day
of admission to the ICU is associated with a significant increase
in the risk of death and a significant increase in hospitalization
costs (21). Vincent and De Backer recently proposed a conceptual
model for managing the shock state. This model is aimed at
fluid management during the treatment of critical illness. The
treatment of shock is divided into four phases: (1) recovery
phase: the goal is to achieve the lowest blood pressure level
sufficient to maintain life; (2) optimum phase: the goal is to
increase cardiac output to meet the requirements of the body;
(3) stable phase: the goal of this phase is organ support and
avoiding complications; and (4) de-escalation phase: patients in
this stage should gradually leave the ICU intervention measures.
This approach formally puts forward the necessity of liquid
de-escalation therapy (22, 23). On this basis, Monnet et al.
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FIGURE 9 | (A) Comparison of survival and death patients’ blocks in the prediction and clinical balance groups in the validation set. (B) Comparison of survival and

death patients’ blocks predictions and clinical balance in the test set.

(24) discussed different fluid management strategies, including
early goal-oriented fluid management, late conservative fluid
management, and late goal-oriented fluid removal management.
In addition, the “Four-D” (medication, Dosage, Duration and
Degradation) concept of fluid therapy is expanded. When
treating patients with septic shock, four stages of fluid therapy
should be considered to answer these questions. Doctors should
be fully aware of the proper time to start or stop intravenous
infusion, when to start reverse resuscitation or actively drain
fluid, and when to stop reverse resuscitation. However, it is
difficult to give a clear standard to explain how patients should
implement fluid therapy accurately. These abstract concepts are
not conducive to clinical implementation. Sometimes the success
or failure of a treatment depends on the doctor’s own experience
and understanding of related theories. Recent studies have shown
that achieving a negative volume balance in the ICU is associated
with a reduction in 90-day mortality. An earlier negative fluid
balance is associated with a reduction in mortality. Each liter
of negative fluid balance increases the mortality rate (20). This
finding shows that fluid treatment, especially the identification
of the de-escalation stage, is of great significance. Our model
proposes this possibility both theoretically and practically. Using
the Q-learning model can provide us with the direction of
liquid therapy for clinical reference. Our model really brings the
theoretical idea of fluid resuscitation back to the scale of clinical
operability, with the help of computer reinforcement learning.

However, we should never forget avoiding excessive negative
fluid balance during treatment. Our goal for negative fluid
balance is to remove excess volume in the interstitial spaces.
However, the volume in the circulation must be removed first.
When the interstitial fluid resorption rate (plasma refilling rate)

is sufficient to prevent hypovolemia, hypotension does not occur.
Currently, we do not completely know the lowest fluid resorption
rate that may prevent hypotension. Studies have shown that in
patients with severe negative fluid balance, increased fluid intake
and urine output are related to a decrease in hospital mortality.
However, achieving a more negative fluid balance compared to
a mild fluid balance is not associated with reduced mortality
(25). In addition to giving certain liquid treatment strategies,
our model suggests that excessive negative fluid balance and
positive fluid balance also bring side effects. Our model gives
us a better basis for making choices, which gave a boundary
between negative fluid balance and positive fluid balance. This
is the contribution of machine learning to precision medicine.

Several limitations should be mentioned in this study. This
study uses a single-center database. The sample size and the
treatment stereotype of the treatment center may weaken the
universality of the model. In particular, the weights of 18 blocks
for each patient were equal in this study. At present, a method
to solve the time series problem has been presented (26, 27).
Further study, including temporal evolution along blocks of the
fluid balance, can be performed. In addition, the amount and
timing of negative fluid balance and positive fluid balance in
this model cannot be completely calculated. Our finding can
give directions for fluid therapy dependent onmodel predictions.
Hence, the results given by the model should be combined
with the clinical results. Any current medical applications of
artificial intelligence cannot replace physician’s medical decision
making. Third, several confounding factors may influence the
result of analysis. For example, usage of vasopressors and
variation of cardiac functions may contribute to outcome and
fluid balance. Patient’s severity of illness is not invariable during
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the treatment progresses. Moreover, the treatment of severe
illness is very complicated. Although we considered the impact
of disease severity when analyzing each bloc, it is impossible
for us to update the value of the relevant scoring system every
6 h according to current data. The impact of any machine
learning model on actual clinical conditions must be confirmed
by BCT studies. Whether other interventions have also affected
the process and conclusions of reinforcement learning, we may
answer and solve them through more advanced methods if
possible (28, 29).

CONCLUSION

This study proves that the reality of fluid therapy for patients with
sepsis in the early stage of ICU admission is that a large amount
of fluid infusion may not be required. If it can be converted to
the negative fluid balance resuscitation phase as soon as possible,
the patient’s prognosis is better. Reinforcement learning methods
were used to propose a possible predictive model for guiding
the fluid therapy of patients with sepsis in ICUs.Our study
presents a methodological model for fluid therapy. It is believed
that machine learning will ultimately assist in clinical decision-
making regarding the fluid therapy of critically ill patients in
the future.
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