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Abstract

The type I polyketide SF2487/A80577 (herein referred to as tetromadurin) is a polyether

tetronate ionophore antibiotic produced by the terrestrial Gram-positive bacterium Actino-

madura verrucosospora. Tetromadurin is closely related to the polyether tetronates tetrona-

sin (M139603) and tetronomycin, all of which are characterised by containing a tetronate,

cyclohexane, tetrahydropyran, and at least one tetrahydrofuran ring. We have sequenced

the genome of Actinomadura verrucosospora to identify the biosynthetic gene cluster

responsible for tetromadurin biosynthesis (the mad gene cluster). Based on bioinformatic

analysis of the 32 genes present within the cluster a plausible biosynthetic pathway for tetro-

madurin biosynthesis is proposed. Functional confirmation of the mad gene cluster is

obtained by performing in-frame deletions in each of the genes mad10 and mad31, which

encode putative cyclase enzymes responsible for cyclohexane and tetrahydropyran forma-

tion, respectively. Furthermore, the A. verrucosospora Δmad10 mutant produces a novel

tetromadurin metabolite that according to mass spectrometry analysis is analogous to the

recently characterised partially cyclised tetronasin intermediate lacking its cyclohexane and

tetrahydropyran rings. Our results therefore elucidate the biosynthetic machinery of tetro-

madurin biosynthesis and lend support for a conserved mechanism of cyclohexane and tet-

rahydropyran biosynthesis across polyether tetronates.

Introduction

SF2487/A80577 (1) (referred to in this manuscript as tetromadurin) is a type I polyketide poly-

ether tetronate isolated independently from Actinomadura verrucosospora by two industrial

research groups in the early 1990s [1, 2] (Fig 1). It belongs to the same family of polyether

tetronates as tetronasin (2) (produced by Streptomyces longisporoflavus) and tetronomycin (3)

(produced by Streptomyces sp. NRRL 11266), which are all characterised by containing a tetro-

nate, cyclohexane, tetrahydropyran, and at least one tetrahydrofuran ring (Fig 1). Tetronasin

and tetronomycin are notable for being near- “mirror image” versions of one another, contain-

ing the opposite configuration at each of ten equivalent stereocenters. Tetromadurin contains
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structural elements of each, its cyclohexane and tetrahydropyran rings of tetromadurin having

identical configuration to those in tetronasin, while its tetronate ring contains a tetronomycin-

like exocyclic double bond. All three compounds, like other polyethers such as monensin, are

ionophore antibiotics that disrupt ion signalling across cell membranes [1, 3–5]. In addition,

tetromadurin has also demonstrated antiretroviral and antimalarial activity [1, 6].

The high degree of structural similarity between tetromadurin and tetronasin/tetronomycin

suggests a similar biosynthetic pathway for its biosynthesis. The biosynthetic gene clusters

(BGCs) responsible for the production of tetronasin (the tsn gene cluster) and tetronomycin

(the tmn gene cluster) have both been sequenced (Genbank: FJ462704 and AB193609, respec-

tively) [7, 8]. The tsn and tmn gene clusters both encode five type I polyketide synthase (PKS)

enzymes that condense six (2S)-methylmalonyl-CoA and seven malonyl-CoA extension units

to form the 26 carbon skeletons of tetronasin and tetronomycin. In addition, both gene

Fig 1. The polyether tetronates tetromadurin (1), tetronasin (2), and tetronomycin (3).

https://doi.org/10.1371/journal.pone.0239054.g001
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clusters also encode enzymes for creation of the four ring types, an O-methyltransferase for the

C26 methoxy group, and a cyctochrome P450 for the primary hydroxyl group (C30 in tetrona-

sin 2 and C28 in tetronomycin 3) [7, 8]. In contrast, on the basis of its structure we predicted

that the 31-carbon polyketide skeleton of tetromadurin is synthesised using six malonyl-CoA,

eight (2S)-methylmalonyl-CoA, and one uncommon (2R)-methoxymalonyl-ACP (acyl-carrier

protein) unit (S1 Fig). Also, unlike tetronasin and tetronomycin, tetromadurin contains two

primary hydroxyl groups (positions C36 and C38) and two tetrahydrofuran rings.

We have performed whole-genome sequencing of A. verrucosospora to identify the biosyn-

thetic gene cluster responsible for tetromadurin biosynthesis (the mad gene cluster). Bioinfor-

matic analysis of the individual genes within the mad gene cluster enabled us to propose a

complete pathway for tetromadurin biosynthesis. Furthermore, the PKS enzymes encoded by

the mad gene cluster indicate an unusual case where one of the ketoreductase (KR) domains

appears to act externally from its parent module. To functionally validate the mad gene cluster,

independent in-frame deletions were made in the putative cyclase genes mad10 and mad31.

Deletion of either of these genes abolished tetromadurin production. In addition, mass spec-

trometry analysis of the A. verrucosospora Δmad10 mutant indicated the production of a late-

stage tetromadurin biosynthetic intermediate lacking the cyclohexane and tetrahydropyran

rings and one primary hydroxyl group, analogous to the intermediate recently characterised

from a S. longisporoflavus Δtsn11 mutant [7]. Taken together, our findings clarify several

aspects of tetromadurin biosynthesis, including identifying its biosynthetic gene cluster

(BGC), determining the relative order of the two cytochrome P450-catalyzed hydroxylations,

and supporting a conserved mechanism of cyclohexane and tetrahydropyran formation in

polyether tetronate biosynthesis.

Methods

Oligonucleotides, plasmids, and bacterial strains

All oligonucleotide primers were synthesised by Sigma-Aldrich and are presented in Table 1.

The plasmids and bacteria strains used/created in this study are presented in Tables 2 and 3,

respectively.

Growth and maintenance of actinomycete cultures

All actinomycete mycelial liquid cultures were grown at 30˚C at 200 rpm in conical flasks. The

liquid medium was filled to no more than 1/5 of the total flask volume. A steel spring was

placed at the bottom of each flask that extended around the inside face, preventing the culture

from clumping. Foam bungs were used to seal the flask. Actinomadura verrucosospora was

maintained on oatmeal agar (20 g/L oatmeal, 20 g/L agar) while S. longisporoflavus was main-

tained on TWM medium (5 g/L D-glucose, 10 g/L sucrose, 5 g/L tryptone, 2.5 g/L yeast extract,

0.036 g/L EDTA, 15 g/L agar, pH 7.1.). S. sp NRRL 11266 was maintained on SFM medium

(20 g/L soy flour, 20 g/L D-mannitol, 20 g/L agar).

Genomic DNA extraction

For the preparation of genomic DNA (gDNA), 250–500 μL of mycelia was centrifuged in a 1.5

mL microcentrifuge tube to pellet the cells and the supernatant was discarded. The cell pellet

was resuspended in 500 μL of SET buffer (20 mM TrisCl, 75 mM NaCl, 75 mM EDTA, pH

7.2) containing 10 μL of lysozyme solution (50 mg/mL). After incubation at 37˚C for 1 h,

60 μL of 10% SDS (w/v) and 10 μL of proteinase K (20 mg/mL) were added and the tube was

incubated at 55˚C for an additional 2 h. The sample was then mixed with 300 μL of 5 M NaCl
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and 500 μL of chloroform and centrifuged at 2200 x g for 15 min. The aqueous upper layer was

transferred to a fresh microcentrifuge tube using a T1000 pipette tip with the end cut off to

avoid shearing the gDNA. To precipitate the gDNA, 0.6x volumes of isopropanol was added

followed by gentle mixing. The precipitated gDNA was washed twice in 70% ethanol before

being air dried for 5–10 min. The gDNA pellet was dissolved in 100–200 μL of distilled water.

Table 1. Primers used in this study.

Primer Sequence (5’-3’)

Primers used for creating pYH7 gene deletion constructs
mad10_Up_Fw GGGACTGATCAAGGCGAATACTTCAGCCGAGCTGCTGCTGGAACTGCTGC

mad10_Up_Rv GCGGCGCGCGACGCGGCGCCGACGCGGTCATGC

mad10_Dn_Fw GCGTCGGCGCCGCGTCGCGCGCCGCAGCC

mad10_Dn_Rv GGGACCCGCGCGGTCGATCCCCGCACTTGATCAGGCCGGTGATGCCGGCC

mad31_Up_Fw GGGACTGATCAAGGCGAATACTTCACCGGCAGCGGCGGAAGC

mad31_Up_Rv CGACGATGTAGATCGGCGACACGCCGG

mad31_Dn_Fw GGCGTGTCGCCGATCTACATCGTCGGAACGGG

mad31_Dn_Rv GGGACCCGCGCGGTCGATCCCCGCACACCGGTGCCTCAGCG

tmn8_Up_Fw GGGACTGATCAAGGCGAATACTTCAGCCGAGCTGCTGCTGGAACTGCTGC

tmn8_Up_Rv GCGGCGCGCGACGCGGCGCCGACGCGGTCATGC

tmn8_Dn_Fw GCGTCGGCGCCGCGTCGCGCGCCGCAGCC

tmn8_Up_Rv GGGACCCGCGCGGTCGATCCCCGCACTTGATCAGGCCGGTGATGCCGGCC

Primers used for screening A. verrucosospora exconjugant gDNA for targeted in-frame deletions
mad10_KO_Fw CCTTCAAGAGATCCCCGAGG

mad10_KO_Rv CGTCATCGGAACTCCCTGG

mad31_KO_Fw CTCCTTCTGTTTGGGTGACG

mad31_KO_Rv GAGTGCTTCAGGTGAGAACG

tmn8_KO_Fw GGTCTCAGCCCGTCGTTC

tmn8_KO_Rv TGTGCTGCTCGACCTGTC

Primers used for creating pIB139 genetic complementation constructs
pIB139_mad10_Fw AGGATCCACATATGTTGGGGATCCTATGAGCGATTCGGTTG

pIB139_mad10_Rv GATATCGCGCGCGGCCGCGGATCCTTCACGCCGCAGGTTCC

pIB139_mad31_Fw CCACATATGTTGGGGATCCTATGGGCATGACCTCGC

pIB139_mad31_Rv CGCGCGCGGCCGCGGATCCTTCATCCGAAGGAAATGG

https://doi.org/10.1371/journal.pone.0239054.t001

Table 2. Plasmids used in this study.

Name Description Source

pYH7 tsr, bla, aac(3)IV, cos, oriT, PT7, PT3, oripIJ101, oriColEI. In frame deletion in

Streptomyces by homologous recombination

[8]

pIB139 aac(3)IV, oriT, attP (FC31), int, PermE�, oripUC. Integrative plasmid for in trans
complementation

[10]

pYH7-tmn8 Gene deletion construct for tmn8 This

study

pYH7-

mad10
Gene deletion construct for mad10 This

study

pYH7-

mad31
Gene deletion construct for mad31 This

study

pIB139-

mad10
Construct for the heterologous expression of mad10 This

study

pIB139-

mad31
Construct for the heterologous expression of mad31 This

study

https://doi.org/10.1371/journal.pone.0239054.t002
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Genome sequencing

Nextera shotgun and Nextera mate-pair libraries were constructed from high molecular weight

genomic DNA isolated from Actinomadura verrucosospora NRRL-B18236. Sequencing was

carried out on an Illumina MiSeq platform using the Illumina V2 500 cycles kit in 2 × 250 bp

mode. Reads were processed using a custom adapter trimming tool(fastq_miseq_trimmer).

Read pairs were then preassembled using FLASH v1.2.11 (https://ccb.jhu.edu/software/

FLASH). For de novo assembly we used newbler v3.0. Several assemblies were carried out

using either all or subsets of the input dataset, and the best assembly was selected using a score

calculated from scaffold N50, edge and total number of contigs. The best assembly was pol-

ished using Pilon. ORFs were predicted ab initio using a customised version of the FGENESB

pipeline V2.0 (2008) [www.softberry.com] and BLAST-searched against a filtered NCBI NR

and KEGG datasets. Customised linguistic analysis was used for transfer of gene annotations.

Annotation results were saved in EMBL format and manually curated in Artemis (http://www.

sanger.ac.uk/science/tools/artemis). The revised genome sequence has been deposited in Gen-

Bank under accession number CP053892. The tetromadurin biosynthesis gene cluster (mad
gene cluster) can be found within the genome using the accession CP053892:2037887–

2164555.

Revised sequence of Mad10

Close examination of the mad10 gene revealed an alternative ATG start codon 15 codons

upstream (corresponding to the amino acids MSDSVVIIGAGPVGL) to the start codon pre-

sented in Genbank: QKG20158. This alternative start codon was preferred as including these

15 extra amino acids improved its alignment with homologues proteins (see S12 Fig in the

supplementary material for details), suggesting it is the true start codon.

For clarity, the revised sequence of Mad10 used for alignments and expressed from pIB139-

mad10 is presented below (bolded residues highlight the additional amino acid residues):

MSDSVVIIGAGPVGLMLAHELALAGVRTVVIERRPEIDARTVSGLIHERSVELLEQRG
LMEQIRREDGEPLVWDRLHFASFWLDMSELAKTDHSVVLLQTRIQRLLSDRAAARGVH

Table 3. Bacteria strains used in this study.

Name Description Source

Actinomadura verrucosospora
NRRL B-18236

Tetromadurin (SF2487/A80533) (1) producer NRRL

Streptomyces longisporoflavus
83E6

Tetronasin (2) producer [7]

Streptomyces sp. NRRL 11266 Tetronomycin (3) producer [8]

Actinomadura verrucosospora
Δmad10

A. verrucosospora in which 906/1404 bp of the mad10 coding frame

has been deleted. No longer produces tetromadurin. Producer of T-17.

This

study

Actinomadura verrucosospora
Δmad31

A. verrucosospora in which 291/561 bp of the mad31 coding frame has

been deleted. No longer produces tetromadurin.

This

study

Streptomyces. longisporoflavus
Δtsn11

S. longisporoflavus 83E6 in which 1356 nt of the tsn11 coding frame has

been deleted. Producer of 17

[7]

Streptomyces. longisporoflavus
Δtsn15

S. longisporoflavus 83E6 in which the entire 621 bp tsn15 coding frame

has been deleted

[7]

Streptomyces. longisporoflavus
Δtsn15-mad31

S. longisporoflavus Δtsn15 containing the integrative pIB139-mad31
plasmid.

This

study

Streptomyces. longisporoflavus
Δtsn15-tmn8

S. longisporoflavus Δtsn15 containing the integrative pIB139-tmn8
plasmid.

This

study

Streptomyces. sp NRRL 11266

Δtmn8

S. sp NRRL 11266 in which the entire 573 bp tmn8 coding frame has

been deleted. No longer produces tetronomycin.

This

study

https://doi.org/10.1371/journal.pone.0239054.t003
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ILRRHELVGLSQDEDGVTARVHSPLGEEEIRCGYLVGCDGEDSAVRELAGFAVTRSGPS
WYGLLADVGSYAGPVGAGSFHEGGMFGQFGDASTMFRLMTIEIGVEAPPAEQPVTLE
EVRASIERITGERPTVEEPLWLHRHGNVTILADEYRNGRVFLAGDAAHFQFHPAGHAV
TIGLQDAVNLGWKLAAKLQGWAPAGLLDSYDAERRPYGRRACVYGRAQMALLDTAD
GPSALREVFGELLDHDVVNRHLVRAATDARYPMGQAEDLVGRRVPLVSLSTPGGEVPV
AETLHAARGVLLDLSGGTEPPDVTGWKDRVDVVAAEPTPEIPASAVLVRPDGHIAWA
GEAVGEGLHTALAAWFGEPAA

Creation of pYH7 and pIB139 constructs

The general method used to create a gene-deletion construct was to PCR amplify 2 kb regions

upstream and downstream of the gene of interest. The DNA polymerase used was PhusionTM

High Fidelity Master Mix with GC Buffer (New England Biolabs). The PCR primers used to

amplify each 2 kb fragment contained regions of overlap with both NdeI-linearised pYH7 [8]

and the other 2 kb fragment, enabling all three to be seamlessly joined using Hot Fusion DNA

assembly [9]. The assembled DNA product was then transformed into chemically competent E
coli NovaBlue cells. Colony PCR was used to identify E. coli clones containing the correctly

assembled insert, which were then fully sequenced using Sanger sequencing. The same proto-

col was followed to create the pIB139 [10] constructs, except the vector was linearised using

XbaI and only a single fragment was inserted.

Intergeneric conjugation of Actinomadura verrucosospora, Streptomyces
longisporoflavus, and Streptomyces sp. NRRL 11266

The DNA methylation deficient ET12567/pUZ8002 cells transformed with the pYH7 or

pIB139 plasmid to be transferred into the actinomycete host were grown to an A600 of 0.4–0.6

in 2TY (16 g/L tryptone, 10 g/L yeast extract, 5 g/L NaCl) medium containing selective antibi-

otics. The ET12567/pUZ8002 cells were then spun down and washed twice in 20 mL of 2TY

medium before being resuspended in 300 μL of 2TY. The actinomycete strain to be conjugated

(either as mycelia or spores) was prepared following the protocol from Practical Streptomyces
Genetics [11]. After gentle mixing, the two bacteria types were plated onto 35 mL of SFM con-

taining 10–20 mM MgCl2 and left at 30˚C for 12–20 h. The surface of the plate was then

flooded with 1 mL of MQ water containing 35 μL of apramycin (50 mg/mL) and 25 μL nali-

dixic acid (25 mg/mL). The plate was then incubated at 30˚C to promote the growth of excon-

jugants. Exconjugants were verified by restreaking onto SFM containing 30–50 μg/mL

apramycin and 25 μg/mL nalidixic acid.

Metabolite analysis

To detect the production of tetromadurin, A. verrucosospora was grown at 30˚C for seven days

on oatmeal agar. To detect the production of tetronasin, S. longisporoflavus was grown at 30˚C

on tsn medium B (30 g/L tryptic soy broth, 3 g/L CaCO4, 100 g/L dextrin, 20 g/L agar, trace

elements: 4 mg/L FeSO4, 4 mg/L ZnSO4, 0.6 mg/L CuSO4, 0.4 mg/L MnSO4, 0.4 mg/L

KMoO4). To detect the production of tetronomycin, S. sp NRRL 11266 was grown at 30˚C on

SFM medium. Following the fermentation, the agar was cut into cubes and extracted by sub-

merging in ethyl acetate. The ethyl acetate was then evaporated to dryness under reduced pres-

sure and the organic extract was redissolved 1 mL of methanol and centrifuged at 20,000 g for

20 min to remove any particulates, followed by HPLC-MS analysis. For the analysis of small

molecules, an HPLC (Hewlett Packard, Agilent Technologies 1200 series) coupled to a mass

spectrometer (Thermo Finnigan MAT LTQ) was used. The HPLC-MS was fitted with a 250

mm x 4.6 mm 5μm C18 reverse-phase column (5μ OSD3, 100 Å. Phenomenex, USA). The
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mobile phase consisted of 20 mM ammonium acetate and methanol. The mobile phase flow

rate was 0.7 mL/min with the following gradient: 0–5 min, 5–75% methanol; 5–30 min, 75–

95% methanol, 30–34 min, 95% methanol 35–36 min, 95–5% methanol. The mass spectrome-

ter was operated in positive electrospray ionisation mode set to full scan (from m/z 200–2000).

Construction of phylogenetic trees and protein sequence alignments

Maximum-likelihood (based on the Le-Cascuel model [12]) phylogenetic trees were created

using MEGA7 [13] by following the protocol described in [14]. 1000 bootstrap replicates were

performed. Positions with less than 95% site-coverage were excluded. Protein sequence align-

ments were performed using ClustalOmega [15].

Results

Identification of the mad gene cluster in A. verrucosospora
A strain of the A. verrucosospora NRRL B-18236 was obtained from the Agricultural Research

Service Culture Collection (NRRL). Prior to sequencing, the competence of this strain as a

tetromadurin producer was tested. A. verrucosospora NRRL B-18236 was fermented for seven

days on oatmeal agar followed by LC-MS analysis of the organic extract, where tetromadurin

([M+Na+] = 783.8, λMAX = 252 nm, 300 nm (MeOH)) was clearly detectable (S2 Fig).

Whole-genome sequencing was then performed using a combined shotgun and long-range

mate pair MiSeq approach. The genome was assembled into a single 10.215 Mbp scaffold

(Genbank: CP053892) and analysed by AntiSMASH 4.0 [16] to identify biosynthetic gene clus-

ters. Only one of the detected biosynthetic gene clusters, ca. 110 kbp and featuring 32 genes

(CP053892:2037887–2164555), possessed the biosynthetic features likely required for tetroma-

durin biosynthesis. The exact boundaries of the tetromadurin biosynthetic gene cluster (the

mad gene cluster) were decided on the basis of flanking genes whose annotation suggested no

obvious connection with tetromadurin biosynthesis (such as primary metabolism). The pro-

posed functions of the genes in the mad gene cluster, predicted using BLAST [17], is presented

in Fig 2. A diagram of the spatial organisation of the mad gene cluster is presented in Fig 3.

The majority of genes within the mad gene cluster could be ascribed plausible roles in tetroma-

durin biosynthesis, enabling us to propose a complete biosynthetic pathway (Figs 4 and 5).

The rationale for this biosynthetic pathway is discussed in the following sections.

Polyketide synthase genes of the mad gene cluster

The mad gene cluster contains seven genes encoding type I polyketide synthase multienzymes

(madAI-madAVII), collectively consisting of one loading and 14 extension modules. No

thioesterase (TE) domain is present in any of the modules, as expected for a polyketide tetro-

nate pathway [18]. The loading PKS module (MadAI_KS_LM) could be differentiated from

the extension modules by its KS domain catalytic cysteine being replaced by a glutamine (KSQ

domain) (S3 Fig) [19]. The order in which the remaining PKS enzymes process the tetroma-

durin intermediate was then predicted based on the agreement of the proposed product with

the actual structure of tetromadurin. The linear polyketide predicted by ordering the PKS

enzymes MadAI-MadAVII (13) (i.e, MadAI initiates tetromadurin biosynthesis and performs

two extension cycles before transferring the nascent polyketide chain to downstream to

MadAII etc. . .) is in near perfect agreement to the linear polyketide we predicted from retro-

biosyntheic analysis of tetromadurin itself (14) (Fig 6). The placement of the C5-C6, C10-C11,

C12 and C13 double bonds in 14 was guided by the recently isolated partially cyclised tetrona-

sin intermediate [7].
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The substrate selectivity of the acyltransferase (AT) domains were predicted from the pres-

ence of specific amino acid motifs, particularly the presence of a (H/T/V/Y)AFH (acetate-

incorporating), or (Y/V/W)ASH (propionate-incorporating) motif (S4 Fig) [20–22]. The AT

domain of the loading module contains the hybrid HASH motif, previously found in modules

with a relaxed selectivity that can incorporate both malonyl-CoA and (2S)-methylmalonyl-

CoA [23]. However, no congener of tetromadurin with one fewer methyl group has been

reported, indicating that (2S)-methylmalonyl-CoA is still specifically recruited by the loading

module. The AT domain of module 13 (MadAVI_AT_13) contains a YASH motif, indicating

selectivity for a (2S)-methylmalonyl-CoA. However, based on the structure of tetromadurin

this module should actually incorporate (2R)-methoxymalonyl-ACP to form the C4 methoxy

group. The selectivity motifs of AT domains that incorporate (2R)-methoxymalonyl-ACP are

Fig 2. Predicted functions of genes in the mad gene cluster. ATa = malonyl-CoA selective AT domain (acetate unit). ATp = (2S)-

methylmalonyl-CoA selective AT domain (propionate unit). ATm = predicted (2R)-methoxymalonyl-ACP selective AT domain.

https://doi.org/10.1371/journal.pone.0239054.g002
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poorly defined and typically resemble either a malonyl-CoA or (2S)-methylmalonyl-CoA

selective domain [24]. However, given the mad gene cluster contains the genes to synthesise

(2R)-methoxymalonyl-ACP (discussed below), it is likely that MadAVI_AT_13 really is selec-

tive for this uncommon extension unit.

With one exception, the tally of reducing domains present in each module is also consistent

with the structure of tetromadurin. Modules 2, 4, 8, and 11 all contain a ketoreductase (KR),

dehydratase (DH), and enoylreductase (ER) domain, consistent with complete saturation at

C27, C23, C15, and C9, respectively (S5 Fig). Since modules 4 and 11 incorporate propionate

units, the ER domains in these modules also determine the configuration of the C33 and C37

α-methyl groups, respectively. These ER domains both contain amino acid motifs associated

with the D-configuration (lacking the key tyrosine residue) [25], consistent with the D-config-

ured α-methyl substituents at these positions (S5 Fig).

The DH domains of modules 1, 3, 6, 9, 10, and 13 are all appropriately placed to form the

α-β double bonds at C29, C25, C19, C13, C11, and C5, respectively. Although module 5 con-

tains a DH domain, C21 contains a hydroxyl group in the final tetromadurin structure, sug-

gesting that MadAIII_DH_5 is inactive. Closer examination of MadAIII_DH_5 confirmed

this inactivity, as it is missing the tyrosine from the YGP motif. The tyrosine side chain of the

YGP motif in DH domains is proposed to assist binding to the β-hydroxyl group of the sub-

strate [19] and has been shown experimentally to be essential [26]. The remaining DH

domains all appear to be active (S6 Fig).

KR domains exert significant stereochemical influence over growing polyketide chains,

determining the stereochemistry of the β-hydroxyl group and (where appropriate) the α-

group of each extension unit. In the proposed MadAI-MadAVII module order, the KR

domains of module 5, 7, and 12 are appropriately placed to form the hydroxyl groups at C21,

C17, and C7, respectively. In the case of tetromadurin, all backbone β-hydroxyl groups and the

α-methyl groups adjacent to these hydroxyls (C35 and C38) are in the D-configuration,

Fig 3. The tetromadurin biosynthetic gene cluster (the mad gene cluster). The total size of the mad gene cluster is 110

kbp. A total of 32 were predicted to comprise the mad gene cluster. Genes are colour coded according to their predicted

function.

https://doi.org/10.1371/journal.pone.0239054.g003
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indicating the activity of B1 type KR domains [19]. The distinguishing features of a B1 KR

domain are an (L,V,I)DD motif and the absence of a proline (a feature of B2-type KRs) two

residues C-terminal of the catalytic tyrosine [27, 28]. Protein sequence analysis confirmed that

the KR domains from modules 5 and 7 are indeed B1, but modules 12 and 14 and appear to be

inactive (S7 Fig). The module 12 and 14 KR domains both lack the key catalytic tyrosine resi-

due, with module 12 also containing a deletion in its NADPH binding site [19, 29]. While the

inactivity of KR_14 is consistent with the C3 keto group of tetromadurin, the inactivity of

KR_12 is not. An inactive KR domain at this position should result in a keto group at C7 rather

than the C7 D-hydroxyl group observed in the tetromadurin (Fig 6). Module 12 also contains a

seemingly active DH domain that should reduce a C7 D-hydroxyl by a C6-C7 trans double

bond. How the tetromadurin C7 hydroxyl group is formed is therefore unclear.

Fig 4. The proposed biosynthesis pathway of tetromadurin (part 1). (I) The seven PKS enzymes (MadAI-MadAVIII) and predicted linear tetromadurin

intermediates of the mad gene cluster. ATa domains contain the amino acid motifs associated with malonyl-CoA (acetate unit) incorporation. ATp domains contain the

amino acid motifs associated with (2S)-methylmalonyl-CoA (propionate unit) incorporation. The ATm domain is predicted to recognise (2R)-methoxymalonyl-ACP.

ERD domains are predicted to create a D-configured α-methyl group. B1 KRs are predicted to create D-configured α-methyl and β-hydroxyl groups. The KS domain in

MadAI is a KSQ domain. The red crosses indicate domains that are predicted to be inactive on the basis of their amino acid sequence. (II) The key biosynthetic precursor

1,3-bisphosphoglycerate, involved in both tetronate formation and (2R)-methoxymalonyl-ACP biosynthesis. (III) Formation of glyceryl-ACP by the FkbH-like enzyme

Mad14 and the ACP Mad12. (IV) Oxidation of glyceryl-ACP by the dehydrogenase Mad11 to form 2-hydroxy-3-oxopropionyl-ACP. (V) Oxidation of 2-hydroxy-

3-oxopropionyl-ACP by the dehydrogenase Mad13 to form hydroxymalonyl-ACP. (VI) Methylation of hydroxymalonyl-ACP by the O-methyltransferase Mad15 to

form (2R)-methoxymalonyl-ACP. (VII) The (2R)-methoxylmalonyl-ACP is incorporated by the MadAVI_AT_13. (VIII) Synthesis of a second pool of glyceryl-ACP by

FkbH-like Mad7 and ACP Mad8. (IX) Glyceryl-ACP is a substrate of the FabH-like protein Mad16 that catalyses tetronate formation and concomitant chain release

from the PKS. Bonds/atoms have been coloured red to highlight the chemical change.

https://doi.org/10.1371/journal.pone.0239054.g004
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Genes for tetronate biosynthesis

The mad gene cluster contains homologues of all five glycerate-utilisation operon [18] genes:

mad7, mad8, mad16, mad17, and mad18. mad7 and mad8 respectively encode a FkbH-like

Fig 5. The proposed biosynthetic pathway of tetromadurin (part 2). (X) In the first step of tetrahydrofuran formation, MadC catalyses

epoxidation of the C24-C25 and C28-C29 E double bonds. (XI) The epoxide hydrolase MadB catalyses formation of the two tetrahydrofuran rings

through a cascade epoxide ring-opening; (XII) Acetylation of the C41 hydroxyl group is catalysed by Mad17. (XIII) Elimination of the acetyl group

by Mad18 forms the C40-C41 exocyclic double bond. (XIV) Hydroxylation of C36 by Mad29. It is possible this hydroxylation event takes place

earlier in the biosynthesis (XV) Mad10 catalyses the formation of an oxadecalin containing intermediate 10. (XVI) The equivalent oxadecalin

intermediate in tetronasin biosynthesis acquired a water at C3 to form a hemiacetal [7]. Given the structural similarity between tetromadurin and

tetronasin, it is likely the tetromadurin oxadecalin intermediate can be hydrated at C3 to form 11. (XVII) Mad31 catalyses formation of the

tetrahydropyran ring and dismantles the oxadecalin ring to form 12. (XVIII) Mad30 then catalyses hydroxylation of C38, forming tetromadurin 1.

Bonds/atoms have been coloured red to highlight the chemical change.

https://doi.org/10.1371/journal.pone.0239054.g005
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protein and a standalone acyl carrier protein (ACP) found in the biosynthetic pathways of

other tetronates [8, 30]. Mad7 likely catalyses formation of glyceryl-ACP from 1,3-bisphospho-

glycerate using Mad8 as the ACP scaffold. Mad16 is the FabH-like protein known for catalys-

ing tetronate formation and chain release [18]. Finally, Mad17 and Mad18 are homologues of

the acyltransferase Agg4 and the dehydratase Agg5, respectively, responsible for exocyclic dou-

ble bond formation in agglomerin biosynthesis [31]. Mad17 likely catalyses the acetylation of

the C41 hydroxyl, followed by Mad17 catalysing elimination of the acyl group to form the exo-

cyclic C40-C41 double bond (S8 Fig).

Genes for (2R)-methoxymalonyl-ACP biosynthesis

Several polyketide natural products are known to incorporate the unusual methoxymalonate

extender unit derived from (2R)-methoxymalonyl-ACP [32], the first example being the macrocy-

clic immunosuppressant FK520 [24]. Five genes in the FK520 BGC were identified as responsible

for the biosynthesis of (2R)-methoxymalonyl-ACP from 1,3-bisphosphoglycerate [24]. Homo-

logues of these five genes have since been found in the BGCs of other natural products known to

incorporate (2R)-methoxymalonyl-ACP, such as tautomycin [33], oxazolomycin [34], and gelda-

namycin [35, 36]. The mad gene cluster also contains homologues of these genes: mad11, mad12,

mad13, mad14, and mad15, which appear to be part of a single operon. The gene mad14 encodes

a second FkbH-like protein, distinct from Mad8, that appears to catalyse formation of a second

pool of glyceryl-ACP using 1,3 bisphosphoglycerate and Mad12, another standalone ACP.

Whether the two pools of glyceryl-ACP can interchangeably be used in tetronate formation or

(2R)-methoxymalonyl-ACP biosynthesis is unknown. The primary hydroxyl group of glyceryl-

ACP undergoes two oxidation events to form (2R)-hydroxymalonyl-ACP. Based on its similarity

to the dehydrogenase enzymes in the FK520 pathway, Mad11 is proposed to catalyse the first oxi-

dation, forming 2-hydroxy-3-oxopropionyl-ACP. Mad13 then catalyses the second oxidation to

form (2R)-hydroxymalonyl-ACP. The O-methyltransferase Mad15 likely converts (2R)-hydroxy-

malonyl-ACP into (2R)-methoxymalonyl-ACP (S9 Fig). The exact timing of O-methylation is

uncertain, with some evidence suggesting it precedes the oxidation steps [37].

Tetrahydrofuran ring formation

The mad gene cluster encodes an epoxidase (MadC) and an epoxide hydrolase (MadB), homo-

logues of which are present in the BGCs of many other tetrahydrofuran-containing polyethers

Fig 6. Hypothetical ACP-bound linear tetromadurin backbone. 13: the hypothetical linear tetromadurin

intermediate predicted to be produced by the MadAI-MadAVII arrangement. 14: the hypothetical linear tetromadurin

intermediate predicted from the structure of tetromadurin itself.

https://doi.org/10.1371/journal.pone.0239054.g006
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[7, 8, 37–39]. In a mechanism first proposed for monensin [40], the epoxidase and epoxide

hydrolase catalyse a regio- and stereospecific oxidation cyclisation to form one or multiple

rings. It is likely that MadC catalyses the stereospecific epoxidation of the C24-C25 and

C28-C29 E double bonds. MadB then catalyses opening of the two epoxide rings to form two

tetrahydrofuran rings (S10 Fig). The timing of tetrahydrofuran formation in polyether is not

certain, though evidence from other polyether pathways suggests it may occur whilst the inter-

mediate is still bound to the PKS [7, 39, 41].

Cyclohexane and tetrahydrofuran ring formation

The gene mad10 is homologous to tsn11 and tmn9 from the tsn and tmn gene clusters, respec-

tively. All three genes encode homologues of PyrE3, the [4+2] cyclase (Diels-Alderase) respon-

sible for catalysing dialkyldecalin formation in the biosynthesis of pyrroindomycin A [42]. The

discovery that PyrE3 catalyses an apparent [4+2] cycloaddition was surprising given its homol-

ogy to MtmOIV-family FAD-dependent monooxygenase. Tsn11, despite also resembling an

FAD-dependent monooxygenase, was recently demonstrated to catalyse an apparent inverse-

electron demand hetero-Diels-Alder reaction to convert a tetronasin precursor 17 (in which

the cyclohexane and tetrahydropyran rings have not yet formed) (Fig 9C) into an oxadecalin-

containing intermediate [7]. We therefore propose that Mad10 catalyses an equivalent reaction

in tetromadurin biosynthesis (S11 Fig). In support of this, Mad10, like Tsn11, also contains

mutations in several of four conserved arginine residues involved in NADPH utilisation, indi-

cating it is not a functional monooxygenase (S12 Fig) [7, 43, 44]. Further, inspection of a maxi-

mum-likelihood phylogenetic tree revealed that while Tmn9, Mad10, and Tsn11 form a clade

together, they are more related to the PyrE3-like [4+2] cyclases [42, 42, 45–48] than to their

homologues that are bona fide FAD-dependent monooxygenases [43, 49–51] (S13 Fig).

mad31 is a homologue of tsn15 and tmn8, and all are homologs of vstJ, which encodes an

enzyme responsible for catalysing spirotetronate formation via an intramolecular [4+2] cyclo-

addition in versipelostatin biosynthesis [46]. Tsn15 was recently demonstrated to catalyse the

final step in tetronasin biosynthesis, dismantling the oxadecalin intermediate produced by

Tsn11 and forming the tetrahydropyran ring [7]. The crystal structure of Tsn15 has been

solved and a tryptophan residue essential for substrate binding identified [7]. Mad31 contains

a tryptophan at the equivalent locus, suggesting that tetromadurin biosynthesis also proceeds

via an oxadecalin intermediate [7] (S14 Fig).

Hydroxylation of C36 and C38

Two cytochrome P450 enzymes are encoded in the mad gene cluster. One of these, Mad29, is

homologous to Tsn12 (51% identity) and Tmn14 (32% identity)—the cytochrome P450s

encoded by the tsn and tmn gene clusters, respectively [7, 8]. Tmn14 is predicted to catalyse

the hydroxylation of C28 in tetronomycin while Tsn12 is predicted to catalyse the hydroxyl-

ation of the equivalent carbon (C30) in tetronasin biosynthesis (S15 Fig) [7, 8]. By analogy,

Mad29 is therefore proposed to catalyse hydroxylation of C36 in tetromadurin, leaving the sec-

ond cytochrome P450, Mad30, to catalyse hydroxylation of C38 (S15 Fig). No ferredoxin gene

is present in the mad gene cluster, so presumably one encoded elsewhere in the genome is

used to regenerate the cytochrome cofactor.

Other genes in the mad gene cluster

Finally, the mad gene cluster contains several other genes likely involved in transcriptional reg-

ulation or export of tetromadurin itself. On one end of the mad gene cluster the genes mad1
and mad2 encode predicted SARP [52, 53] and LuxR [54] transcriptional regulators,
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respectively. Another gene, mad27, encodes a putative MarR (multiple antibiotic resistance

regulator)-like transcriptional regulator. First described in E. coli, MarR is a transcriptional

regulator of several genes that confer antibiotic resistance [55]. Adjacent to mad27 are the

genes mad25 and mad26 that encode an ABC transporter and an ABC transporter ATP-bind-

ing protein, respectively, both of which are likely involved in exporting tetromadurin from the

cytoplasm [56]. Mad27 may induce expression of mad25 and mad26 in the presence of tetro-

madurin, resulting in self-resistance [57, 58].

The gene mad3 encodes a 4’-phosphopantetheinyl transferase, required for activating ACP

domains by attaching a 4’-phosphopantetheine prosthetic group. Adjacent to mad3 is the

phosphoesterase mad4, homologues of which are found in BGCs of other polyketides [8, 59],

the products of which may hydrolyse ACP-bound 4’-phosphopantetheine groups [59–61].

mad6 is predicted to encode type II thioesterase, likely having an “editing” role in hydrolysing

PKS active sites containing mis-acylated intermediates [62, 63]. The only gene that could not

be assigned a plausible function is mad20, which encodes a hypothetical protein with no char-

acterised homologues.

Creation of in-frame deletion mutants in mad10 and mad31
To verify experimentally that the mad gene cluster is indeed responsible for tetromadurin

production (as the bioinformatics-based analysis strongly suggested), we performed in-frame

deletions in the putative cyclase genes mad10 and mad31. Each gene was individually

knocked out in A. verrucosospora using a homologous recombination method, creating A.

verrucosospora Δmad10 and A. verrucosospora Δmad31 respectively (S16 Fig). Tetromadurin

production was completely abolished in the A. verrucosospora Δmad10 mutant, indicating

that, like Tsn11 and its homologue encoded in the tmn gene cluster, Tmn9, Mad10 is an

essential biosynthetic enzyme. To attempt to rescue tetromadurin production in A. verruco-
sospora Δmad10, mad10 was introduced back into the strain in trans on the FC31 integrative

plasmid pIB139 [10], resulting in tetromadurin production at 28% of wild type levels (Fig 7).

The abolition of tetromadurin production in the A. verrucosospora Δmad10 and its subse-

quent rescue provides clear functional validation that the mad gene cluster is responsible for

tetromadurin biosynthesis.

Tetromadurin production in the A. verrucosospora Δmad31 mutant was also significantly

decreased, producing tetromadurin at just 3% of wild type levels (Fig 7), indicating that, like

its homologue Tsn15, it is an essential biosynthetic enzyme [7]. However, in trans complemen-

tation of mad31 using pIB139 did not rescue tetromadurin production (Fig 7). The failed

mad31 complementation, paired with the mad10 complementation only restoring tetroma-

durin production in A. verrucosospora Δmad10 to 28% wild type levels, suggest expression

issues of the streptomycete-optimised vector pIB139 within A. verrucosospora.

The finding that the A. verrucosospora Δmad10 no longer produces tetromadurin, as previ-

ously shown for the analogous S. sp NRRL Δtmn9 and S. longisporoflavus Δtsn11 mutants [7,

8], confirms that the PyrE3-like [4+2] cyclase family is essential for the biosynthesis of all three

polyether tetronates. Likewise, A. verrucosospora Δmad31 and the previously analysed S. long-
isporoflavus Δtsn15 [7] mutant indicate that a conserved VstJ-like cyclase is also essential for

polyether tetronate biosynthesis. In parallel, we also analysed the consequences of deleting

tmn8, the mad31/tsn15 homologue from the tmn gene cluster. S. sp NRRL 11266 Δtmn8 was

created and analysed for tetronomycin production. Fermentation and analysis of the organic

extract of this strain confirmed it no longer produces tetronomycin, confirming that VstJ-like

cyclases are also essential for the biosynthesis of all three polyether tetronates (S17 and S18

Figs).
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Although A. verrucosospora Δmad10 no longer produced tetromadurin, analysis of the total

ion current (TIC) and photodiode array (PDA) spectrum of this mutant revealed that it pro-

duced a new metabolite that we named T-17 (Fig 8A and 8B).

T-17 was produced by A. verrucosospora Δmad10 at ca. 50% the level of tetromadurin pro-

duction by wild type A. verrucosospora. The mass spectra of T-17 contains peaks for putative

Fig 7. HPLC-MS analysis of A. verrucosospora Δmad10 and A. verrucosospora Δmad31. a, The structure and

molecular weight of tetromadurin (1) produced by A. verrucosospora. b, Extracted m/z = 783.8 HPLC-MS spectra from

A. verrucosospora wild type (WT), A. verrucosospora Δmad10, and A. verrucosospora Δmad10 pIB139-mad10. c,

Extracted m/z = 783.8 HPLC-MS spectra from A. verrucosospora WT, A. verrucosospora Δmad31, and A.

verrucosospora Δmad31 pIB139-mad31. All data are representative of three independent experiments.

https://doi.org/10.1371/journal.pone.0239054.g007
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[M+H]+ (m/z = 745.6), [M+NH4]+ (m/z = 762.6), and [M+Na]+ (m/z = 767.7) ions, all of

which are 16 Daltons less than the equivalent ions of tetromadurin (Fig 8C and 8D). A mass

difference of 16 is diagnostic of an absent hydroxyl group, indicating that T-17 has the molecu-

lar formula C42H64O11. Likely candidates for this missing hydroxyl are either the C36 or the

Fig 8. Novel tetromadurin analogue produced by A. verrucosospora Δmad10. a, Total ion current (TIC) spectra of

the crude organic extracts from A. verrucosospora wild type (WT) and A. verrucosospora Δmad10. The other peaks

represent unrelated species. Tetromadurin (1) was produced by A. verrucosospora and eluted at 19.8 min. A novel

tetromadurin-related metabolite (named T-17) was produced by A. verrucosospora Δmad10, eluting at 17.4 min. b,

HPLC-PDA (photodiode array) spectra of the crude organic extracts from A. verrucosospora WT and A.

verrucosospora Δmad10. c, Positive ion mode mass spectrum of tetromadurin (1) and T-17: �[M+Na]+, ��[M+NH4]+,
���[M+H+, ����[M+H−H2O]+, �����[M+H−2.H2O]+. For tetromadurin (1): m/z [C42H64O12+Na]+ = 783.81; m/z

[C42H64O12+NH4]+ = 778.82; m/z [C42H64O12+H]+ = 761.84; m/z [C42H64O12+H−H2O]+ = 739.84. For T-17: m/z

[C42H64O11+Na]+ = 767.69; m/z [C42H64O11+NH4]+ = 762.58; m/z [C42H64O11+H]+ = 745.63; m/z [C42H64O11+H

−H2O]+ = 727.70; m/z [C42H64O11+H−H2O]+ = 727.70; m/z [C42H64O11+H−2.H2O]+ = 709.79. d, UV absorption

spectra of tetromadurin (1) (λmax = 252 nm, 300 nm, MeOH) and T-17 (λmax = 236 nm, 300 nm, MeOH). The ♦
indicates an unrelated compound that is also detectable in the WT strain.

https://doi.org/10.1371/journal.pone.0239054.g008
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C38 primary hydroxyl group, predicted to be added by the cytochrome P450 enzymes Mad29

and Mad30, respectively. Closer examination of the mass/UV spectra of T-17 revealed striking

similarities to the spectra of tetronasin intermediate 17 produced by S. longisporoflavus
Δtsn11, in which the cyclohexane and tetrahydropyran rings are unformed [7]. Like 17, the

UVmax of T-17 is also 236 nm (Fig 8D) [7]. Furthermore, also as reported for 17, the major ion

of T-17 detected is the [M+H−H2O]+ adduct (m/z = 727.7) [7]. In contrast, the major ion

detected for tetronasin and tetromadurin in organic extracts of their respective producer

strains is the [M+Na]+ adduct (Fig 8). These data indicate that in addition to lacking one of

the primary hydroxyl groups added by a cytochrome P450, T-17 also contains a labile hydroxyl

group that is readily lost in the mass spectrometer. The likely explanation for this observation

is that T-17 is the tetromadurin equivalent of tetronasin intermediate 17, containing a labile

hydroxyl group due to the yet-unformed tetrahydropyran and cyclohexane rings (Fig 9). It

appears that in the absence of the cyclohexane and tetrahydropyran rings, one of the cyto-

chrome P450-catalysed hydroxylations, either at C36 (15) or C38 (16), is unable to occur (Fig

9A and 9B).

In the tetronasin intermediate 17, C30 bears a hydroxy group, indicating that cytochrome

P450-catalysed hydroxylation of this carbon is not dependent on the cyclohexane and tetrahy-

dropyran rings being present (Fig 9C). C36 is the equivalent position to C30 in 17, offering a

strong argument in favour of T-17 having the structure 15. The second hydroxylation at C38

Fig 9. Possible structures of T-17. A. verrucosospora Δmad10 no longer produces tetromadurin but produces a tetromadurin derivative, T-17. The mass

spectrum of T-17 indicates that it is missing a primary hydroxyl group. The primary hydroxyl groups of tetromadurin are located at C36 and C38. Two possible

structures of T-17 are therefore possible where either: a, the C38 hydroxyl group (15) or b, the C36 hydroxyl group (16) is absent. c, the structure of the

tetronasin derivative 17 produced by Streptomyces longisporoflavus Δtsn11 [7].

https://doi.org/10.1371/journal.pone.0239054.g009
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must occur after the cyclohexane ring has formed, suggesting it could be the final enzymatic

step in tetromadurin biosynthesis (as has been depicted in Fig 5). Alternatively, the hydroxyl-

ation may precede tetrahydropyran formation.

Understanding the substrate tolerance of Mad10 and Mad31 could be important for using

them as synthetic biology tools to create novel polyether tetronate antibiotics. In our previous

study on tetronasin biosynthesis, we showed that Tmn9 and Tmn8 from the tetronomycin bio-

synthesis pathway could not substitute for Tsn11 and Tsn15, respectively [7]. Such a result is

perhaps unsurprising, given that tetronasin and tetronomycin possess opposite configuration

at their cyclohexane and tetrahydropyran rings. On the other hand, given that the stereochem-

istry of the cyclohexane and tetrahydropyran rings in tetromadurin is identical to tetronasin,

we reasoned Mad10 and Mad31 would have a greater chance of successfully substituting for

the equivalent tsn enzymes. To test this, mad10 was expressed in trans in the S. longisporoflavus
Δtsn11 mutant and mad31 was expressed in trans in the S. longisporoflavus Δtsn15 mutant.

However, HPLC analysis of these S. longisporoflavus mutants revealed that tetronasin produc-

tion was not rescued in either case (S19 Fig), indicating that Mad10 and Mad31 are unable to

accept the tetronasin intermediates.

Discussion

In this work we have identified the biosynthetic gene cluster responsible for tetromadurin bio-

synthesis in Actinomadura verrucosospora. Our bioinformatics-based analysis of the mad gene

cluster enabled almost of the genes to be assigned plausible roles in tetromadurin biosynthesis.

Functional validation of the mad gene cluster was achieved by performing in-frame deletions

in the putative cyclase genes mad10 and mad31. The production of tetromadurin was abol-

ished in both mutants, with the A. verrucosospora Δmad10 mutant producing a new com-

pound, T-17, that mass spectrometry data supports as being an intermediate lacking the

cyclohexane and tetrahydropyran rings, and one cytochrome P450-catalysed hydroxylation.

The production of T-17 by the A. verrucosospora Δmad10 mutant provides experimental evi-

dence that the enzymatic mechanism for cyclohexane and tetrahydropyran formation first

described in tetronasin biosynthesis [7] is conserved in tetromadurin biosynthesis. The miss-

ing primary hydroxyl group of T-17 also sheds light on the timing of events in the biosynthesis

pathway, indicating that this second P450-catalysed hydroxylation can only occur following

the Mad10 reaction. While comparison with tetronasin intermediate 17, isolated from S. long-
isporoflavus Δtsn11 provides convincing evidence that the structure of T-17 is 15, we cannot

rule out 16 being the true structure.

One feature of note in the polyketide synthase enzymes encoded in the mad gene cluster

(MadAI-MadAVII) is the apparently inactive KR domain of module 12. This KR domain

should reduce the C7 keto group to a D-hydroxyl group. One possible explanation could be

that the KR domain of an adjacent module (either 11 or 13) performs this reduction. Domains

acting externally to the PKS module they are located in have been proposed for other polyke-

tide biosynthesis pathways [19, 64–66]. The KR domain of either module 11 or 13 could there-

fore be responsible for forming the C7 hydroxyl, though additional work is required to

confirm this.

In addition to studying tetromadurin biosynthesis, a S. sp NRRL 11266 Δtmn8 mutant was

created. Following the deletions of mad10 and mad31 in Actinomadura verrucosospora, tmn8
was the only [4+2] cyclase homologue gene from one of the known polyether tetronate biosyn-

thesis pathways that had not been deleted [7, 8]. The abolition of tetronomycin production in

the S. sp NRRL 11266 Δtmn8 mutant confirms that both the VstJ-like and PyrE3-like cyclase

homologues are essential for the biosynthesis of all three polyether tetronates, suggesting a
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conserved mechanism of cyclohexane and tetrahydropyran formation. Homologues of these

two cyclase classes will likely be encoded in the biosynthetic gene clusters of any related poly-

ether tetronates yet to be discovered.

Supporting information

S1 Fig. Proposed biosynthetic precursors of the tetromadurin carbon backbone. The car-

bon backbone of tetromadurin appears to be derived from six malonyl-CoA derived acetate

units (red), eight (2S)-methylmalonyl-CoA derived propionate units (blue), one glyceryl-ACP

(magenta), and one (2R)- methoxymalonyl-ACP (orange).

(EPS)

S2 Fig. Production of tetromadurin by Actinomadura verrucosospora. a, A. verrucosospora
grew on oatmeal agar as pale colonies that formed white hydrophobic spores after several days.

b, Structure of tetromadurin (C42H64O12), m/z [C42H64O12+NH4]+ = 778.8; m/z [C42H64O12+-

Na]+ = 783.8. c, Top: total ion current (TIC) chromatogram of A. verrucosospora organic

extract. A peak corresponding to tetromadurin [C42H64O12+NH4]+ (m/z = 778.8) was visible

on the TIC at 19.8 min. Bottom: extracted m/z = 783.8 chromatogram of the tetromadurin

sodium ion adduct [C42H64O12+Na]+ c, Mass spectrum of the tetromadurin peak from the

TIC spectrum. �[C42H64O12+Na]+; ��[C42H64O12+NH4]+; ���[C42H64O12+H]+. e, UV absorp-

tion spectrum of the tetromadurin peak. λMAX = 252 nm, 300 nm (MeOH), as previously

reported [1].

(EPS)

S3 Fig. Alignment of the KS domains encoded in the tetromadurin biosynthetic gene clus-

ter. The KS domain of the loading module (MadAI_AT_LM) and each of the 14 extension

modules (KS_1–14) from the tetromadurin biosynthetic gene cluster were aligned using Clus-

talOmega[15]. The amino acids of the C-H-H catalytic triad are highlighted with an asterisk

(�). The KS domain of the loading module contains a glutamine in place of the catalytic cyste-

ine (highlighted in yellow).

(EPS)

S4 Fig. Alignment of the AT domains encoded in the tetromadurin biosynthetic gene clus-

ter. a, The AT domain of the loading module (MadAI_AT_LM) and each of the 14 extension

modules (AT_1–14) from the mad gene cluster were aligned using ClustalOmega [15]. The

amino acid motif that predicts the selectivity of the AT domain is highlighted in either red

(acetate-incorporating) or yellow (propionate-incorporating). b, The hypothetical linear tetro-

madurin intermediate predicted by retrobiosynthetic analysis. Propionate units derived from

(2R)-methoxymalonyl-ACP are coloured in yellow. Acetate units derived from malonyl-CoA

are coloured in red. The methoxy group predicted to arise from (2R)-methoxymalonyl-ACP is

coloured in orange.

(EPS)

S5 Fig. Alignment of the ER domains encoded in the tetromadurin biosynthetic gene clus-

ter. a, The ER domains from the tetromadurin biosynthetic gene cluster were aligned using

ClustalOmega [15]. The tyrosine residue associated with the L-configuration at the α-position

in the product is marked with an asterisk (�). The ER domains are highlighted either yellow

(producing L-configuration at the α position) or red (producing D-configuration at the α posi-

tion). Only MadAII_ER_4 and MadAII_ER_11 affect the final stereochemistry of tetroma-

durin, as their respective modules incorporate a propionate unit with an α methyl group. b,

The linear tetromadurin intermediate predicted from its final structure. The fully saturated
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carbon atoms (C9, C15, C23, and C27) produced by an ER domain are highlighted either in

yellow (L-configuration-determining ER) or red (D-configuration-determining ER).

(EPS)

S6 Fig. Alignment of the DH domains encoded in the tetromadurin biosynthetic gene clus-

ter. a, The DH domains of the extension modules 1–13 from the mad gene cluster were

aligned using ClustalOmega [15]. The tyrosine of the YGP motif and the catalytic aspartic acid

in the HPALLDAAL motif are marked with an asterisk (�). DH domains predicted to be active

are highlighted in red and those predicted to be inactive are highlighted in yellow. b, The linear

tetromadurin intermediate predicted from its final structure. The double bonds produced by

DH domains are highlighted in red.

(EPS)

S7 Fig. Alignment of the KR domains encoded in the tetromadurin biosynthetic gene clus-

ter. a, The KR domains of the extension modules 1–14 from the mad gene cluster were aligned

using ClustalOmega [15]. The key features of a B1 type KR domain are highlighted: the (L/V/I)

DD motif within the NADPH binding site (LDD), the catalytic tyrosine (�), and the locus of

the proline found in A type KRs (P). All of the KR domains except KR_12 and KR_14 are pre-

dicted to be type B1. KR_12 and KR_14 both lacked the catalytic tyrosine residue, indicating

they are inactive. KR_12 also had a significant deletion in its NADPH binding site. b, The lin-

ear tetromadurin intermediate predicted from its final structure. The three D-configured

hydroxyls (C7, C17, and C21) predicted to form from a B1 type KR domain are highlighted in

red. The D configuration of the methyl groups attached to C6 and C16 (C38 and C35, respec-

tively) is also predicted to be governed by B1 type KRs. The KR domain in the position corre-

sponding to the C7 hydroxyl (MadAVI_KR_12) appears to be inactive, so the origin of this

hydroxyl is unknown.

(EPS)

S8 Fig. Proposed biosynthesis of the tetromadurin tetronate ring. The mad gene cluster

contains the five genes of the glycerate-utilisation operon responsible for tetronate ring biosyn-

thesis. The FkbH-like Mad7 catalyses likely formation of glyceryl-S-ACP using 1,3-bispho-

sphoglycerate and the ACP, Mad8. The FabH-like protein Mad16 then catalyses C-C and C-O

bond formation to form the tetronate ring and release the polyketide chain from the PKS.

Finally, the C40-C41 exocyclic double bond is formed via acetylation of the C41 hydroxyl by

acetyltransferase Mad17, followed by elimination catalysed by the dehydratase Mad18.

R = linear tetromadurin intermediate.

(EPS)

S9 Fig. Proposed biosynthesis of (2R)-methoxymalonyl-ACP. The FkbH-like Mad14 likely

catalyses formation of glyceryl-ACP from 1,3 bisphosphoglycerate and the acyl-carrier protein

Mad12. Glyceryl-ACP then undergoes two oxidation steps, catalysed by the dehydrogenases

Mad11 and Mad13 to form (2R)-hydroxymalonyl-ACP, which is methylated by Mad15.

(EPS)

S10 Fig. Proposed biosynthesis of the tetrahydrofuran rings in tetromadurin. MadC cataly-

ses the regio- and stereospecific epoxidation of the C24-C25 and C28-C29 E double bonds.

Next, the MadB epoxide hydrolase catalyses two sequential exo ring-closures to form the two

tetrahydrofuran rings.

(EPS)

S11 Fig. Proposed biosynthesis of the cyclohexane and tetrahydropyran rings in tetroma-

durin. Mad10 catalyses an inverse-electron demand hetero-Diels-Alder reaction to form
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oxadecalin-contain intermediate 10 from 9. The equivalent oxadecalin from the tetronasin

biosynthesis pathway, 17, is hydrated to form a hemiacetal [7], so the tetromadurin oxadecalin

intermediate may do the same (forming 11) given its structural similarity. Mad31 then cataly-

ses a pericyclic rearrangement to form the tetrahydropyran ring and dismantle the cyclohex-

ane ring, using the non-hemiacetal form of the oxadecalin intermediate 10 (as also predicted

for tetronasin biosynthesis [7]).

(EPS)

S12 Fig. Alignment of PyrE3-type [4+2] cyclases. Protein sequence alignment of Mad10

(QKG20158 �see note in methods section relating to the revised sequence), Tmn9

(BAE93724), and Tsn11 (ACR50781) [7], the [4+2] cyclase TedJ (KYG52530) from the tetro-

decamycin BGC [67], The [4+2] cyclase KijA (ACB46484) from the kijanimicin BGC [45];

The [4+2] cyclase PyrE3 (AFV71312) from the pyrroindomycin BGC [42]; The [4+2] cyclase

VstK (BAQ21949) from the versipelostatin BGC [46], The [4+2] cyclase ChlE3 (AAZ77700)

from the chlorothricin BGC [48]; The monooxygenase PgaE (AAK57522) from gaudimycin C

biosynthesis [50]; The monooxygenase OxyS (4K2X_A) from oxytetracycline biosynthesis

[49]; the monooxygenase MtmOIV (CAK50794) from mithramycin biosynthesis [43]. Red

stars ($) indicate amino acids involved in binding FAD [49]. Black asterisks (�) indicate the

locations of the four arginine residues in MtmOIV involved in NADPH binding [43]. Similar

residues in an alignment are coloured accordingly: Blue, hydrophobic; Green, polar; Purple,

negative; Red, positive; Yellow, proline; Orange, glycine. Alignment was made using ClustalO-

mega [15].

(EPS)

S13 Fig. Maximum likelihood phylogenetic tree of PyrE3 homologues. A maximum likeli-

hood phylogenetic tree was created for the diverse family of PyrE3 homologues, including: [4

+2] cyclases from spirotetronate/tetramate pathways; FAD-dependent monooxygenases; and

homologues from polyether tetronate pathways. 1000 bootstrap replicates were performed.

(EPS)

S14 Fig. Alignment of VstJ-type [4+2] cyclases. Protein sequence alignment of [4+2] cyclases

encoded in the biosynthetic gene clusters of the polyether tetronates tetronasin (Tsn15:

6NOI_A), tetronomycin (Tmn8: BAF73716), and tetromadurin (Mad31: QKG20137); the

spirotetronates abyssomicin (AbyU: 5DYV_A), versipelostatin (VstJ: BAQ21945), chlorothri-

cin (ChlL: AAZ77701) and the spirotetramate pyrroindomycin (PyrI4: AFV71338). Similar

residues in an alignment are coloured accordingly: Blue, hydrophobic; green, polar; purple,

negative; red, positive; yellow, proline; orange, glycine. Alignment was made using ClustalO-

mega [15]. The (�) marks the conserved tryptophan.

(EPS)

S15 Fig. Proposed cytochrome P450-catalysed hydroxylations in tetromadurin biosynthe-

sis. Mad29 is a homologue of the cytochrome P450 enzymes Tsn12 and Tmn14 present in the

tetronasin and tetronomycin BGCs, respectively. We therefore propose that that Mad29 cataly-

ses hydroxylation of C36, leaving Mad30 to hydroxylate C38.

(EPS)

S16 Fig. Creation of the A. verrucosospora Δmad10 and A. verrucosospora Δmad31 deletion

mutants. a, Creation of the A. verrucosospora Δmad10. Left: Diagram showing the double

crossing-over event between pYH7-mad10 and the A. verrucosospora chromosome. In total

906/1404 bp of mad10 were deleted in the Δmad10 mutant. The primers mad10_KO_Fw and

mad10_KO_Rv were used to screen the genomic DNA of double crossover exconjugants to
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identify those containing the mad10 coding-frame deletion. PCR product size wild type: 1913

bp. PCR product size Δmad10 mutant: 1007 bp. Right: Agarose gel demonstrating the success-

ful creation of the A. verrucosospora Δmad10 mutant. b, Creation of the A. verrucosospora

Δmad31 mutant. Left: Diagram showing the double crossing-over event between pYH7-

mad31 and the A. verrucosospora chromosome. In total 291/561 bp of mad31 were deleted in

the Δmad31 mutant. The primers mad31_KO_Fw and mad31_KO_Rv were used to screen the

genomic DNA of double crossover exconjugants to identify those containing the Δmad31 cod-

ing-frame deletion. PCR product size wild type: 980 bp. PCR product size Δtsn15 mutant: 689

bp. Right: Agarose gel demonstrating the successful creation of a S. longisporoflavus Δmad31

mutant.

(EPS)

S17 Fig. Creation of the S. sp NRRL 11266 Δtmn8 deletion mutant. Left: Diagram showing

the double crossing-over event between pYH7-tmn8 and the S. sp NRRL 11266 chromosome.

In total 573/573 bp of tmn8 were deleted in the Δtmn8 mutant. The primers tmn8_KO_Fw

and tmn8_KO_Rv were used to screen the genomic DNA of exconjugants to identify those in

which the coding-frame deletion had taken place. PCR product size wild type: 971 bp. PCR

product size Δtmn8 mutant: 398 bp. Left: Agarose gel demonstrating the successful creation of

the S. sp NRRL 11266 Δtmn8 mutant.

(EPS)

S18 Fig. HPLC-MS analysis of the Streptomyces sp. NRRL 11266 Δtmn8 mutant. a, The

structure and molecular weight of tetronomycin (3) produced by S. sp. NRRL 11266. b,

Extracted m/z = 609 chromatograms of S. sp. NRRL 11266 wild type (WT) and S. sp. NRRL

11266 Δtmn8. Tetronomycin 3 was detected in S. sp. NRRL 11266 WT as ammonium (m/

z = 604.42) and sodium (m/z = 609.5) adducts. No tetronomycin production was detected

from the S. sp. NRRL 11266 Δtmn8 mutant. Data are representative of three independent

experiments.

(EPS)

S19 Fig. in vivo cross-complementation using tsn11 and tsn15 homologues. a, Genetic com-

plementation of the S. longisporoflavus Δtsn11 mutant. I) Production of tetronasin 2 by S. long-
isporoflavus WT. II) Production of 17 by S. longisporoflavus Δtsn11. III) Production of 17 by S.

longisporoflavus Δtsn11 pIB139-mad10. IV) Production of tetronasin 2 by S. longisporoflavus
Δtsn11 pIB139-tsn11. Data are representative of three independent experiments. b, Genetic

complementation of the S. longisporoflavus Δtsn15 mutant. I) Production of tetronasin 2 by S.

longisporoflavus WT. II) Lack of tetronasin production by the S. longisporoflavus Δtsn15

mutant. III) Lack of tetronasin production by the S. longisporoflavus Δtsn15 pIB139-mad31
mutant. IV) Production of tetronasin 2 by S. longisporoflavus Δtsn15 pIB139-tsn15. Data repre-

sentative of three independent experiments.

(EPS)
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