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Abstract 

Machine learning and artificial intelligence have entered biomedical decision-making for diagnostics, prognostics, 
or therapy recommendations. However, these methods need to be interpreted with care because of the severe 
consequences for patients. In contrast to human decision-making, computational models typically make a decision 
also with low confidence. Machine learning with abstention better reflects human decision-making by introducing a 
reject option for samples with low confidence. The abstention intervals are typically symmetric intervals around the 
decision boundary. In the current study, we use asymmetric abstention intervals, which we demonstrate to be better 
suited for biomedical data that is typically highly imbalanced. We evaluate symmetric and asymmetric abstention on 
three real-world biomedical datasets and show that both approaches can significantly improve classification perfor-
mance. However, asymmetric abstention rejects as many or fewer samples compared to symmetric abstention and 
thus, should be used in imbalanced data.
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Introduction
Machine learning (ML) and artificial intelligence (AI) 
have entered many areas of life and will also pave the way 
for a new era in biomedicine. These methods can improve 
medical treatment or diagnosis, identify novel subtypes, 
or provide new insights into survival prognostics. These 
methods consider all facets of data types, e.g., clinical 
health records, images, or omics data. Biomedical deci-
sion support systems based on ML and AI have entered 
many different studies and biomedical fields, e.g., Oncol-
ogy [4], Pathology [10, 21, 35], Diabetes [6, 27], Human 
Genetics [20], and Infectious Diseases [14, 19, 28] as part 
of a growing trend towards precision medicine.

Overall, there is great potential for biomedical deci-
sion support systems based on ML and AI techniques 
and they have become key players in disease diagnostics, 
prognostics, and therapeutics [34]. However, biomedical 

datasets have very specific characteristics and suffer from 
many caveats regarding ML and AI. They often have a 
small number of samples and many parameters, a phe-
nomenon called the small-n-large-p problem, missing 
values, and typically high class imbalance. Furthermore, 
biomedical decision support systems need to be proba-
bilistically interpretable, typically addressed by calibra-
tion methods [1, 26]. While small-n-large-p and missing 
values are addressed by feature selection (also called bio-
marker discovery) approaches [23] and imputation tech-
niques [29], the class imbalance is typically addressed by 
either down-sampling or data augmentation techniques. 
Moreover, uncertainty is critical when it comes to a 
medical decision. In contrast to human decision making, 
computational models typically make a decision also with 
low confidence. Machine learning with abstention better 
reflects human decision-making by introducing a reject 
option for samples with low confidence. The absten-
tion intervals are typically symmetric intervals around 
the decision boundary. Thus uncertain predictions, i.e., 
predictions with low confidence or close to the decision 
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boundary, are abstained when the consequences of the 
wrong classification can be severe, e.g., wrong treatment 
of a patient [15]. A symmetric abstention interval can be 
defined based on the prediction scores for biomedical 
decision support systems based on binary classification 
models. It is considered to be a range of test scores that 
is uncertain and does not necessitate a decision, and the 
test results are trichotomized into positive, negative, and 
undecided diagnoses.

Classifiers with abstention were first introduced by Chow 
[9] and further developed by Tortorella [30, 31]. Chow [9] 
derived a general error and reject trade-off relation for the 
Bayes optimum recognition system requiring the assump-
tion of complete knowledge of the a priori probability dis-
tribution of the classes and the posterior probabilities (for 
instance, the distributions of the test results to be normal 
in both healthy and diseased subjects), which are usually 
not completely known in real-world problems. Thus, the 
reliance of this method on several assumptions represents 
an important limitation. Fumera et al. [12] demonstrated 
that Chow’s rule does not perform well if the a posteriori 
probabilities are affected by errors, suggesting the use of 
multiple reject thresholds, one for each class. The thresh-
old is placed on the maximum a posteriori probability 
similar to Chow’s rule [8]). However, each class has a dif-
ferent threshold. Their results using nearest neighbor and 
neural network classifiers show that this approach outper-
forms the parametric assumption. Herbei and Wegkamp 
[15] developed excess risk bounds for the classification 
with a reject option setting where the loss function is the 
0–1 loss, extended such that the cost of each reject point 
is 0 ≤ d ≤ 1/2 (cost model). This approach generalizes the 
excess risk bounds of Tsybakov [32] for standard binary 
classification without rejection (which is equivalent to the 
case d = 1/2). This approach is further extended by Bart-
lett and Wegkamp [3] in various ways, including the use of 
the hinge loss function for efficient optimization. Nguyen 
et al. [24] developed an approach for abstention in multi-
class problems based on pairwise comparison and integer 
programming, and separated epistemic, i.e., uncertainty 
caused by lack of information, and aleatoric uncertainty, 
i.e., due to intrinsic randomness. Very recently, Mortier 
et al. [22] developed a framework for Bayes-optimal pre-
diction in multi-class problems, i.e., the subset of class 
labels with the highest expected utility. Campagner et  al. 
[5] proposed a three-way-in and three-way-out approach, 
which is based on partially labeled data and abstention. 
They analyzed to what extent a classifier can make reliable 
prediction based on uncertain biomedical data.

While abstention intervals are typically considered to 
be symmetric, the goal of the current study is to show 
that asymmetric intervals are better suited for biomedical 
data, as these datasets are often imbalanced. We propose 

a simple, efficient, and novel method to optimally build 
an asymmetric type of abstaining binary classifiers using 
an asymmetric abstention interval around the intersec-
tion between the two distributions of positive samples 
(i.e., cases) and negative samples (controls) based on 
Pareto optimization, similar to the approach proposed by 
Herbei and Wegkamp [15].

Methods
As a starting point, such a standard should satisfy the 
following requirements: (1) include information on the 
population providing the training data, in terms of data 
sources, cohort selection; (2) include training data demo-
graphics in a way that enables a comparison with the 
population the model is applied to; (3) provide detailed 
information about the model architecture and develop-
ment so as to interpret the intent of the model and com-
pare it to similar models and permit replication; and (4) 
transparently report model evaluation, optimization, and 
validation to clarify how local model optimization can be 
achieved and enable replication and resource sharing

Data
We used three real-world biomedical datasets in our 
study covering different diseases/scenarios from different 
fields, namely oncology and reproduction. These datasets 
address breast cancer, prostate cancer, and cardiotocogra-
phy to reflect different sample sizes and class imbalances. 
The datasets were collected from the UCI Machine Learn-
ing Repository [11]. The smallest dataset has 72 samples, 
and the largest dataset consists of 1831 samples. On aver-
age, the datasets have 540 samples, the median is 426, first 
and third quartiles are 124.5 and 713, respectively. The 
imbalance differs between 2.23 and 37.26% concerning 
the cases (i.e., positive class). On average, the imbalance is 
18.42% (median is 17.7%), with the first and third quartiles 
at 9.78% and 28.49%, respectively. The number of features 
ranges from 3 to 32, on average 15 (median is 11), with the 
first and third quartiles of 9 and 21, respectively.

An overview of the datasets can be found in Table  1. 
We removed all samples and features with missing val-
ues. Thus the numbers may differ slightly from the origi-
nal number of samples and features.

The Breast Cancer diagnostics dataset (wdbc) consists of 
569 breast cancer patients [357 benign, 212 (37.3%) malig-
nant] with 30 attributes. Features are computed from a 
digitized image of a fine needle aspirate (FNA) of a breast 
mass. They describe characteristics of the cell nuclei pre-
sent in the image. All cancers and some of the benign 
masses were histologically confirmed. Cancer patients 
were given standard surgical and chemotherapy treatment. 
Adjunctive radiotherapy was given when indicated [33]. No 
missing attribute values.
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The Prostate Cancer (pc) dataset consists of 376 samples 
[225 (59.8%) cancer, 151 (40.2%) controls] with nine fea-
tures, e.g., age, race, and several clinical parameters [17].

The Cardiotocography dataset (ctg) consists of 1,831 fetal 
cardiotocograms, of which 1,655 are normal, and 176 have 
been classified as pathologic (9.6%). The dataset provides 
22 features that have been calculated based on the cardi-
otocograms [2].

In Table  2, we report the data according to the MINI-
MAR standard to improve reproducibility [16].

Implementation
All analyses have been carried out in Python v.3.8.5 with 
pandas (v.1.1.3), seaborn (v.0.11.0), Matplotlib (v.3.3.2), 
NumPy (v.1.19.2), scikit-learn (v.0.23.2), and Plotly 
(v.4.14.2).

Machine learning
In supervised ML, the data is given by a training set

with m data pairs (xi, yi) , where xi is a vector of the obser-
vations for the ith data point and yi is its class label. The 
elements of the training set are called training data. X  
is called the feature space and the dimension n of this 
space corresponds to the number of features X1, . . . ,Xn , 

T =
{(

x1, y1
)

, . . . ,
(

xm, ym
)}

⊂ (X × Y)m,

which are used to describe the observations. Hence 
xi = (xi1, . . . , xin)

⊤ ∈ X  for i = 1, …, m, where xij is the 
value of the feature Xj(j = 1, . . . ,N ) in the ith observa-
tion. Furthermore, each observation xi is associated with 
a class label yi ∈ Y , where Y denotes the set of possible 
labels (sample space for short). In the simplest case, the 
binary classification, the set Y consists of only two class 
labels, which are usually referred to as positive (cases) 
and negative (controls); or + 1 and 0.

The goal of supervised learning is thus to learn the rela-
tionships between the observations/features and the class 
label, based on the training set, to assign a class label to 
an observation as accurately as possible. Given the train-
ing set, the ML method learns a decision function (also 
called a classifier or model)

that performs classifications by mapping the observa-
tions from the feature space X  to the sample space Y and 
reducing the error rate iteratively.

However, the decisions made by the model may be 
wrong for some instances, mainly when these instances 
are close to the binary decision border.

Thus, we extend the definition of a standard classifier, 
and we add a new label ®, which is referred to as abstain-
ing: Given X  and Y as defined above, an abstaining clas-
sifier is defined as a classifier which labels an instance 
xi ∈ X  with an element from Y ∪ {®}.

In order to evaluate the performance of symmetric 
abstention and asymmetric abstention, we analyzed two 
scenarios, namely (1) the imbalanced data as it is and (2) 
down-sampled, balanced data.

To compare the different scenarios, we used the Logis-
tic Regression (LR) as a base model. As the abstention 
procedure is independent of the ML method used, these 
results can be generalized for other ML models.

f : X → Y ,

Table 1  Overview of the datasets

Percentage represents the percentage of positive samples (i.e., cases) in the 
dataset. Features refers to the number of independent variables / features in the 
dataset

Name Samples Cases Controls Percentage Features

wdbc 569 212 357 37.3 30

pc 376 225 151 59.8 9

ctg 1831 176 1655 9.6 22

Table 2  Data sets description

Study population and setting

Name Population Study setting Data source Cohort selection

wdbc Breast cancer patients U.S. hospital Digitized images Adults

pc Prostate cancer patients U.S. hospital EHR Adults

ctg Pregnant women E.U. hospital Fetal cardiotocograms Unborn

Patient demographic characteristics

Name Age Sex Race Ethnicity

wdbc Not provided 100% female Not provided Not provided

pc mean 66.04 y 100% male 90.45% white, 9.55% black Not provided

ctg Not provided Not provided Not provided Not provided
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Statistical evaluation
The LR models were trained and evaluated based on 
stratified hold-out validation and split into training and 
test data. We used 40% of the data as training data for the 
wdbc and pc datasets and 50% for training with the ctg 
dataset. We used the Matthews correlation coefficient 
(MCC)

with true positives (TP), true negatives (TN), false posi-
tives (TP) and false negatives (FN) to estimate the perfor-
mance of the models as this metric has been shown to be 
particularly well-suited for imbalanced data [7].

In Tables  3 and 4, we report the model architecture 
and evaluation description according to the MINIMAR 
standard to improve reproducibility [16].

Symmetric and asymmetric abstention
The distributions of the test scores of controls (negative 
class) and cases (positive class) typically overlap in real-
world scenarios, and as a result, there are both errors and 
correct decisions for the test scores between an upper 
(U) and lower (L) bounds within this range of overlap. In 
order to find the best symmetric and asymmetric absten-
tion intervals for the test scores, i.e., the intervals that 
reduce wrong classifications but at the same time can 
classify most of the data, we used the maximum product 
of the MCC and the number of classified samples, i.e., 
samples outside the abstention interval.

Symmetric abstention
The upper and lower bounds of the symmetric absten-
tion interval are defined with both curves as preliminary 
cut-point. The default is to use a threshold of 0.5 as the 
cut-off. Let us assume that � is the best width of the sym-
metric abstention interval. Thus, the symmetric absten-
tion interval method will output �/2 representing best 

MCC =
TP · TN − FP · FN

√
(TP+ FP) · (TP+ FN) · (TN + FP) · (TN + FN)

interval. This means the best symmetric abstention inter-
val is straightforward, simply requiring computing [L, U] 
with L = 0.5− best interval and U = 0.5+ best interval.

Furthermore, it is essential to note that the binary clas-
sifier needs to be already trained and give us the classes’ 
probabilities. Probabilistic interpretation is, for instance, 
possible for the logistic regression but may not be 
directly possible for other ML methods, e.g., deep neural 
networks or support vector machines. In order to pro-
vide probabilities for any ML model, calibration methods 
need to be employed [26].

The main functions for the symmetric abstention are 
fit() and cost(). fit() finds the value of the best 
interval. It takes test features (X_test), test labels (y_test), 
abstention interval minimum width (low), abstention 
interval maximum width (high), and the distance between 
two adjacent values at each incremental abstention level 
(step) as input. We set the parameters for the grid search as 
follows: low = 0 , high = 0.16 , and step = 0.01 . Starting at 
0, which means no abstention interval at all and then going 
as high as 0.16. The values represent probabilities, thus, 
the maximum value can be 0.5 (i.e., 0.5 abstention at each 
side covers the whole probability range from 0 to 1). Max 
is set to 0.16 in order to stop at 0.15 taking a 1% abstention 
margin, which covers basically 2% as it goes from the left 
side and the right side of the threshold, and then 0.02, 0.03, 
etc. up to 0.15, which covers 30% of the range.

Next, the intervals are initialized the MCC and the frac-
tional size of the samples (i.e., between 0 and 1; 0 corre-
sponds to no data at all left, and 1 corresponds to all the 
data) are calculated. Each time the symmetric abstention 
interval grows, the size of the samples will decrease. Our 
two conflicting goals are maximizing the MCC while maxi-
mizing the size of the testing set that will be classified. We 
consider this problem as a Pareto optimization problem 
(also known as multi-objective optimization), where no 
single solution exists that optimizes each objective simul-
taneously, i.e., a problem for which there are many possible 

Table 3  Architecture description

Model architecture

User Task Architecture Features Missingness

Clinicians Prediction Logistic regression Documented and provided for all models in detail Missing data were removed

Table 4  Evaluation description

Model evaluation

Optimization Internal validation External validation Transparency

Documented and provided for all models in detail Stratified hold-out validation Not performed Data publicly available, code on request
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solutions from amongst which we want to find “the best”. 
Obviously, if we maximize for mcc_values, we cannot maxi-
mize for sample sizes and vice versa. After that, a possibly 
infinite number of Pareto optimal solutions are found. To 
overcome such problems and choose, we have to add addi-
tional subjective preference information and find a single 
solution that satisfies it. If no additional subjective prefer-
ence information can be made, all Pareto optimal solu-
tions are considered equally good. Thus, a set of Pareto 
optimal solutions will be generated and the best one can be 
selected according to the additional subjective preference 
as being the score = mcc_values ∗ sizes. We choose one of 
the obtained solutions using a simple one-dimensional grid 
search approach for function optimization.

The cost() function returns the MCC and the frac-
tional size of the testing set. It takes as input the test features 

(X_test), test labels (y_test), and the chosen interval (inter-
val), which is initialized with 0. After a sanity check, i.e., that 
interval ∈ {0, 0.5} , the class probabilities of the test features 
are predicted and obtain the maximum probability for the 
samples. Any prediction that is not in the suitable range, 
which is {maximum probability − 0.5} (that is to center it), 
will be eliminated. All predictions that have an absolute value 
smaller than the interval are removed. All predictions with 
values larger than the interval are kept. Next, the size of the 
remaining samples is calculated, i.e., the test features and test 
labels that are outside the interval. These samples are pre-
dicted with the model, i.e., they are outside the abstention 
interval to obtain MCC and the corresponding number of 
samples (fractional size). The pseudocode for the symmetric 
abstention optimizer algorithm is shown in algorithm 1.

Algorithm 1: Symmetric Abstention Optimizer Algorithm
Parameters: clf : binary classification model, which has a predict proba

method (Probability estimates).
Attributes: intervals: intervals used in the search, mcc values: Matthews

correlation coefficients corresponding to the intervals, sizes: size fractions
corresponding to the intervals, best : value of the best interval.

fit(X test,
y test,
low, // initially 0
high, // initially 0.16
step // initially 0.01

) // finds the value of the best interval
intervals := grid from low to high with step size ’step’
mcc values := an array, the length of intervals, initialized with zeros
sizes := an array, the length of intervals, initialized with zeros
for 0 ≤i< size of intervals do
mcc, size := cost(X test, y test, interval=intervals[i])
mcc values[i] := mcc
sizes[i] := size

best := intervals[argmax(mcc values ∗ sizes)]
cost(X test,

y test,
interval // initially 0, always 0 ≤ interval < 0.5
) // returns the MCC and the fraction of the mask

predictions probabilities := clf.predict proba(X test)
max proba := max(predictions probabilities)
mask := | max proba −0.5 | > interval
size := number of trues in mask / size of mask
X := X test × mask // select features outside of the interval
y := y test × mask // select labels outside of the interval
y hat := clf.predict( X )
return

matthews corrcoef ( y, y hat),
size
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Asymmetric abstention
In contrast to the symmetric abstention interval 
method, in the asymmetric abstention interval method 
(see Figure  1) we have to search over the two param-
eters, namely the interval and also the anchor (i.e., the 
offset). The latter is basically the height of the interval, 
i.e., the center of the abstention line. The anchor and 
the interval are independent. Thus, the asymmetric 
abstention interval method will output the best inter-
val and the best anchor, that maximize the output of 
the objective function argmax {(mcc_values * sizes)}. 
This means the best asymmetric abstention inter-
val is straightforward, simply requiring computing 
[L, U] with L =  0.5 + best anchor − best interval and 
U = 0.5+ best anchor + best interval . The best anchor 
gets added to the center 0.5.

Thus, in this case, we create two variable ranges: 
the intervals and the anchors. Then we create MCCs 
and sizes, except that these are matrices now instead 
of arrays. To find the best combination, we use a 

two-dimensional grid search. We define the grid of the 
intervals and anchors that we want to search through, 
test each combination of possible parameters and select 
the best one for our asymmetric abstention interval. 
This approximation may be intractable in general since 
there would be infinitely many combinations to test 
for a continuous scale. The solution is to define a grid. 
This grid defines for each hyperparameter which val-
ues should be tested. In our case, where the intervals 
and the anchors are tuned: we could give the intervals 
the values between (0, 0.16) and the anchors the values 
between (−  0.2, 0.2). The hypothesis is that there is a 
specific combination of values of the different hyper-
parameters that will maximize the product of MCC 
and the size of the samples classified. So at each cross-
ing point, the grid search will see what the maximum 
of the product mcc_values and sizes at this point is. 
After checking all the grid points, we know precisely 
which combination of parameters is the best. For the 

Fig. 1  Symmetric and asymmetric abstention. a Symmetric abstention; b asymmetric abstention. The green curve represent the ML scores/
probabilities of the controls (negative class), whereas the red curve represents the ML scores/probabilities of the cases (positive controls). The black 
vertical line marks the decision boundary and the blue dashed lines mark the borders of the abstention interval
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asymmetric abstention optimizer algorithm, we need 
some modifications of the core functions.

The fit() function in the asymmetric abstention 
interval method takes two additional parameters, 
namely (width and num_anchors), as input. We set 
them as follows: width =  0.2, and num_anchors =  20. 
The anchors start from −  width to width with num_
anchors steps. The cost() function in the asymmetric 

abstention interval method takes one additional param-
eter (anchor) as input, which is initialized with 0. 
Furthermore, the suitable range that we chose in the 
asymmetric abstention interval method is {maximum 
probability −  0.5 +  anchor}. So we add the anchor to 
add the offset of the asymmetry (see algorithm 2).

Algorithm 2: Asymmetric Abstention Optimizer Algorithm
Parameters: clf : binary classification model, which has a predict proba

method (Probability estimates).
Attributes: intervals: intervals used in the search, mcc values: Matthews

correlation coefficients corresponding to the intervals, sizes: size fractions
corresponding to the intervals, best : values of the best interval and anchor.

fit(X test,
y test,
low, // initially 0
high, // initially 0.16
step, // initially 0.01
width, // initially 0.2
num anchors // initially 20

) // finds the value of the best interval
intervals := grid from low to high with step size ’step’
anchors := grid from -width to +width with num anchors ’step’
mcc values := a matrix, the shapes of intervals and anchors, initialized with zeros
sizes := a matrix, the shapes of intervals and anchors, initialized with zeros
for 0 ≤i< size of intervals do
for 0 ≤j< size of anchors do
mcc, size := cost(X test, y test, intervals[i], anchors[j])
mcc values[i][j] := mcc
sizes[i][j] := size

cost matrix := mcc values*sizes
n,m:= indices of argmax (cost matrix )
best := {intervals:intervals[n]; anchor : anchor [m]}

cost(X test,
y test,
interval // initially 0, always 0 ≤ interval < 0.5
anchor // initially 0
) // returns the MCC and the fraction of the mask

predictions probabilities := clf.predict proba(X test)
max proba := max(predictions probabilities)
mask := | max proba −0.5+anchor | > interval
size := number of trues in mask / size of mask
X := X test × mask // select features outside of the interval
y := y test × mask // select labels outside of the interval
y hat := clf.predict( X )
return

matthews corrcoef ( y, y hat),
size
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We next evaluated and compared the performance of 
the symmetric and asymmetric abstention. The sym-
metric abstention performs well on balanced data and 
can significantly increase the MCC for all datasets. For 
instance, for the wdbc dataset, the best interval is [0.43, 
0.57] with an MCC of 0.952 and a size fraction of 98.2% 
(see Figure 2A). For the pc dataset, the symmetric absten-
tion on the balanced data performed best for an interval 
[0.44, 0.56] with an MCC of 0.558 and a size fraction of 
86% (see Figure  2B). For the ctg dataset, the symmetric 
abstention was best with an interval [0.36, 0.64], result-
ing in an MCC of 0.977 and a size fraction of 98.9% (see 
Fig. 2c).

On imbalanced data, the symmetric abstention reaches 
an MCC of 0.951, 0.556, and 0.975 with corresponding 
size fractions of 97.4%, 87.4%, and 99.6% for the datasets 
wdbc, pc, and ctg, respectively. The symmetric absten-
tion can improve the MCC significantly. However, this 
comes with a rejection rate of up to 12.6%.

Fig. 2  Symmetric abstention with balanced data. a wdbc; b pc; c ctg. The red and blue dots mark the MCC and size fraction, respectively, for a 
given interval

Results
We evaluated the symmetric and asymmetric abstention 
with three real-world datasets. To this end, we analyzed 
two scenarios, namely (1) the imbalanced data as it is and 
(2) down-sampled, balanced data.

For the wdbc dataset, the LR model performed well on 
the imbalanced data with an MCC of 0.925. For the bal-
anced design, the LR model produced a similar perfor-
mance with an MCC of 0.93. For the pc dataset, the LR 
model reached an MCC of 0.483 on the imbalanced data 
and an MCC of 0.438 on the balanced data. For the ctg 
dataset, the LR model achieved very high MCC values, 
namely 0.963 for the imbalanced and 0.955 for the bal-
anced design.

The corresponding confusion matrices and the prob-
ability distributions of the controls and cases for all three 
datasets and the two evaluated scenarios (imbalanced 
and balanced design) can be found in Additional file  1: 
Figs. S1–S6.
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Discussion
Our study demonstrates that both the symmetric and 
asymmetric abstention can improve the MCC for real-
world classification, thereby improving the diagnostic 
value of an AI model in medical applications. However, 
this does not come without costs. In order to improve 
the MCC, the samples are rejected, which is particu-
larly significant for the symmetric abstention on imbal-
anced data. In our study, we analyzed different datasets 
with different degrees of imbalance from moderate to 
high imbalance. Asymmetric abstention is particularly 
useful and superior for imbalanced data compared to 

Fig. 3  Asymmetric abstention for the ctg dataset. The scatterplot shows the MCC versus size fraction and the heatmap shows the MCC for each 
anchor in each interval

Table 5  Results of the models on the imbalanced data

Abstention represents the abstention approach, i.e., none, symmetric, or 
asymmetric abstention. Rejected refers to the percentage of rejected samples, 
and Interval represents the bounderies of the abstention interval

Name Abstention MCC Rejected Interval

wdbc None 0.925 – –

wdbc Symmetric 0.951 < 5% [0.37, 0.63]

wdbc Asymmetric 0.98 < 5% [0.263, 0.463]

pc None 0.483 – –

pc Symmetric 0.556 < 10% [0.44, 0.56]

pc Asymmetric 0.54 < 10% [0.427, 0.467]

ctg None 0.963 – –

ctg Symmetric 0.975 < 1% [0.39, 0.61]

ctg Asymmetric 0.987 < 1% [0.252, 0.432]

Table 6  Results of the models on the balanced data

Abstention represents the abstention approach, i.e., none, symmetric, or 
asymmetric abstention. Rejected refers to the percentage of rejected samples, 
and interval represents the bounderies of the abstention interval

Name Abstention MCC Rejected Interval

wdbc None 0.93 – –

wdbc Symmetric 0.952 < 5% [0.43, 0.57]

wdbc Asymmetric 0.952 < 5% [0.427, 0.467]

pc None 0.438 – –

pc Symmetric 0.558 < 10% [0.44, 0.56]

pc Asymmetric 0.558 < 10% [0.439, 0.539]

ctg None 0.955 – –

ctg Symmetric 0.977 < 5% [0.36, 0.64]

ctg Asymmetric 0.955 < 1% [0.354, 0.414]

In contrast, the asymmetric abstention performs 
equally well in MCC for all imbalanced datasets, namely 
0.98, 0.54, and 0.987 for the datasets wdbc, pc, and ctg, 
respectively. The rejection rate is similar to the rejection 
rate of the symmetric abstention approach with 4.3%, 7%, 
and 0.8%. However, it is always lower than 10%, which is 
not the case for symmetric abstention. In Figure  3, the 
asymmetric abstention is exemplarily shown for the ctg 
dataset. The corresponding figures for the wdbc and pc 
datasets can be found in the Additional file 1: Figs. S7 and 
S8, respectively. All results of the imbalanced and bal-
anced analyses are summarized in Tables 5 and 6.
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symmetric abstention. Thus, asymmetric abstention 
should be considered when the dataset is imbalanced, 
which is regularly the case in medical datasets. Moreo-
ver, abstention is particularly useful for machine learning 
in automated processes to reduce costs for healthcare, in 
particular time and costs for medical staff. Thus, absten-
tion in healthcare can be used for instance in screen-
ing processes to reduce the number of diagnoses with a 
human expert in the loop. In the future, we will extend 
our approach to general multi-class problems (i.e., clas-
sification tasks with more than two classes) with a reject 
option. Although it is just an extension of binary classi-
fication, it is more challenging for the algorithms to be 
effective. The more classes to predict, the more complex 
the problem will be. Our results show the usefulness and 
applicability of asymmetric abstention. However, there is 
room for improvements since our method does not solve 
all the problems associated with medical diagnostic deci-
sions based on test scores [18], and we do not suggest 
that it replaces the use of the symmetric abstention inter-
val method in general. In the future, we intend to analyze 
the interplay between data augmentation and abstention 
as well as the interplay between calibration methods for 
probabilistic interpretation and abstention intervals. 
Calibration can be used to make machine learning scores 
probabilistically interpretable and thus transform the 
original score distribution into a probability distribution, 
which directly affects the abstention interval. Moreover, 
we did not address at all the relevant regulatory require-
ments in our approach to be considered as software as 
a medical device (SAMD) [13, 25]. However, our new 
method can be a good starting point to improve diagnos-
tic software for biomedical decision-making.
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