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Pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive solid
malignancies, is characterized by the presence of oncogenic KRAS mutations, poor
response to current therapies, prone to metastasis, and a low 5-year overall survival rate.
Macroautophagy (herein referred to as autophagy) is a lysosome-dependent degradation
system that forms a series of dynamic membrane structures to engulf, degrade, and
recycle various cargoes, such as unused proteins, damaged organelles, and invading
pathogens. Autophagy is usually upregulated in established cancers, but it plays a dual
role in the regulation of the initiation and progression of PDAC. As a type of selective
autophagy, mitophagy is a mitochondrial quality control mechanism that uses ubiquitin-
dependent (e.g., the PINK1-PRKN pathway) and -independent (e.g., BNIP3L/NIX,
FUNDC1, and BNIP3) pathways to regulate mitochondrial turnover and participate in
the modulation of metabolism and cell death. Genetically engineered mouse models
indicate that the loss of PINK1 or PRKN promotes, whereas the depletion of BNIP3L
inhibits oncogenic KRAS-driven pancreatic tumorigenesis. Mitophagy also play a dual role
in the regulation of the anticancer activity of certain cytotoxic agents (e.g., rocaglamide A,
dichloroacetate, fisetin, and P. suffruticosa extracts) in PDAC cells or xenograft models. In
this min-review, we summarize the latest advances in understanding the complex role of
mitophagy in the occurrence and treatment of PDAC.
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INTRODUCTION

More than 90% of pancreatic cancers are ductal adenocarcinoma (PDAC), which is highly
malignant, difficult to diagnose early, and has a very poor prognosis. It is estimated that by 2030,
pancreatic cancer will become the second largest tumor-related death in humans (1). Although
there have been a variety of “precision” targeted therapies for certain solid cancers (such as lung and
breast cancer), the clinical treatment of PDAC is still in the “non-precision” era. The effective rate of
the widely used gemcitabine regimen is only 30%, while FOLFIRINOX (a regimen consisting of 5-
fluorouracil, leucovorin, irinotecan, and oxaliplatin) has serious adverse reactions, and the targeted
drug erlotinib (an oral tyrosine kinase inhibitor of epidermal growth factor receptor [EGFR]) as well
as cutting-edge immune checkpoint inhibitors have limited efficacy in patients with PDAC (2). How
to achieve “precise” diagnosis and treatment of PDAC is a challenging issue in clinical practice. This
clinical goal may require in-depth basic research to understand the complex pathological
mechanisms of PDAC initiation and development.
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Cells produce a large amount of waste every day, which needs
to be removed by an integrated degradation system to maintain
normal cell functions. In addition to the ubiquitin-proteasome
system (UPS), autophagy is a lysosomal-dependent pathway that
can remove various endogenous cellular materials (such as
proteins and organelles) and exogenous invading pathogens.
Autophagy dysfunction (including defects or over-activation)
may cause abnormal cell components and functions, leading to
various pathological conditions and diseases (3). Therefore, it is
important to understand the types, functions, and regulation of
autophagy under different conditions (4). The focus on
autophagy provides a promising alternative to the development
of new treatment options for human diseases. In this min-review,
we describe the types of autophagy and the mechanism of
mitophagy, and then analyze the effects of mitophagy on
PDAC, including tumorigenesis and tumor treatment.
TYPE OF AUTOPHAGY

According to the different ways of transporting cellular components
to lysosomes, autophagy is divided into the following categories
(Figure 1A) (4). 1) Macroautophagy. The process of
macroautophagy is a dynamic membrane reforming process
involving the formation and maturation of three special
structures: phagophore (also known as separated membrane
produced by endoplasmic reticulum, mitochondria, or other
subcellular membrane organelles), autophagosome (a double-
membrane organelle phagocytosing degradable materials), and
autolysosome (a hybrid organelle formed by the fusion of
autophagosomes and lysosomes) where sequestered material is
degraded by lysosomal hydrolases. 2) Microautophagy: lysosome
membrane directly envelops longevity protein and then degrades
in lysosome; 3) Chaperone-mediated autophagy (5): proteins
containing KFERQ-like motifs bind to molecular chaperones
(such as heat shock protein family A (Hsp70) member 8
[HSPA8/HSC70]), and then are transported to the lysosome
cavity by lysosomal associated membrane protein 2 (LAMP2/
LAMP2A) to be digested by lysosomal enzymes. It is worth noting
that the multimerization of LAMP2 is required to transport the
substrate into the lysosomal cavity (6, 7). Among them,
macroautophagy (hereinafter referred to as autophagy) is the
most common and well-studied form of autophagy in
mammalian cells. The so-called autophagy-related (ATG) genes
or proteins play a key role in the regulation of autophagy
membrane dynamics through protein-protein interaction, and
post-translational modifications (especially phosphorylation)
further regulate autophagic process by affecting ATG function (8).

According to the selectivity of the substrate to be degraded,
autophagy is further divided into selective autophagy and
non-selective autophagy to control cell fate (9, 10) (Figure 1A).
Non-selective autophagy refers to non-specific degradation
processes, such as starvation-induced autophagic degradation. In
addition to the core autophagymechanism, selective autophagy also
requires specific autophagy receptors to selectively degrade specific
cargo (9, 11, 12). For example, xenophagy (13), clockophagy
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(14, 15), and mitophagy (16) can selectively degrade invading
pathogens, aggregated circadian protein aryl hydrocarbon
receptor nuclear translocator like (ARNTL), and damaged
mitochondria, respectively (Figure 1A). This selective autophagy
mainly depends on the molecular bridge-like autophagy receptor
(also called adaptor protein), which not only specifically binds
to the substrate, but also binds to members of the ATG8/LC3
family (MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAP,
GABARAPL1/GEC1 , GABARAPL2 /GATE-16 , and
GABARAPL3) through different structure domains (12). The
number of genes in the ATG8/LC3 family may be caused by
gene duplication and loss events during evolution. LC3-II is a
standard marker for autophagosomes, which is produced by
conjugating cytoplasmic LC3-I with phosphatidylethanolamine
on the surface of newborn autophagosomes (17). It is worth
noting that certain autophagy receptors (such as sequestosome 1
[SQSTM1/p62]) act on both selective and non-selective autophagy
during stress (18). In addition, the protein level of SQSTM1 is also
regulated by the crosstalk between the UPS and autophagy
pathways (19). Collectively, these kinetics indicate that a
complex feedback network is involved in metabolism and signal
transduction to control substrate degradation (20).
TYPE OF MITOPHAGY

Mitochondria are organelles composed of two membranes (inner
membrane and outer membrane) found in most cells. Normal
mitochondria act as a “power factory” whose main function is to
perform aerobic respiration to produce adenosine triphosphate
(ATP). In addition, the interaction between mitochondrial and
non-mitochondrial metabolic pathways is important for generating
secondary signals (such as reactive oxygen species [ROS] and
calcium) and biological macromolecules (such as proteins,
carbohydrates, lipids, and nucleic acids). Therefore, maintaining
healthy mitochondria, including quantity and quality, is essential
for cell homeostasis. Conversely, damage to the mitophagy pathway
can cause various pathological conditions (such as inflammation)
and diseases (such as neurodegenerative diseases and cancer) (21–
23). As an important component of the mitochondrial quality
control mechanism, mitophagy can be activated through either
ubiquitin (Ub)-dependent or independent pathway (Figure 1A),
which is regulated by various proteins, including mitochondrial
inner or outer membrane proteins (Figure 1B).

Mitophagy that rely on Ub can be further divided into
classical and non-classical pathways (24). The classical pathway
is mediated by the PTEN induced kinase 1 (PINK1, a serine–
threonine protein kinase) and parkin RBR E3 ubiquitin protein
ligase (PRKN/PARK2) (25). Mutations in PINK1 and PRKN are
one of the important causes of Parkinson’s disease, a progressive
neurodegenerative disease with motor and non-motor symptoms.
The impaired PINK1-PRKN-dependent mitophagy pathway also
promotes various types of tumor formation, including PDAC
(discussed later). Mechanistically, oxidative damage to the
mitochondria causes the accumulation of PINK1 on the
mitochondrial outer membrane and the recruitment of PRKN
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from the cytoplasm to the mitochondria, leading to subsequent
assembly of phosphorylated Ub chains on mitochondrial outer
membrane proteins (25). In addition to the earliest reported
SQSTM1 (25), other autophagy receptors, such as optineurin
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(OPTN) (26), neighbor of BRCA1 gene 1 (NBR1) (27), calcium
binding and coiled-coil domain 2 (CALCOCO2/NDP52) (28),
and tax1 binding protein 1 (TAX1BP1) (28), also help to
recognize and degrade damaged mitochondria after activating
FIGURE 1 | The role of mitophagy in pancreatic tumorigenesis. (A) In mammalian cells, there are three main types of autophagy: microautophagy, macroautophagy,
and chaperone-mediated autophagy. Macroautophagy can be further divided into selective and non-selective forms. (B) Core mitophagy regulators mediate
mitochondrial clearance. (C, D) PINK1/PRKN and BNIP3L-dependent mitophagy play different roles in inhibiting or promoting pancreatic tumorigenesis, respectively.
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the PINK1-PRKN pathway (Figure 1A). Moreover, PINK1-
PRKN-mediated mitophagy can be reversed by deubiquitinating
enzymes, such as ubiquitin-specific peptidase 8 (USP8), USP15,
USP30, and USP35 (29). Non-classical Ub-dependent mitophagy
is mediated by non-PRKN E3 ubiquitin ligases (such as
mitochondrial E3 ubiquitin protein ligase 1 [MUL1] (30), siah
E3 ubiquitin protein ligase 1 [SIAH1] (31), SMAD specific E3
ubiquitin protein ligase 1 [SMURF1] (32), and autocrine motility
factor receptor [AMFR/GP78]) (33). The impact of crosstalk
between Ub-dependent classical and non-classical mitophagy
pathways on tumors is still poorly understood.

Ub-independent mitophagy is mediated by receptors, rather
than E3 ligases. Recently, depending on the stimulus and cell
type, the list of mitophagy receptors is increasing (34). In addition to
the early reports of BCL2 interacting protein 3 like (BNIP3L/NIX)
acting as a mitophagy receptor in red cells (35), other mitophagy
receptors, including FUN14 domain containing 1 (FUNDC1) (36),
BCL2 interacting protein 3 (BNIP3) (37), nipsnap homolog 1
(NIPSNAP1) (38), nipsnap homolog 2 (NIPSNAP2) (38),
prohibitin 2 (PHB2) (39), BCL2 like 13 (BCL2L13) (40) and
FKBP prolyl isomerase 8 (FKBP8) (41), have also been identified
in cancer and non-cancer cells (Figure 1B). These unique receptors
are responsible for binding to different mitochondrial membrane
components in response to various stresses (such as hypoxia and
oxidative damage). In addition to protein, non-protein
mitochondrial components, such as cardiolipin and ceramide
(42), also mediate mitophagy in some case, indicating that there
are complex mitophagy sub-routes to regulate mitochondrial
turnover and function.
MITOPHAGY IN PANCREATIC CANCER

Compared to normal cells, pancreatic cancer cells generally
exhibit highly fragmented mitochondria, which is associated
with increased mitochondrial fission and numbers as well as
enhanced mitochondrial oxidative phosphorylation or glycolysis
(43–45). Therefore, understanding the mechanism of mitochondrial
biogenesis and turnover in different stages of pancreatic cancer,
including initiation, progression, and metastasis, is essential for the
next generation of cancer treatments. Indeed, increased autophagy
or mitophagy levels are observed in various types of pancreatic
cancer (46–48). However, autophagy plays a dual role in various
cancer (including PDAC), depending on many factors, such as
tumor stage, tumor microenvironment, gene mutation status
involving oncogenes and tumor suppressor genes, and metabolic
reprogramming (49–54). PDAC is a heterogeneous disease and can
Frontiers in Oncology | www.frontiersin.org 4
be morphologically classified into four types: conventional, tubulo-
papillary, squamous, and “composite”, which exhibit different
molecular and genetic characteristics (55). Generally, autophagy
inhibits the growth of PDAC in the early stage by limiting DNA
damage or inflammation, and upregulated autophagy in the later
stage can promote PDAC survival by limiting cell death or anti-
tumor immunity (56–60). Since covering all the effects of autophagy
in PDAC is outside the scope of this min-review, we will only
discuss the modulation and function of mitophagy in PDAC as
described below.

Pancreatic Tumorigenesis
Evidence is accumulating that both intrinsic genetic factor and
extrinsic environmental factor are important for tumorigenesis.
For pancreatic cancer, the oncogenic KRAS mutation is a key
driving force for the formation of precursor lesions and
subsequent development of PDAC with stromal response (61).
KRAS activation is related to changes in mitochondrial
morphology (e.g., increased mitochondrial fragmentation) and
function (for example, reduction of mitochondrial respiratory
complex I activity, enhancement of glycolytic activity, promotion
of ROS production and induction of mitophagy) in various
cancers (including PDAC) (62–66). Moreover, the conditional
expression of endogenous KrasG12D in the pancreas of mice
(Pdx1-Cre;KrasG12D; called KC mice) can mimic most of
pathological development of human PDAC (67). This
spontaneous transgenic PDAC mouse model is widely used to
further consume or overexpress additional genes to evaluate the
function of target genes in pancreatic tumorigenesis (Table 1).
For example, based on KC mice, further depletion of the tumor
suppressor high mobility group box 1 (HMGB1, Pdx1-Cre;
KrasG12D;Hmgb1-/-) (69) or overexpression of tumor protein
p53 (TP53) mutation (Pdx1-Cre;KrasG12D;Tp53R172H, termed
KPC mice) (70) can significantly promote the development of
KRAS-driven PDAC. HMGB1 is a positive regulator of autophagy
and mitophagy, coupled with TP53 signaling in a variety of
tumors (71–74). Cytoplasmic HMGB1 is a BECN1-binding
protein that contributes to the formation of autophagosomes
(72). Nuclear HMGB1 promotes the expression of heat shock
protein b-1 (HSPB1) and subsequent HSPB1-mediated
cytoskeletal integrity, which is required for the membrane
dynamics of mitophagy (71). In addition, mitochondrial
HMGB1 repairs mitochondrial genomic DNA damage, which
also plays a potential role in suppressing tumorigenesis (75).
However, depletion of mitophagy regulators, including PINK1
[Pdx1-Cre;KrasG12D;Pink1-/-] (22), PRKN [Pdx1-Cre;KrasG12D;
Prkn-/-] (22), or BNIP3L/NIX [Pdx1-Cre;KrasG12D;Bnip3l-/- or
TABLE 1 | Mitophagy regulators in PDAC.

Mitophagy regulator Expression in human PDAC Function Mechanism Refs

BNIP3L Upregulation Tumor promoter Increases glucose metabolism and antioxidant capacity (68)
PINK1 Upregulation Tumor suppressor Inhibits inflammation and mitochondrial iron-related antitumor immunity (22)
PRKN Downregulation Tumor suppressor Inhibits inflammation and mitochondrial iron-related antitumor immunity (22)
HMGB1 Upregulation Tumor suppressor Inhibits genomic instability and mitochondrial dysfunction (69)
TP53 Upregulation Tumor suppressor Inhibits genomic instability and mitochondrial dysfunction (70)
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Pdx1-Cre;KrasG12D;Tp53R172H; Bnip3l-/- (68), in KC mice exhibits
different phenotype in pancreatic tumorigenesis. These transgenic
animal studies show that Ub-dependent and independent
mitophagy pathways play different roles in PDAC.

Dysregulated autophagy promotes or inhibits the growth of
pancreatic cancer by interfering with different metabolic pathways or
tumor signals, such as carbohydrate metabolism, fatty acid b-
oxidation, and amino acid transport (48). For example, the
reduced glycolysis gene PKM2 promotes survival by maintaining
autophagy induced by low glucose in PDAC cells (76). Autophagy-
mediated lipid degradation and subsequent fatty acid b-oxidation
may provide additional resources for ATP production during PDAC
growth (77, 78). Autophagy-mediated degradation of cellular
material provides reusable amino acids for PDAC cell proliferation
during glutamine deprivation (79). In addition, the PINK1-PRKN
pathway can degrade mitochondrial iron importers (such as solute
carrier family 25 member 37 [SLC25A37] and solute carrier family
25member 28 [SLC25A28]) through SQSTM1-mediated mitophagy
to inhibit carcinogenic KRAS-driven pancreatic tumorigenesis in
mice, thereby inhibiting mitochondrial iron-mediated absent in
melanoma 2 (AIM2)-dependent inflammasome activation and the
subsequent activation of damage associated molecular pattern
(DAMP, such as HMGB1)-dependent immune checkpoint
expression (e.g., CD274/PD-L1) (Figure 1C) (22). These findings
establish a role of PINK1/PRKN-mediated mitophagy to inhibit
pancreatic tumorigenesis by limiting chronic inflammation-related
immunosuppression in the hypoxic tumor microenvironment (80).
Of note, high expression of PRKNmRNAwas found to be associated
with improved survival of pancreatic cancer patients, whereas
mRNA expression of PINK1 did not influence patient survival
(22), indicating that PINK1 is a contributor of PDAC, but it is not
a potential biomarker. In addition, both PINK1 and PRKNmay have
mitophagy-independent functions in controlling the quality of
mitochondria during pancreatic tumorigenesis (22).

In contrast, in a precursor lesion called pancreatic intraepithelial
neoplasia (PanIN), oncogenic KRAS-mediated BNIP3L expression
may activate mitophagy in a rapidly accelerated fibrosarcoma
(RAF)-mitogen-activated protein kinase (MAPK)-dependent
manner to limit the flux of glucose to mitochondria and enhance
reduced nicotinamide adenine dinucleotide phosphate (NADPH)-
dependent redox capacity, thereby promoting pancreatic
tumorigenesis (Figure 1D) (68). In KC and KPC pancreatic
cancer models, the depletion of additional BNIP3L will increase
the content of mitochondria in PanIN, thereby increasing the
production of mitochondrial ROS to limit the development of
PanIN to PDAC (68). These observations indicate that BNIP3L-
mediated mitophagy have different roles in promoting pancreatic
tumorigenesis by enhancing the antioxidant capacity of cancer cells
for cell proliferation and metastasis. However, oxidative stress and
redox regulation are double-edged swords in tumorigenesis (81).
Certain types of oxidative cell death, such as necroptosis (a caspase-
independent regulated necrosis) and ferroptosis (an iron-
dependent regulated necrosis), can promote KRAS-driven PDAC
by activating inflammation-related immune suppression (82–84).
Whether PINK1, PRKN2, and BNIP3L have non-mitochondrial
functions in the modulation of the oncogene KRAS signal remains
Frontiers in Oncology | www.frontiersin.org 5
to be seen. In addition, various types of regulated cell death are
closely related to autophagy (85–87), which may accelerate the
complexity of the immune characteristics of the tumor
microenvironment, thereby affecting anti-tumor immunity.

There is emerging evidence that impaired mitophagy is related to
epithelial-mesenchymal transition and pancreatic cancer stem cells
(pCSCs), which are pluripotent, self-renewable, and capable of
forming tumors (88). In particular, the interferon signaling
pathway-mediated the upregulation of Ub-like modifier interferon-
stimulated gene 15 (ISG15) and its modification ISGylationmaintain
mitophagy and metabolic plasticity of pCSCs (89), suggesting a
potential link between interferon, mitophagy, and metabolism in
pCSCs. PDAC patients with high ISG15 levels showed increased
expression of genes related to the CSC pathway, including epithelial-
mesenchymal transition and oxidative phosphorylation (89). In
contrast, the inhibition of ISG15/ISGylation impairs PRKN-
dependent mitophagy, causing pCSCs to fail to eliminate
dysfunctional and unhealthy mitochondria (89). Overall, these
findings support a role of ISG15 in pCSCs by regulating
mitochondrial dynamics and energy metabolism. The role of
ISG15 in pancreatic tumorigenesis needs to be further studied
using transgenic mice.

Pancreatic Cancer Therapy
The purpose of tumor treatment is to induce death in tumor cells
without damaging normal cells. Cell death can be divided into
accidental or regulated cell death (90). Regulated cell death further
includes apoptotic and non-apoptotic forms. In addition to the
extensively studied apoptosis (91, 92), the induction of non-
apoptotic regulated cell death [such as necroptosis (93, 94),
alkaliptosis (95, 96), and ferroptosis (97–101)] in preclinical
PDAC models has shown promising results in inhibiting tumor
growth. As a metabolic center, mitochondria play a complex role in
regulating apoptosis and non-apoptotic cell death by cooperating
with other subcellular organelles (102). Accordingly, mitophagy-
mediated mitochondrial degradation and turnover is reasonable to
affect the anti-cancer activity of cytotoxic agents in PDAC cells. The
best cell models for studying mitochondrial biology and mitophagy
of pancreatic cancer are various human PDAC cell lines with KRAS
mutations. For example, rocaglamide A, a natural product from the
plant Aglaia elliptifolia, has the ability to induce PINK1/PRKN-
mediated mitophagy as a negative feedback mechanism to limit
rocaglamide A-induced apoptosis in various human PDAC cell
lines with KRAS mutations (103). In contrast, the inhibition of
mitophagy by Mdivi-1 enhances the anti-cancer activity of
rocaglamide A in PDAC cells (103). Overexpression of serine/
threonine kinase 25 (STK25, also known as MST1) in various
PDAC cells induces apoptosis by inhibiting mitophagy mediated by
mitofusin 2 (MFN2) (104). In contrast, leflunomide, an FDA-
approved arthritis drug, can inhibit the growth of PDAC tumors
by inducing MFN2 expression and subsequent mitophagy (44). In
addition, in vitro and xenograft models, the combination of cyst(e)
inase (an engineered human enzyme) and anuranofin (a
thioredoxin reductase inhibitor) can inhibit mitophagy, thereby
increase ROS production and apoptosis in the human PDAC cells
(105). In other cases, dichloroacetate (an inhibitor of pyruvate
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dehydrogenase kinase) (106), fisetin (a bioactive flavonoid molecule
found in fruits and vegetables) (107), and P. suffruticosa extracts
(108) may play a context-related role in the induction of mitophagy
and tumor suppression in PDAC cells. These findings further
indicate that the complex relationship between mitophagy and
mitochondrial dynamics can affect the effects of chemotherapy and
targeted therapy.

In addition to PDAC cells, pCSCs is another cell model for
studying mitochondrial dysfunction. pCSCs not only promote
the growth and metastasis of pancreatic tumors, but also mediate
chemoresistance. Metformin is a biguanide anti-diabetic drug that
activates AMP-activated protein kinase (AMPK) to trigger
autophagy (109). Retrospective studies have shown that
compared with patients receiving insulin or sulfonylureas, many
diabetic patients with solid tumors (including pancreatic cancer)
treated with metformin have a survival benefit (109). The loss of
ISG15 in pCSCs by CRISPR-Cas9 technology results in sensitivity
to metformin therapy in xenograft models (89). These findings
further indicate a potential role of ISG15 in regulating the anti-
cancer activity of metformin in pCSCs. Further investigations are
still needed to determine whether ISG15 directly regulates AMPK
activation in pCSCs.
CONCLUSION AND PERSPECTIVES

In the past decade, basic and clinical research on autophagy has
involved various diseases, including pancreatic cancer (48, 59,
110–112). With the deepening of research, the functions of
autophagy in tumor biology show diversity and complexity.
One of the important reasons is that autophagy can have
different degradation substrates, and these substrates can play a
Frontiers in Oncology | www.frontiersin.org 6
tumor-promoting and anti-tumor effect. In addition, the degree
of substrate degradation (such as complete or partial degradation)
also affects the function of autophagy in tumors. Similarly,
mitochondrial coupling with mitochondrial biogenesis also plays
a dual role in cancer. In this min-review, we discussed the context-
dependent role of mitophagy in pancreatic cancer. Although this
information enhances our understanding of the role of
mitochondrial homeostasis in pancreatic cancer, there are still
some key questions about the process and function of mitophagy
in PDAC. How does the multi-step mitophagy actually proceed at
different stages of PDAC? What are the key molecules or signals
that distinguish the functions of mitophagy in promoting or
inhibiting pancreatic tumorigenesis? Do tumor cells and non-
tumor cells (such as immune cells or stromal cells) in the
pancreatic tumor microenvironment have different mitophagy
activities? In the pancreatic tumor microenvironment, what is
the synergy or competition between mitophagy and other types of
selective autophagy? How to develop specific mitophagy targeted
drugs to kill pancreatic tumors? Are there specific markers to
assess the level of mitophagy in PDAC patients?
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