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Abstract: Understanding the genetic mechanisms un-
derlying complex traits is one of the next frontiers in
biology. The budding yeast Saccharomyces cerevisiae has
become an important model for elucidating the mecha-
nisms that govern natural genetic and phenotypic
variation. This success is partially due to its intrinsic
biological features, such as the short sexual generation
time, high meiotic recombination rate, and small genome
size. Precise reverse genetics technologies allow the high
throughput manipulation of genetic information with
exquisite precision, offering the unique opportunity to
experimentally measure the phenotypic effect of genetic
variants. Population genomic and phenomic studies have
revealed widespread variation between diverged popula-
tions, characteristic of man-made environments, as well as
geographic clusters of wild strains along with naturally
occurring recombinant strains (mosaics). Here, we review
these recent studies and provide a perspective on how
these previously unappreciated levels of variation can
help to bridge our understanding of the genotype-
phenotype gap, keeping budding yeast at the forefront
of genetic studies. Not only are quantitative trait loci (QTL)
being mapped with high resolution down to the
nucleotide, for the first time QTLs of modest effect and
complex interactions between these QTLs and between
QTLs and the environment are being determined
experimentally at unprecedented levels using next
generation techniques of deep sequencing selected pools
of individuals as well as multi-generational crosses.

Yeast Genetics: Moving Forward

Yeast genetics started over 70 years ago when Ojvind Winge

successfully crossed two different strains to create a hybrid that

combined desirable traits from both parents [1]. The ability to

make crosses and generate segregants led to budding yeast

developing into one of the premier genetic models. Winge’s basic

experiment is also the initial step of any forward genetics approach

requiring the generation of a recombinant offspring from

genetically diverged strains [2]. However, this route was rarely

taken. Instead, S. cerevisiae has been used as a workhorse to dissect

phenotypes, function, and mechanism, where the effect of

mutations, initially generated randomly and then systematically,

were screened for specific phenotypes [3]. S. cerevisiae became the

first eukaryote sequenced and a handful of laboratory strains,

mostly related to the sequenced S288c background, have been

used universally.

In the past decade this trend has changed and S. cerevisiae has

emerged as a powerful model for quantitative forward genetics. A

series of studies have mostly used two hybrids to generate sets of

segregants: the BY/RM hybrid, essentially used to find expression

QTLs (eQTL) [4], and the YJM/S288c hybrid, to accurately

dissect the architecture of a single trait [5]. The study of eQTLs

[4,6] is conceptually different, generally Mendelian variants

segregating that affect expression of a gene in cis or trans

depending on whether they are in the regulatory sequence or in a

transcription factor, and requires a separate discussion. These

studies were instrumental in showing how the biological and

genetic features of budding yeast make this organism an ideal

model for developing a deeper understanding of quantitative

genetics. Some of the principles that emerged from these studies

on the complex architecture of traits broadly apply to other

organisms. In addition, a simple and elegant approach named

reciprocal hemizygosity was devised to validate the effect of one

allele over the other in an F1 hybrid [5], and the same principle

was successfully exploited in other organisms (Figure 1A) [7]. We

now have the exquisite precision in mapping and validating

functional variants down to single nucleotide resolution (QTN)

(Figure 1B–D). One of the most exhaustive studies identified four

QTNs and their interactions that control sporulation (meiosis)

efficiency with three of the QTNs being transcription factors [8].

These studies revealed principles regarding the genetic archi-

tecture of traits that have since been found to be broadly

applicable by other studies. A recurring theme is that many

apparent QTLs are actually composed of several linked QTNs.

Counterintuitively, some of the QTLs in a linkage group have

effects opposite to expectations based on the parental phenotype

(transgressive QTLs). Finally, in virtually every cross the pheno-

typic variation seen in the progeny is greater than that seen

between the parents. Together these properties make complex

trait analysis in yeast at the same time both more difficult than

might be expected and potentially very fruitful with respect to

building a general understanding of the genetic architecture of

traits in all organisms.

Population Genomics and Standing Genetic
Variation

Early QTL mapping experiments clearly showed the potential

of budding yeast as a model in quantitative genetics. However,

very little was known about the origin of the strains selected for

breeding. Large collections of strains have been isolated from

substrates that originate from human activity [9,10]. In addition to
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these, other studies reported the isolation of S. cerevisiae from

multiple niches in wild environments [11,12]. The genome

sequence of several diverse isolates revealed the presence of five

genetically diverged clean lineages (populations that are not

interbreeding) [13]. The majority of segregating sites in each clean

lineage are private and monomorphic within the lineage. Some of

these phylogenetic clusters grouped strains isolated from specific

human activity (e.g., cultivation from wine and sake production),

indicating a potential role of human activity in their evolution and

perhaps partial domestication [9]. Half of the sequenced strains

have mosaic recombinant genomes (mixed ancestry) originating

from outcrosses between the clean lineages and are polymorphic

for the majority of segregating sites. Importantly, genome analysis

provides convincing evidence that human activity has not resulted

in reduced standing variation and access to this reservoir of

variability is a great resource for investigating the genetic structure

of complex traits [3]. The population structure of S. cerevisiae, with

several clean lineages and several outbred mosaics, may not be

ideal for genome-wide association studies (GWAS), as there is a

strong linkage of SNPs on a population level and there may not be

enough independently derived mosaic strains to overcome the

linkage disequilibrium. However, strains belonging to the clean

lineages are ideal for linkage analysis as they have an even

distribution of segregating sites across the genome and these

polymorphisms have coevolved within a specific genomic context.

Resources of genotyped segregants from a grid of crosses are now

available [14,15].

A recurrent problem is that parts of the variation are

inaccessible to linkage analysis due to reproductive isolation.

The low gamete viability can be attributed to chromosomal

rearrangements, sequence divergence, and genetic incompatibil-

ities. For example, one of the S. cerevisiae clean lineages, isolated

from the Malaysian rain forest, is reproductively isolated from all

the other lineages [14]. Initial attempts at using even more

Figure 1. Experimental measures of natural variation. Yeasts offer a unique opportunity to engineer changes to measure the impact of
phenotypic variants on traits. (A) Reciprocal hemizygosity has high throughput and can be used to test a large number of candidates. Hybrids that
differ only in which of two alleles is present/deleted are compared. Deletion collections of multiple strains will soon be available allowing genome-
wide systematic studies using hybrids to test all candidates easily or even for discovery of phenotypic effects directly. (B) Allele swapping is less high
throughput but allows testing phenotypic effects of specific alleles in different genetic backgrounds. This is more precise than reciprocal
hemizygosity. (C) Site-directed mutagenesis is a rapid and precise way of testing known and novel base changes for phenotypic effects. (D) Synthetic
biology has the potential of simultaneously testing multiple variants, both natural or artificial, in a single gene [55] or scattered through the genome
[47].
doi:10.1371/journal.pgen.1002912.g001
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genetically distant strains, like populations of S. paradoxus from

different continents, gave evidence of deleterious interactions

perhaps due to partial incompatibility of the highly diverged alleles

[16]. This high sequence variation resulted in reduced recombi-

nation, making QTL mapping particularly difficult. This reduced

recombination also leads to partial reproductive isolation, adding

to the difficulty. The problem of reproductive barriers also applies

to other model systems. Crosses between Schiz. pombe isolates often

result in very poor gamete viability (Jurg Baheler, personal

communication), and genetic incompatibilities have been observed

in C. elegans crosses [17]. This problem can be overcome with

appropriate nested backcross approaches.

From Variant to Variation

The effect of causative genetic variants is not only determined

by the polymorphisms themselves but is also shaped by genetic and

environmental interactions. Many polymorphisms associated with

disease risk only cause disease in some individuals [18]. Similarly,

the majority of yeast QTLs appear to be context dependent, thus

acting only in specific cross combinations or environments [14,19].

One of several heat tolerant QTLs, for example, is found only in a

specific cross out of six pairwise crosses between four parents [13].

This phenomenon is also observed in reverse genetic studies where

inactivating the same gene in multiple strains can have a different

phenotypic outcome. An interesting example of conditional

viability was previously reported for a duplicated pair of histone

coding genes, H2A and H2B [20]. Strains can survive deletion of

one of the pairs by upregulating the expression of the other,

however deletion of the other pair cannot be compensated in this

way. Some strains were able to survive this deletion because of a

Ty-mediated gene amplification mechanism of the first pair, which

allowed the necessary dosage compensation. Yeast again provided

a systematic approach, and genome-wide deletion collections in

two different strain backgrounds were analyzed for viability [21].

Despite the two strains sharing ancestry (half of their coding

genome is identical), 10% of the genes were conditionally essential:

lethal in one strain and with no obvious phenotype in the other.

Interestingly, the dispensability of these genes depends on several

other modifiers, but their mechanisms of interaction are still

unknown. These genes can be identified using conventional QTL

mapping, and a recent bulk segregant approach appears

particularly promising in mapping these (Figure 2).

The surrounding environment provides a second level of QTL

regulation. Similar to the genetic background effects, many QTLs

are only effective in specific environmental conditions. For

example, genes affecting colony morphology are strongly regulated

by the nutrients present in the media [22]. Here two gene

regulatory networks interact with each other and environmental

signals to produce a switch to filamentous growth. Genes residing

in the subtelomeric regions are also subject to environmental

regulation [23] through environment-responsive transcription

factors. Furthermore, the environmental conditions also shape

the gene-gene interaction network generating an even more

complex interaction (gene6gene6environment). In the example of

the four QTNs affecting sporulation [8], the 32 possible

combinations of genotypes in both genetic backgrounds were

exposed to eight environmental conditions [23]. Clear examples of

gene6gene interactions dependent on environment were found.

The environmental effect can be direct but also mediated by

master regulators such as the chaperone HSP90. Modulation of

HSP90 by temperature and drugs reveals the presence of HSP90

contingent QTLs [24]. In this case, environment-dependent alleles

are indirectly modulated via HSP90 through protein folding. An

intriguing intermediate role for epigenetic polymorphisms has also

been proposed [25] where histone mark differences appear

enriched in genes with high transcriptional variability.

The Genomic Landscape of QTLs

One issue with mapping QTLs is complete knowledge of the

genomes. In general, subtelomeric regions are incomplete in most

genome projects and if complete only so in a high-quality

reference genome such as the case of S. cerevisiae. As subtelomeres

are highly polymorphic with respect to presence/absence and

location of genes and sequence, as well as in sequence variation,

there is the potential for a great deal of unmappable variation. In

budding yeast studies upwards of 25% of QTLs for overall traits

have been mapped distal to the last segregating marker [14]. The

missing genetic information is, however, only about 8% of the

genome. Some of this variation may be due to copy number of

genes present in different subtelomeres as has been seen for

arsenate resistance [13] but not all will be due to CNV. Not only

are QTLs missed by not having complete genomes, they appear to

be enriched in the missing regions. Getting a handle on this poorly

described part of the genome at the level of variation in a

population will be one of the major goals of the next decade.

One interesting observation that has arisen from the dissection

of QTLs responsible for specific traits, in the F1 progeny of a given

cross, is that an initial large QTL region turns out to be composed

of several linked QTLs. Furthermore these are a mixture of

antagonistic QTLs (those alleles with a different effect from their

parental origin) and QTLs with the expected phenotypic effect

(coinciding with parental phenotype). Two specific studies using

the lab reference strain and one other to create F1 progeny

mapped a QTL with large effect for heat resistance and

sporulation [5,26]. Upon further dissection of these regions, three

and four linked QTLs were determined. In the case of heat

resistance, one of three QTLs was antagonistic, and in the case of

sporulation, three out of four were antagonistic. Interestingly, a

separate study of sporulation QTLs using the same cross [27] did

not find the same QTLs, and those found were unlinked. The

differences between the studies include mapping approaches but

also the phenotype measured. In one case it was sporulation at

24 h and the other at 7 d, showing another level of complexity in

the analysis of quantitative traits. A third case has recently been

found in ethanol tolerance in an industrial strain with four linked

QTLs, one being antagonistic [28]. Linked QTLs have also been

observed in Arabidopsis [29] with QTLs affecting growth rate. At

first glance this seems unexpected, as one would expect QTLs to

have effects in the same direction as exhibited by the parent (in the

case of yeast, the parental population is fixed for these variants),

and linkage of these QTLs would be improbable due to chance

alone. One possibility for linkage is the selective sweep of a

beneficial allele carrying less adapted linked alleles by hitchhiking.

There is no reason, however, that other loci involved in the trait

should be linked, certainly not as often as is observed. An

alternative hypothesis is through adaptation. Isolated populations

of yeast may be expected to result in linked QTLs of mixed effect

in the following manner. It is known from genome-wide forward

genetic studies that large numbers of genes can affect a given

phenotype. A new mutation, affecting the trait which may be

advantageous or not disadvantageous enough to be removed

immediately from the population, will be a QTL for a particular

phenotype. Additional mutations in that population that affect that

phenotype and the fitness of the individuals carrying both, either

by compensating a slightly deleterious initial mutation or

furthering the advantage of the individual carrying both, will
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increase in the population if it is fitter than either mutation alone

or the original genotype. For Saccharomyces yeast where there is

some outbreeding, advantageous combinations will be broken up

by recombination unless they are linked. This will lead to fixed

differences between populations of linked combinations of variants

(see Figure 3). Over time several linked fixed variations can be

generated between populations, and if any individual variants are

initially deleterious, the result will be a linked set of QTLs of mixed

effect (positive and negative on the phenotype in question).

Different populations adapting to similar niches would likely

evolve linked sets in different genomic locations, resulting in the

finding of large QTL regions in crosses between these populations

which upon further dissection reveal several linked QTLs within

each large ‘‘super’’-QTL. One caveat to this interpretation is that

Figure 2. Mapping QTLs and modifiers. (A) QTL mapping has evolved from the classical approach of individual segregant analysis to the X-QTLs
and iQTLs approaches with higher mapping sensitivity and resolution. Analysis of time series data in iQTLs allows dynamic monitoring of allele
frequency values [56]. (B) A possible approach to map genetic modifiers using iQTLs. A conditional essential gene, y, is deleted from its original
chromosomal location and maintained on a plasmid. This hybrid is intercrossed multiple times to allow reshuffling of parental genomes. Upon loss of
gene y, viability relies on the presence of genetic modifier/s, and allelic combinations that result in lethality (dashed cells) will decrease in allele
frequency. These modifiers can be detected by comparing allele frequencies of the pool before and after the plasmid loss. When many modifiers are
involved, the lethal combinations will be present in low frequency, making them difficult to detect. Further rounds of intercrosses, after loss of gene y,
will allow reshuffling of alleles and the generation of more cells with unviable combinations.
doi:10.1371/journal.pgen.1002912.g002

PLOS Genetics | www.plosgenetics.org 4 August 2012 | Volume 8 | Issue 8 | e1002912



the trait measured may not be the trait acted upon by selection,

however the finding of linked QTLs in many examples indicates

that the QTLs underlying the traits measured must be somehow

interconnected in adaptation. Pleiotropy is likely to be an

important aspect of the complex architecture of quantitative traits.

As quantitative trait analysis advances in terms of resolution and

sensitivity, we predict that this architecture will be found in many

situations and is already becoming evident in other systems [29].

The generation and evolution of ‘‘supergenes’’ as seen in complex

color patterns in butterflies where recombination is reduced/

eliminated between linked genes affecting the phenotype [30] may

be analogous to the linked QTLs we see in yeast.

Figure 3. Linked quantitative trait loci (QTLs) can arise through normal population genetic processes. For any given phenotype there
are many loci where mutations can have an effect. Different populations will experience mutations in different loci affecting the same phenotype.
These mutations can affect a phenotype in a positive (+) or negative (2) way and if nearly neutral ( = ) will remain segregating within a population for
awhile. As other mutations occur, advantageous combinations can result with better fitness than either mutation alone or the original parental
alleles. Multiple mutations with effects upon a trait will be broken up by recombination if not linked and one or more can therefore be lost. Linked
mutations can become fixed as blocks of larger collections of QTLs if the combination of alleles is beneficial. Different populations may evolve
different ‘‘super’’-QTLs, which are revealed when the populations interbreed. Offspring will express a range of phenotypes depending on which QTLs
are inherited and how much recombination breaks up the linked groups. Multiple rounds of interbreeding can further break up the linked QTLs
revealing individual loci, as illustrated in Figure 2.
doi:10.1371/journal.pgen.1002912.g003
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Next Generation QTL Mapping: From X-QTLs to
iQTLs

Multiple aspects and directions are evolving from the conven-

tional QTL mapping approach. The genetic variation so far

described in S. cerevisiae is potentially only the tip of the iceberg.

New natural variants from a wide range of sources and geographic

areas have been isolated and genome sequences will soon be

available. This reservoir of diversity can aid the bioinformatic

analysis for predicting functional variants [31]. An increasing

number of sequenced individuals could also enable the use of

GWAS. However, the well-defined population structure is likely to

pose a problem. Associations within lineages do not suffer from

this problem but cannot be applied to many traits that appear

characteristic of but do not vary within a population [32]. Choice

of mapping approaches depends on the population structure and

the nature of the trait in question. Alternative strategies have been

worked out in plant systems for different situations [33] varying

sampling and breeding strategies for these different situations.

QTL mapping in yeast has evolved along these lines outlined for

plants with surveys of large numbers of isolates from various

sources and locations [13,34] and individual crosses for specific

traits [4,5,8,15,16,19,25–27,35–41] to pair-wise crosses between

different populations [14,15,42]. Sensitivity in detection of QTLs,

even those of modest effect, has been enhanced by bulk segregant

analysis, either in large numbers of F1 progeny, the X-QTL

approach [43], or through large numbers of segregants from

advanced intercross lines, the iQTL approach [44]. The

advantage of iQTLs (intercross-selection QTLs) over X-QTLs is

in resolution as the multiple generations break up linkage groups

allowing determination of individual QTLs down to single genes

and in some instances the causal QTN ([44] and Figure 2).

GWAS in yeast is likely to be hampered by the population

structure, and it is unlikely that enough different mosaic genomes

can be sampled from the environment to map more than a few

specific QTLs by association. In plants there are already multi-

parental, multi-generational strategies [33], which allow for the

incorporation of most of the genetic variation of a species into one

large panmictic pool, which can then be used for GWAS analysis.

An attractive prospect for yeast is to create artificially outbred

populations by mixing multiple variants that can then be exploited

by new GWAS approaches [44]. This can complement advanced

intercross lines created from pairwise crosses [44]. Next generation

sequencing allows complete genome-wide genotype data for large

segregant populations, particularly important in multigeneration

crosses, where the small haplotype block size requires high marker

density [44]. Large populations have been used for bulk segregant

analysis and successfully mapped variants with minor effect [43–

46]. The increased ability to synthesize specific DNA sequences is

also a promising approach to experimentally measure the effect of

specific variants in a high-throughput fashion (Figure 1D, [47]).

This should facilitate the assessment of complex interactions, as

well as generate synthetic variants that expand the gene pool.

Exploiting natural variation by reverse genetics is also valuable.

Deletion collections from highly diverged strains or sister species,

such as S. paradoxus, allow the testing of whether the observed

phenotypes are general or strain background dependent. Initial

attempts at predicting phenotypes by combining population

genomics with systems biology datasets gave promising results

[48]. Characterizing the effects of mutations/deletions in many

backgrounds should improve the predictive power.

A further step forward in yeast linkage analysis will be the shift

from using haploid (or homozygous diploids) to diploids. This will

strengthen the S. cerevisiae position as a model for human complex

traits and also will provide more realistic insights for yeast in

natural settings. Few studies have looked at important aspects such

as heterosis and overdominace [49,50] and heterozygosity [51].

Technological challenges posed by working with diploids appear

to have been overcome by new QTL mapping approaches [44].

Going back to Winge’s initial experiments, forward genetics in

yeast appears to have a bright future ahead and will likely play a

key role in elucidating the rules that govern complex traits. In turn,

these novel mapping and breeding strategies hold the potential to

create attractive S. cerevisiae variants for the budding yeast

biotechnology industry [28,35,38].

These approaches will be useful in other systems. The plant

community already has the breeding mapping strategies and they

have been very successful [33]. The Drosophila community has

successfully used population-based resequencing [52] to map QTLs

even with modest effect, and it has a deletion-based testing of

candidates analogous to the reciprocal heterozygosity test with a

large resource of deletions available [53]. It remains to be seen how

complex the quantitative genetic architecture is in other systems

compared to yeast, but given the missing heritability in many

systems [33,54], it is likely that the situation in yeast is not unusual.
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