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Chemotherapeutic agents, such as 5-fluorouracil (5-FU) and oxaliplatin (Oxi), can not
only kill the cancer cell but also influence the proliferation of gut microbiota; however,
the interaction between these drugs and gut microbiota remains poorly understood.
In this study, we developed a powerful framework for taxonomy composition and
genomic variation analysis to investigate the mutagenesis effect and proliferation
influence of chemotherapeutic agents, such as 5-FU and Oxi, on gut microbiota and
the interaction between these drugs and gut microbiota during chemotherapy. Using
the gut microbiome data, we detected 1.45 million variations among the chemotherapy
groups and found the drugs significantly affected mutation signatures of gut microbiota.
Oxi notably increased transversion rate, whereas 5-FU reduced the rate. Traits related to
cell division and nutrient mobilization showed evidence of strong selection pressure from
chemotherapeutic agents. In addition, drug-associated bacteriome shift patterns and
functional alterations were found: the metabolism changes in the 5-FU group implied
that gut microbiota could provide additional nicotinamide adenine dinucleotide (NAD+)
to inhibit cancer cell autophagy; in the Oxi group, the ribosome and lysine biosynthesis
genes were obviously enriched. Our study provides a blueprint for characterizing
the role of microbes and drug–microbe interaction in the gut microbiota response
to chemotherapy.

Keywords: chemotherapeutic agent, gut microbiota, microbes, gene mutation, genomic variation analysis

INTRODUCTION

Chemotherapeutics have long been used to treat a variety of human tumors (Kemp and Kwon,
2021). As one of the commonly used chemotherapy protocols, the FOLFOX regimen contains
different chemotherapeutic agents [e.g., 5-fluorouracil (5-FU) and oxaliplatin (Oxi)] with a broad
range of cytotoxicity (de Gramont et al., 2000). These drugs can effectively inhibit DNA replication
of cancer cells via different mechanisms of action. For example, 5-FU produces FdUMP, which
directly inhibits thymidylate synthase and thus causes thymine-less cell death (Pinedo and Peters,
1988). In addition, the products of 5-FU may be converted into FUTP or FdUTP, leading to RNA
or DNA damage, respectively. An understanding of the interaction of chemotherapeutics and gut
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microbial populations will probably trigger applications toward
improving the effectiveness of chemotherapy (Yuan et al., 2018).

Chemotherapeutic agents may affect gut microbial
communities by disrupting the homeostatic balance among
resident microorganisms; meanwhile, they can accelerate the
microbe evolution at a molecular level (Montassier et al., 2015;
Baym et al., 2016; Hong et al., 2019). Many recent studies have
explored the interaction between microbiota and anticancer
drugs along with interventions aimed at shaping microbiota to
optimize drug efficacy and reduce side effects (Cheng et al., 2020).
However, previous studies mainly focused on the taxonomic
characterization and functional compositions of different
cohorts at the genus or species level (Lloyd-Price et al., 2017).
Variations in taxonomic abundance as well as functions encoded
by these gut microbiota have been described in the cohorts of
inflammatory bowel disease (IBD) (Halfvarson et al., 2017),
type 2 diabetes (T2D) (Qin et al., 2012), hypertension (Li et al.,
2017), and liver cirrhosis (Qin et al., 2014). However, genomic
variations within species, which lead to their phenotypic diversity
and adaptations to chemotherapeutic agents, have been studied
in only a few taxa (Morowitz et al., 2011). For example, in the
common gut commensal bacteria Escherichia coli (Bagel et al.,
1999), only few point mutations can confer clinically relevant
antibiotic resistance, and the natural variation in a single gene
can lead to pathogenic adaptation.

Given the importance of the gut microbiota in human health
and a growing number of studies reporting associations between
gut microbiota and diseases (Hauser et al., 2015), a better
understanding of the interaction between gut microbiota and
chemotherapeutic drugs during chemotherapy helps to improve
the efficacy of the anticancer chemotherapeutic agents. We
recruited 37 cancer patients and collected prechemotherapy
and postchemotherapy stool samples to study the taxonomic
composition, metabolic capacity, and molecular evolution during
the chemotherapy. In order to avoid the bias caused by distinct
diet, regional, and genetic differences, we collected healthy
samples from well-known studies about Han Chinese with the
standard clinical assessments and same sequence platform to
build the basic of microbiome structure and mutational pattern.
We analyzed our cohort and stool samples from T2D (Qin
et al., 2012), liver cirrhosis (Qin et al., 2014), and hypertension
cohorts (Li et al., 2017) with the same bioinformatics pipeline
and parameters. Our goal was to build a power framework
for metagenomics analysis to gather basic knowledge on the
genomic variation landscape and taxonomic abundance shift in
gut microbiota metagenomes during chemotherapy.

MATERIALS AND METHODS

Cohort Recruitment and Sample
Collection
Participants were recruited in the Oncology Department of
Beijing Hospital, Beijing, China, in 2018. This study was
approved by the Beijing Hospital Ethics Committee. Written
informed consent was obtained from all of the participants.
The exclusion criteria included the following: with a history of

IBDs; having been exposed to probiotics, prebiotics, or broad-
spectrum antibiotics within 30 days; or having received nasal-
tube feeding or parenteral nutrition in the month prior to
initiation of the study. Detailed information about all patients
is listed in Supplementary Table 1. We collected two fecal
samples from each participant. A fecal sample was collected on
hospital inpatient admission (day 0), prior to administration
of chemotherapy, and 30 days later immediately prior to
chemotherapy (day 30), respectively. For each fecal sample, 1 g
of stool was collected into a sterile tube and then subsequently
stored at –80◦C for molecular analysis. Total genomic DNA
was extracted from 200 to 500 mg of fecal sample using a
QIAamp DNA Stool Mini kit (Qiagen, Germany) according
to the manufacturer’s instructions. The concentration of the
extracted DNA was measured by a NanoDrop2000 (Thermo
Fisher Scientific, United States), and then the DNA was stored
at –80◦C for the next studies.

16S Ribosomal RNA Sequencing and
Bioinformatics Analysis
To develop the 16S rRNA amplicon libraries, the V3–V4
region of 16S rRNA gene was polymerase chain reaction–
amplified with the primers 341F (5′-CCTAYGGGRBGCASCAG-
3′) and 806R (5′-GGACTACNNGGGTATCTAAT-3′), modified
by adding barcodes for multiplexing (Caporaso et al., 2012).
Pooled amplicons were paired-end sequenced [PE 2 × 250
base pairs (bp)] by using an Illumina HiSeq 2500 platform
according to the manufacturer’s protocol. Paired-end reads were
merged and quality filtered using FLASH and QIIME (Bokulich
et al., 2013). Chimeras were detected and removed against the
Gold reference database using the UCHIME algorithm (Edgar,
2013). Sequences with ≥ 97% similarity were assigned to the
same OTUs. For each representative sequence, the GreenGenes
Database was used based on the RDP classifier algorithm to
annotate. α Diversity analysis including Shannon and Chao1
was calculated with QIIME. Phylogenetic β diversity distances,
including unweighted and weighted UniFrac distances, were
measured using QIIME. Principal component analysis was
performed to visualize by ggplot2 package in R software (version
3.5.0). Further, diversity analyses, such as Adonis and Anosim,
were performed by running a workflow on QIIME.

Shotgun Metagenomics Sequencing
Library Construction
For shotgun metagenomics sequencing, adaptive focused
acoustics (Covaris) was used to shear a standard volume of
50 µL of the extracted DNA. DNA libraries were prepared
using Illumina TruSeq Sample Preparation Kit (Illumina,
United States) according to the manufacturer’s protocol. The
DNA libraries were quantified using an Agilent Bioanalyzer 2100
(Agilent Technologies, United States). Paired-end sequencing
(PE 2× 150 bp) was performed on successful DNA libraries using
an Illumina HiSeq X-Ten instrument at the Annoroad Genome
Biotech in Beijing. Finally, we obtained 4.27–8.9 GB of raw data
for each sample (average, 5.98 GB; Supplementary Table 2).
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Metagenomics Bioinformatics Analysis
Concatenated and human DNA sequences were removed using
KneadData with default parameter.1 The remaining high-quality
reads were assembled with IDBA-UD (version 2.04, parameters: -
pre_correction -min_contig 200) (Peng et al., 2012). We mapped
the clean reads against scaffolds using Bowtie2 (version 2.3.4.2)
(Langmead and Salzberg, 2012). Genes (minimum length of 100
nucleotides) were predicted on contigs longer than 500 bp and
annotated using Prokka (Parameters: -metagenome) (Seemann,
2014). The gene abundance was determined by using a method
similar to RPKM (reads per kilo bases per million reads) used for
quantifying gene expression from RNA sequencing data. In brief,
high-quality reads were counted with HTSeq-count (Anders
et al., 2015). For each gene, Gi, the number of reads that aligned to
it divided by the length of the gene was calculated as NGi, and the
relative abundance, RNGi, of each gene in each sample (n genes)
was computed using the following formula:

RNGi = NGi
/∑n

i=1 NGi

Species-level quantitative taxonomic profiling was performed
using MetaPhlAn2 (version 9760413b180f) on the KneadData-
filtered reads (Truong et al., 2015). Community composition was
calculated with MetaPhlan2 using the default settings. Taxonomic
profiles including bacteria, archaea, microbial eukaryotes, and
viruses were inferred by MetaPhlAn2 using the 1M unique clade-
specific marker genes identified from 17,000 reference genomes
(13,500 bacterial and archaeal, 3,500 viral, and 110 eukaryotic).

Functional Annotation
Two different methods were used for functional alteration and
pathway composition analysis. Pathway-level composition was
calculated with HUMANn2 using the UniRef90 database with
default settings, which was followed by further statistical analysis
and visualization in STAMP (Parks et al., 2014). In order to
obtain the detailed information of each metabolic pathway, all
genes in our genomes were aligned to the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database using DIAMOND
(version 0.7.9.58, parameter: -k 50 -sensitive -e 0.00001) and
KOBAS (Xie et al., 2011). Each protein was assigned to the KEGG
Orthology (KO) families by the highest-scoring annotated hits
containing at least one HSP scoring over 60 bits. The abundance
of KO/module was calculated using the methods as mentioned
previously. For KO enrichment analysis, the significant enriched
KEGG pathway was defined as the adjusted p-value (< 0.05) of
the hypergeometric test as the previous study (Jiang et al., 2016).

Generation of a Reference Genome Set
We followed the previous method to build the reference genomes
to study the genomic variation of gut microbiota (Schloissnig
et al., 2013). Approximately 3,934 prokaryotic genomes were
downloaded from NCBI2 on August 1, 2018. A set of 40
universal single copy marker genes was identified in these
genomes using HMM profiles made for each marker gene from

1http://huttenhower.sph.harvard.edu/kneaddata
2ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria

the corresponding orthologous group from the eggnog database
(Ciccarelli et al., 2006; Sorek et al., 2007). For each marker
gene, pairwise DNA sequence identities among all genomes were
calculated using BLASTn (version 2.2.25, parameter: e < 10−5

-F F) (Altschul et al., 1990). For each genome pair, the median
identity of all marker genes was used as a proxy for average
nucleotide identity (ANI) between the two genomes. Using an
operational 95% ANI recommended for identifying species, we
generated 929 clusters of genomes. In order to select a reference
genome from each cluster, high-quality reads from a subset of
shotgun metagenomes (bgi-BGI-06A, bgi-DLF001, bgi-DOF002
from T2B cohort; nHF611710, nHF411719 from HTN; HD-2,
HD-31 from liver; 1-1, 4-1, 5-1 from this study) were mapped
to the 3934 genomes using Bowtie2 with the options “–very-
fast.” Then, the genome with the highest read coverage was
selected, resulting in a set of 958 reference genomes, each likely
representing a unique species (Supplementary Table 7).

Mapping to Reference Genomes and
Variant Calling
Illumina reads from 718 fecal samples, including the T2D,
liver, and hypertension cohorts were quality controlled using
KneadData. KneadData-filtered reads were mapped to reference
genomes using Bowite2 (version 2.3.4.2) with default parameter.
The number of reads mapping to reference genomes was counted
and normalized by the genome size in order to obtain quantitative
relative abundances of each genome in every sample.

To improve the accuracy of genomic variation, we modified
the protocol of the previous study (Schloissnig et al., 2013). The
SAMtools/BCFtools suite was used for calling high-quality InDel
supported by more than five reads and at least one read on each
strand (Li et al., 2009). We then performed local realignment
of the aligned reads with those high-quality InDels using the
Genome Analysis Toolkit (GATK) (McKenna et al., 2010) to
minimize the mismatch bases. GATK’s HaplotypeCaller was used
to call variants with default parameter. BreakDancer was used to
detect the structural variation with at least three reads supporting
the event (Fan et al., 2014).

Positive Selection Analysis
Coding DNA sequences (CDSs) were annotated based on their
protein family membership using KOBAS (Xie et al., 2011). With
MUSCLE (Edgar, 2004), a multiple sequence alignment (MSA)
of the protein sequences was created using each KO. Based on
the MSA and the CDS nucleotide sequences, a codon-based
alignment was constructed for each KO module with PAL2NAL
using default parameters (Suyama et al., 2006). We then used
FastTree, a relaxed neighbor joining algorithm, to reconstruct a
phylogenetic tree for each protein family from the obtained MSA
(Price et al., 2009). We excluded low-confidence positions in the
alignment with a large number of gaps with Gblocks (Castresana,
2000). Dn/Ds was calculated with PAML (Yang, 2007). A one-
sided Fisher test was performed to identify protein families with
a significant enrichment of Dn vs. Ds changes in comparison to
the entire sample. The false discovery rate (FDR) was controlled
using the Benjamini and Hochberg procedure and α set to 5%.

Frontiers in Microbiology | www.frontiersin.org 3 April 2022 | Volume 13 | Article 841458

http://huttenhower.sph.harvard.edu/kneaddata
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-841458 April 23, 2022 Time: 13:40 # 4

Wan et al. Mutation in Gut Microbiome

In vitro Experiment to Validate the
Mutational Pattern Shift
A filter-sterilized stock solution of 100 mM 5-FU, Oxi, and
5-FU + Oxi (1:1) (Sigma–Aldrich) was prepared in dimethyl
sulfoxide and further diluted to 50, 75, and 100 mM. Stock
solutions were further diluted (1:1,000) in culture medium for
the experiments. Four mono-isolated gut microorganisms were
obtained from the stools of recruited patients. Luria broth
(LB) agar plates used for passaging were prepared by adding
stock 5-FU, Oxi, and 5-FU + Oxi. Subsequently, cultures were
transferred into fresh plates and allowed to grow 48 h for
each batch. After 20 batches, single colony on each plate was
then scraped off and transferred to Eppendorf tubes with liquid
LB medium and cultured overnight at 37◦C. Total DNA was
then extracted using the QIAamp UCP Pathogen Mini Kit
(Qiagen). The concentration of the extracted DNA was measured
by a NanoDrop2000 (Thermo Fisher Scientific, United States).
Illumina DNA sequence libraries were prepared as mentioned
previously. JSpeciesWS was used to assign the taxonomy of each
isolated strain (Richter et al., 2016). Reads were then mapped to
the closest reference genomes with BWA, and variant calling was
performed as mentioned previously.

Statistical Analysis
The Wilcoxon signed-ranks test was performed to evaluate
differences in richness and diversity for KEGG and microbial
taxa at various taxonomic ranks. Mutation rate comparisons
were conducted to determine statistical significance between two
groups for incidences where differences were declared significant
at p < 0.05 with the Student t-test.

Data Availability
All sequences generated in this study have been available
in the NCBI sequence read archive under the accession
number PRJNA551354.

RESULTS

Overall Composition of Gut Microbiota
During Chemotherapy
To characterize the diversity and composition of gut microbiome
during the chemotherapy of the patients, we characterized
the gut microbial composition of 68 fecal samples from 37
patients (six samples were excluded because of DNA extraction
failure) using 16S rRNA gene sequencing. Detailed information
about stool samples and patients is listed in Supplementary
Tables 1, 2. This cohort consisted of 7 patients using 5-
FU, 13 patients using 5-FU + Oxi, and 17 patients using
Oxi. All the participants were from a cohort study in Beijing
Hospital. Using the samples collected at the start of chemotherapy
(day 0) and 30 days later (day 30), we traced the dynamic
changes of gut microbial species by ecological α and β diversity
measures. The chemotherapeutic drugs caused modest changes
in the gut microbiome. Shannon diversity and Chao1 index
were calculated to estimate the within-sample (α) diversity

(Figure 1A), and there was no significant alteration pattern.
Weighted UniFrac principal coordinate analysis was used to
compare community phylogenetic composition among samples,
and the results revealed a separation between days 0 and 30
along axis 1 (explaining 41.5% of the variation in the data,
Supplementary Figure 1). β Diversity represented how much the
community changed in comparison to the baseline (day 0) and
was calculated with weighted UniFrac distance between days 0
and 30 (Supplementary Table 3). ANOSIM with permutations
confirmed significant separation of samples (p = 0.02, r = 0.24).
No significant differences in microbial communities were
observed when the Oxi and 5-FU + Oxi groups were analyzed
separately. Although the adjusted p (adjusted p = 0.06) was not
significant, it indicated that there was a difference pattern in the
microbial composition between days 0 and 30 with 5-FU. Next,
we used linear discriminant analysis (LDA) effect size (LEfSe) to
analyze the microbial communities of different chemotherapeutic
drugs. For all day 30 samples, we identified gut microbiome
signatures with a higher abundance of bacilli (specifically
Streptococcaceae and Lactobacillaceae, Figure 1B). For 5-FU,
seven species were discovered as biomarkers for separating gut
microbiota between days 0 and 30 (Supplementary Figure 2).
Five of these species were higher, and two were lower on day
0 than on day 30. For example, the abundances of Bacteroides
coprocola and Streptococcus anginosus were lower on day 30
(p = 0.03, two-sided Wilcoxon signed-ranks test). Contrary to
5-FU, in the Oxi group, eight of these species were higher,
and one was lower on day 0 than on day 30. No significant
changes were observed in the 5-FU + Oxi group. To gain
further insights into the interaction between chemotherapeutic
drugs and gut microbiota, we used the same gut microbiota
DNA preparations for independent Illumina shotgun sequencing.
The yielded sequences belonged to 10 phyla and 381 species,
including several DNA viruses (Supplementary Table 4 and
Supplementary Figure 3). Firmicutes was the most abundant
phylum, accounting for 40.9% ± 22.3% of the total reads,
followed by Bacteroidetes (36.3% ± 23.7%) and Proteobacteria
(15.7% ± 23.4%), similar to previous studies (Qin et al.,
2014). Two commensal species including Streptococcus salivarius
and Ligilactobacillus salivarius were significantly enriched after
the chemotherapy (Supplementary Figure 4). Correlation tests
between the abundance estimates for bacterial taxa at genus level
were performed by using the two methods (Pearson correlation
coefficient: 0.84; p < 2.2× 10−16; Figure 1C and Supplementary
Figure 5), highlighting a highly positive correlation between 16S
rRNA and shotgun metagenomics sequencing.

Functional Alterations in Gut Microbiota
During the Chemotherapy
To determine the functional alterations with the
chemotherapeutic agents, we used the HUMAnN2/MinPath
(Franzosa et al., 2018) and KEGG database (Kanehisa et al.,
2017) to evaluate gut microbial functions across groups in
our study cohort. According to the HUMAnN2/STAMP
analysis of the metabolic function pathways (Parks et al., 2014),
most differences occurred in carbohydrate metabolism and
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FIGURE 1 | Gut microbial diversity before and after the chemotherapy. (A) Shannon diversity (left) and Chao (right) based on 16S rRNA sequencing. Different colors
stand for drugs: red for 5-fluorouracil, green for oxaliplatin, and blue for 5-fluorouracil and oxaliplatin. The y-axis stands for the collection time. (B) Cladogram derived
from LEfSe analysis of metagenomic sequences based on the shotgun sequencing comparing day 0 with day 30. Green shaded areas indicate microbe orders that
more consistently describe the fecal microbiome from day 30; red shaded areas indicate microbe orders that more consistently describe from day 0. The prefixes
“c,” “o,” “f,” “g,” and “s” represent the annotated level of class, order, family, genus, and species. (C) Comparison of 16S rRNA and metagenome abundances. The
tree represents all taxonomically classified species from the shotgun metagenome survey as well as 16S rRNA sequence. The branches of the tree do not reflect
evolutionary distances. The position of the dots in the tree corresponds to the taxonomic placement of the representative sequences in the NCBI taxonomy. Empty
dots represent the phylotypes found in the shotgun metagenome classification; red dots were identified from both methods.
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FIGURE 2 | Extended error bar plots showing the abundance of pathways differing significantly between days 0 and 30 in the 5-FU group. Extended error bar plots
showing the abundance of pathways differing significantly between days 0 and 30 in the 5-FU group. Corrected p-values are shown on the right. Adjusted p < 0.05
was considered significant. The yellow color stands for day 30 and blue for day 0.

energy-related pathways in the 5-FU group (Figure 2). The
microbiome from day 30 included more genes involved in
nicotinamide adenine dinucleotide (NAD) salvage pathway
(PYRIDNUCSAL-PWY) than that from day 0 in the 5-FU
group (adjusted p = 1.4 × 10−4). A previous study suggested
an active role for the NAD salvage pathway in modulating
cancer cell viability via the replenishing of the NAD reservoir

(Sharif et al., 2016), which is a novel strategy to protect the cell
against DNA damage. Moreover, amino acid biosynthesis, such
as L-phenylalanine and arginine, UDP-N-acetyl-D-glucosamine
biosynthesis pathway were more active in the samples in the
5-FU group. In the other two groups, few pathways were found
to be significantly different before and after chemotherapy
(Supplementary Figure 6).
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In order to deeply explore the functional role of the gut
microbiota during the chemotherapy, all the genes were
aligned to the KEGG database, and the abundance of KO
groups and pathways for each sample were estimated using
a method similar to RPKM (Hu et al., 2013). Approximately
277 KOs were significantly enriched among the three groups
(p < 0.05, two-sided Wilcoxon rank sum test; Supplementary
Table 5). Overrepresentation of three KEGG pathways
involved in metabolism was observed in the 5-FU group with
hypergeometric distribution, which is involved in the categories
“galactose metabolism” and “phosphotransferase system (PTS)”
(Supplementary Table 6). Enriched genes encoding PTS, which
reflected increased representation of multiple carbohydrate
transporters, were an important mechanism to confer resistance
to selection pressure, such as antibiotic, as reported in the
previous studies (Stogios et al., 2016). In the Oxi group, two
KEGG pathways “ribosome” and “lysine biosynthesis” were
significantly enriched. Although Oxi, a platinum-based drug,
is generally considered to be DNA-damaging agents, recent
studies have unexpectedly shown that Oxi did not alter DNA
integrity but instead inhibited rDNA transcription, leading to
p53 induction, most likely through the “impaired ribosome
biogenesis checkpoint” (Pelletier et al., 2018).

Genomic Variation in Intestinal
Microorganisms
To enable comparative analyses in multiple metagenomes and
to identify the mutation signatures in the different groups,
we modified the previous method (Schloissnig et al., 2013)
to identify single-nucleotide polymorphisms (SNPs), short
insertions/deletions (InDels; range, 1–50 bp), and structural
variations (>50 bp) in each sample. We used 3,934 prokaryotic
genomes to generate a set of reference genomes (Supplementary
Table 7) for the analysis of genomic variation in gut microbial
species in 786 samples. Next, local realignment around high-
quality InDels, which was a frequently used strategy in genomic
variation analysis, was performed to correct mapping errors to
improve the accuracy of variant calling (DePristo et al., 2011).
We only considered variants with allele frequency larger than
1% and supported by more than five reads. To validate our SNP
calling procedure, we used the approaches to calculate error rates
in 40 essential single-copy marker genes, following the method
mentioned previously (Schloissnig et al., 2013). False-positive
rates were estimated at 3.6% (Supplementary Table 8).

We identified 1.45 million SNPs from 343 genomes (at
least three SNPs for one genome), of which 1.38 million SNPs
(95%) in 47 genomes (0.88% of the total 156 Mb) across 68
stool samples from 37 subjects (Supplementary Figure 7). We
also identified 26,662 InDels and 56,820 structural variants.
Subsequent analyses were restricted to SNPs because of their
orders-of-magnitude higher count over other variation types.
Examination of the SNP distributions of the protein coding
genes of the selected 47 gut bacteria revealed that 4,189 genes
with at least one non-synonymous mutation in the 47 microbe
species had valid coverage (≥ 10 × depth) with sufficient
prevalence (Supplementary Table 9). Among them, we identified
22 genes (0.5%) with significantly differentiated SNP densities

between days 0 and 30 samples (Wilcoxon signed-ranks test,
p < 0.05). Most of these genes (17/22) were found in Bacteroides
thetaiotaomicron VPI-5482, the second most common human
commensal bacteria, whose reference genome contains 4,779
protein-coding genes (Xu et al., 2003; Supplementary Table 10).

Then, we checked the substitution pattern shift between days
0 and 30. A large portion of base substitutions was attributable
to C > T substitution, which ranged from 29.5 to 43.0% on
day 0 and from 35.0 to 42.3% on day 30. Comparisons of the
mutation rates in the other Chinese cohorts, including liver
cirrhosis (Qin et al., 2014), hypertension (Li et al., 2017), and
T2D (Qin et al., 2012; Figure 3 and Supplementary Table 11),
showed a significantly reduced transversion (Student’s t-test,
adjusted p = 0.0003) and transition rate (Student’s t-test, adjusted
p = 0.01) in the 5-FU group (Supplementary Table 12). By
contrast, we found an increased ratio of transversion (Student
t-test, adjusted p = 5.4 × 10−4) and transition (Student’s t-test,
adjusted p = 8.2 × 10−7) in the group of Oxi. The similar
mutational pattern was also observed in the studies about the
effect of antibiotic on the genome (Long et al., 2016). Thus, we
conclude that genome-wide substitutions rate of gut microbiota
were influenced by chemotherapeutic drugs. To directly test
whether selection might have biased the mutation rate of different
regions in the genomes, we examined the synonymous and
non-synonymous mutation from the coding region from all
cohorts. Non-synonymous/synonymous mutation ratio from day
30 was not significantly different from day 0 (Student’s t-test,
p > 0.05 in all comparison), indicating that the vast majority
of acquired amino acid–altering mutations was not selectively
promoted by chemotherapeutic agents but simply accumulated
in a neutral fashion.

In order to validate the shift of mutational pattern, we
explored how stool-isolated microorganism mutation rates
change in vitro when treated with 5-FU and Oxi. We exposed
four gut species (two E. coli strains, Citrobacter sp. MGH104
and Enterococcus faecium) from four different patients, all of
which were with significantly low growth rate limited by the
chemotherapeutic agents, in different concentrations of 75 µM
5-FU and Oxi (Supplementary Figure 8). Most notably, the
transition/transversion ratio of mutations covaried with agents
concentrations (Supplementary Figure 9).

Dn/Ds Across Gut Species and
Individuals
To gain further insights on the molecular mechanisms driving
the functional diversification of the gut microbiota, the gene
families identified in the assembled metagenome were annotated
based on the KEGG, and we calculated, for each KO, the ratio
between the number of non-synonymous (Dn) and synonymous
(Ds) changes, a proxy for evolutionary pressure (Supplementary
Figure 10). Our analyses showed that the average Dn/Ds was
0.063, and the median was 0.016 from 939 KO (Supplementary
Table 13 and Supplementary Figure 10). Approximately 17.9%
(17.6% in the 5-FU group, 17.7% in the 5-FU + Oxi group,
and 18.3% in the Oxi group) of the gene families had
significantly higher Dn values and lower Ds values than the
mean value calculated over all annotated sequences (one-sided
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FIGURE 3 | Mutational signatures found in all fecal samples. Each cohort is displayed according to the 12 substitutions. The different groups are displayed in
different colors as the legends show. The mutation types are on the horizontal axes, whereas vertical axes depict the number of mutations detected in the kilobase
attributed to a specific mutation type.

Fisher test, FDR < 0.05), suggesting that they might be under
positive selection (Supplementary Table 14 and Supplementary
Figure 11). A closer investigation of these gene families revealed
that positive selection signatures markedly characterized diverse
proteins involved in the cell division, as well as proteins essential
for amino acid biosynthesis (Figure 4 and Supplementary
Figure 12). According to the abundance analysis of KO items
between days 0 and 30, we found that genes were under
significant positive selection pressure, such as secY, which is a
key in the protein secretion system and important for critical
cell functions, such as pathogens and virulence. In addition, as
in the previous study (Bulgarelli et al., 2015), we also found
the coding sequence of phage infection protein (yhgE) and the
genes related to transport system were under positive selection.
Thus, the genes under positive selection might have a key role
in the interaction between bacteria and chemotherapeutic drugs
and provide the bacteria additional survival advantage during
the chemotherapy.

DISCUSSION

The human gut microbiota is highly complex and exists
in a dynamic balance between symbiosis and pathogenesis,
which can influence almost any aspect of host physiology
(Sommer and Backhed, 2013). Growing evidences suggest
that the gut microbiota not only plays a key role in
carcinogenesis but also influences the efficacy and toxicity

of anticancer therapy (Panebianco et al., 2018; Pothuraju
et al., 2021). The microbiota modulates the host response to
chemotherapy via numerous mechanisms, such as alteration
of community structure and immune microenvironment.
Furthermore, exploitation of the microbiota offers opportunities
for the personalization of chemotherapeutic regimens and the
development of novel therapies.

Chemotherapeutic agents, Oxi and 5-FU, exert their cytotoxic
effect mostly through DNA damage. When DNA damage is
caused by chemotherapeutic drugs, the microbiota composition
also changes, which can further affect drug efficacy and
overall health. It is very important to systematically explore
the interaction between chemotherapeutic drugs and gut
microbiota not only from microbiome composition (Yu
et al., 2017; Hakim et al., 2018) but also genomic variation
(Schloissnig et al., 2013; Zeevi et al., 2019). In this study,
we first used two different methods (16S rRNA and shotgun
metagenomics sequencing) to investigate the disruption of the
intestinal microbiome in terms of taxonomic composition.
Correlation tests between the abundance estimates for
bacterial taxa showed that the two methods highlighted
a highly positive correlation. According to the 16S rRNA
sequence, we found that different chemotherapeutic agents
had a distinct effect on the gut microbiota. 5-FU–associated
bacteriome shifts included depletion of common health-
associated commensals from the genera Streptococcus and
Bacteroides and enrichment of Gram-negative bacteria such
as Clostridium hathewayi and Lachnospiraceae bacterium.
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FIGURE 4 | KEGG modules under positive selection in different chemotherapeutic drugs. (A) The correlation of average Dn/Ds ratio of all KO modules between the
drugs. KO modules with average Dn/Ds ratio larger than 1 were marked by blue points. Maximum ratio was limited at 5. (B) Boxplot of top 20 ranked KO modules
under positive selection with significantly increased Dn/Ds statistic, with sorted by their median log transformed Dn/Ds in descending order. The row stand for
different KO modules.

A previous study had shown that 5-FU could improve T
cell–dependent antitumor immunity (Vincent et al., 2010),
and Clostridia strains play a key role in enhancing regulatory
T cell abundance and inducing important anti-inflammatory
molecules, such as interleukin 10 (Atarashi et al., 2013). In
contrast, Oxi-associated bacteriome showed different shift
patterns including depletion of commensals from the genus
Lachnospiraceae noname and enrichment of genus Lactobacillus
and Streptococcus.

Subsequently, we used shotgun metagenomics with a
quantitative metagenomic species approach to identify which
species significantly changed during the chemotherapy
with different agents. Two commensal species including
S. salivarius and L. salivarius were significantly enriched after
the chemotherapy. According to the previous studies, these two
species appeared to be highly resistant to 5-FU (Vanlancker
et al., 2016), which might be the main driver for a community
dysbiosis. We hypothesized that if 5-FU was responsible for
the dysbiosis changes seen during chemotherapy, then depleted
taxa should be susceptible to the drug whereas the enriched
species would be resistant to 5-FU. The resultant damage
to the intestinal barrier increases the risk of colitis, bacterial
translocation, and infection. Probiotic supplementation may
have extra beneficial effects to correct dysbiosis of gut microbiota
after the chemotherapy.

Concomitant with the alteration of gut microbial composition,
we also observed a dysbiosis in bacterial gene functions,
and different chemotherapeutic agents showed distinct
influence patterns. Microbial metabolism may cause side effects
severe enough to necessitate cessation of chemotherapy. The
metagenome of 5-FU patients was enriched in genes associated
with NAD salvage pathway. As NAD+ plays central roles in a
variety of biological processes ranging from cellular metabolism
and energy production in both human and microbiology, it was
reasonable to hypothesize that gut microbiota could provide
additional NAD+ to inhibit cancer cell autophagy and enhance
survival of cancer cells (Sharif et al., 2016). By contrast, the
metagenome of gut microbiota in Oxi patients was enriched in
the genes associated with ribosome. Oxi, unlike cisplatin and
carboplatin, kills cancer cells not only through the DNA-damage
response, but also by inducing ribosome biogenesis stress (Bruno
et al., 2017). In order to adapt the selection pressure from Oxi,
only the species with a high copy number of the genes related to
ribosome can survive during the chemotherapy similar to cancer
cells, which may be why the genes involved with ribosomes were
significantly enriched.

Next, in order to study the effects of DNA damage caused
by chemotherapeutic agents, we collected the metagenomics
sequencing data of 768 stool samples from 755 Chinese human
individuals with the standard clinical assessments and reanalyzed
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the shift of mutational pattern with unified bioinformatics
pipeline. Consistent with our expectation, we found obvious shift
in the mutation signatures. A significantly reduced transversion
rate (G:C- > T:A) was observed in the 5-FU group. In contrast,
we found an increased ratio of the transversion in the Oxi
group. In addition, the genome-wide substitution rates of gut
microbiota were influenced by chemotherapeutic drugs without
bias among different genomic regions. To further confirm that
the shifts of mutation signatures were due to strong and diverse
environmental selection, we analyzed the patterns of correlation
between gene function and the Dn/Ds ratio across all the KO
modules. The stable Dn/Ds ratios of most KEGG modules
(80.1%) between days 0 and 30 suggest that the core microbiome
was evolutionarily conserved. However, some modules, such as
the genes involved in cell division, protein export, and phage-
related, showed a high-level selection pressure. A previous study
has shown that phage-related genes usually have fast mutation
rate and are under positive selection (Petersen et al., 2007).
However, the other genes, such as zapA and mutT, which are
housekeeping genes involved in cell amplification and previously
are thought to be with slow rate of amino acid evolution, have
remarkably high Dn/Ds ratio and are under positive selection
pressure. On the other hand, in order to be adaptive to the
pressure of chemotherapeutic agents, bacteria take different
strategies to obtain the survival advantage during the therapy,
for example, by secreting an amount of protein to modify the
host microenvironment with Sec system, which was a potential
chemotherapeutic target to many human pathogens.

CONCLUSION

We have described the disordered profiles of gut microbiota
in cancer patients treated with different chemotherapeutic
agents, explored the mutational pattern of different drugs,
and provided a new clue for the interaction between drugs
and microbe. Our findings suggest that a distinct intestinal
microbiome pattern of gut dysbiosis during the chemotherapy
is dominated by bacilli and a lack of other bacteria, and the
potential restorative influence of probiotic supplements should be
investigated in the chemotherapeutic research. Positive selection
on the protein export system provides an additional survival
advantage for gut microbiota and could be a potential therapy
target for gut dysbiosis.
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