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� Abstract: Background: Binning of metagenomic reads is an active area of research, and many unsu-
pervised machine learning-based techniques have been used for taxonomic independent binning of 
metagenomic reads.  
Objective: It is important to find the optimum number of the cluster as well as develop an efficient 
pipeline for deciphering the complexity of the microbial genome. 
Methods: Applying unsupervised clustering techniques for binning requires finding the optimal num-
ber of clusters beforehand and is observed to be a difficult task. This paper describes a novel method, 
MetaConClust, using coverage information for grouping of contigs and automatically finding the op-
timal number of clusters for binning of metagenomics data using a consensus-based clustering ap-
proach. The coverage of contigs in a metagenomics sample has been observed to be directly propor-
tional to the abundance of species in the sample and is used for grouping of data in the first phase by 
MetaConClust. The Partitioning Around Medoid (PAM) method is used for clustering in the second 
phase for generating bins with the initial number of clusters determined automatically through a con-
sensus-based method.  
Results: Finally, the quality of the obtained bins is tested using silhouette index, rand Index, recall, 
precision, and accuracy. Performance of MetaConClust is compared with recent methods and tools us-
ing benchmarked low complexity simulated and real metagenomic datasets and is found better for un-
supervised and comparable for hybrid methods.  
Conclusion: This is suggestive of the proposition that the consensus-based clustering approach is a 
promising method for automatically finding the number of bins for metagenomics data. 

Keywords: Binning, consensus clustering, coverage, PAM, unsupervised clustering, metagenomics. 

1. INTRODUCTION 

 Metagenomics is an emerging alternative way of analys-
ing the microbial community in complex environmental 
samples [1]. Knowledge about the genomic constitution is 
essential to understanding the microbes in the best possi-
ble way. Although culturing an individual microorganism 
is a challenging task, advancements in next-generation 
sequencing technologies have enabled in silico identifica-
tion of unidentified microbes through metagenomics stud-
ies. Metagenome is a huge mixture of genomic reads from 
different microorganisms. So, it is very challenging to 
separate individual genomes from the metagenome. 
 Binning is the process of classifying metagenomic se-
quences into groups that might be the true representative of 
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an individual genome or genomes from taxonomically relat-
ed microorganisms [2]. Binning can be majorly performed 
using taxonomically dependent and independent methods. In 
a taxonomy dependent method, reference genome is re-
quired for the classification of metagenome data [3]. Some 
of the important taxonomy dependent binning tools are 
MEGAN [4], MetaPhlan [5], Kraken [6], CLARK [7] and 
SKraken [8]. Major issues with taxonomy dependent meth-
od are unassigned reads, as reference genome information 
for the majority of the microorganisms is unavailable in the 
public domain, the comparison part of the algorithm is com-
putationally expensive and gives accurate results only with 
long reads [9]. Whereas taxonomy independent methods 
utilize sequence composition information, machine learning, 
and statistical techniques for binning without any reference 
genomes. This method is further classified as a composition 
based [10], abundance-based [11], and hybrid [12].  

 Various machine learning approaches have been uti-
lized by taxonomically independent approaches in the past 
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decade. LikelyBin [13] was based on the Markov Chain 
Monte Carlo process, SCIMM and PHYSCIMM [14] on k-
means clustering technique, and CompostBin [12] on k-NN 
based approach for binning. Dimensionality reduction is an 
important task for efficient model development in the pres-
ence of a large number of composition-based features. In 
this regard, many techniques like Principal Component 
Analysis (PCA), weighted PCA [12] and correspondence 
analysis were found to be very useful. Further, non-linear 
dimensionality reduction unsupervised machine learn-
ing technique like t-distributed stochastic neighbor embed-
ding (t-SNE) [15, 16] has been used for visualization of 
high-dimensional metagenomics data in a low-dimensional 
space of two dimensions [17]. 
 Currently, the major focus is on the development of tools 
based on a hybrid method where the benefits of both ap-
proaches are exploited. CONCOCT [18] was developed based 
on contig coverage and composition. PCA was used for pre-
processing, followed by contig clustering using Gaussian 
Mixture Model. MetaCluster 5.0 [19] was useful for identify-
ing both low and high abundance species in the presence of a 
large amount of noise due to many extremely low-abundance 
species. GroopM [20] was designed to cluster multiple related 
metagenomic samples and was advantageous for its visualiza-
tion and interactive pipeline. MetaBat [21] used k-medoids 
clustering, and MaxBin used the distribution of distances 
within and between genomes for binning. Another binning 
tool, COCACOLA [22], investigated two types of additional 
knowledge: the co-alignment to reference genomes and the 
linkage of contigs provided by paired-end reads. In recent 
years, MetaCon [9] was introduced, which uses a probabilis-
tic k-mers as the features and k-medoid for binning. CoMet 
was another promising method for metagenomic binning, 
which used the DBSCAN clustering technique for initial bin-
ning, followed by Dirichlet Process Gaussian Mixture Models 
in the final stage using tetra-nucleotide frequencies. This 
method was found to perform not so well in the case of highly 
sparse coverage data [23].  
 One of major challenges in applying clustering tech-
niques is to find the optimal number of clusters initially. The 
major contribution of MetaConClust is to provide a solution 
to this by automatically finding the optimal number of clus-
ters using a resampling based consensus clustering ap-
proach. This approach significantly improves the accuracy 
of the binning of metagenomic data. 

2. MATERIALS AND METHODS 

2.1. Materials 

 The data used for this study was downloaded from the 
MyCC section of the SOURCEFORGE website. 
(https://sourceforge.net/projects/sb2nhri/files/MyCC/Data/). 
Two metagenomics datasets have been taken for study viz. 
10s [24] and Sharon [25]. 10s is the simulated dataset of ten 
already known species, whereas Sharon is a real dataset 
containing 32 unknown species. 

2.2. Methods 

 Let G be a metagenome containing genomes 
����������� ������������������in a metagenomics sample. 
Then 

� ��� ���  

Where ��� is the set of contigs, � � ������ and � �
���������� � ������� 

 Metagenomics binning deals with finding n distinct clus-
ters of metagenomics contigs/reads such that � ���� � �� in 
ideal condition. But it is a difficult proposition to achieve in 
practical scenarios. It has been observed and demonstrated 
in previous studies [9, 26] that coverage is directly correlat-
ed to the relative abundance of the organisms in a microbial 
sample and is able to discriminate closely related organisms. 
This paper describes a novel unsupervised method for bin-
ning of metagenomics data into c clusters. Two major con-
tributions discussed in this paper are: 
i. Coverage based partitioning of metagenomic data into 

groups 
ii. Automatic discovery of the number of clusters (c) 

through the application of a robust and efficient consen-
sus clustering method. 

The workflow of the binning algorithm, is depicted in Fig. (1). 

2.2.1. Phase 1: Partitioning of Metagenomics Data on 
Coverage Information 

 In phase one of MetaConClust, the original dataset was 
partitioned into groups with low, medium, high, and very 
high coverage information so that the number of contigs in 
each cluster was more than fifty. 

2.2.2. Phase 2: Unsupervised Binning of Metagenomics 
Contigs 

 In phase two of this algorithm, four steps were per-
formed, namely: (1) Compositional feature extraction, (2) 
Finding the optimum number of c by using consensus clus-
tering for each group, (3) applying k-medoids clustering 
algorithm to each group and (4) merging of bins after step 
three to obtain the final bins. 

2.3. Compositional Feature Extraction 

 GC content and Tetranucleotide Frequency (TNF) have 
been found useful in delineating genomes and were used as 
genomic signatures in this algorithm. The abundance level 
of TNF derived from environmental shotgun sequences also 
shows similarities within the same genome [12, 27]. GC 
content is calculated using a Perl program [10].  

�� � �
����������� � ��	���������

������������������������������
 

 GC count values were normalized using log transfor-
mation, and weighted TNF were calculated by normalising 
each tetramer frequency by the total tetramer frequency [26].  

2.4. Finding the Number of Clusters Automatically 

 One of the major hurdles in metagenomics data cluster-
ing is to find the optimum number of bins. In this algorithm, 
a more efficient and robust method was used to obtain the 
optimum bins, namely, the consensus method. The number 
of clusters (c) for each group formed in phase one, was cal-
culated using the consensus method. As per our knowledge, 
it was not previously used to identify the optimum number 
of clusters.  
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 The Consensus clustering method involves subsampling 
from a set of items, such as metagenomics reads [28]. Con-
sensus clustering determines the number and membership of 
likely clusters quantitatively in a dataset efficiently. The Con-
sensus clustering method involves subsampling from a set of 
items and then performing clustering of specified cluster 
counts (k). Then, pairwise consensus values, the proportion 
that two items occupied the same cluster out of the number of 
times they occurred in the same subsample, are calculated and 
stored in a symmetrical consensus matrix for each k. 

Algorithm: Consensus clustering algorithm for finding the 
optimal number of c 
 
Input: a set of items D = ���� ��� ��� ���, a clustering algo-
rithm like k-means, PAM, DBSCAN etc., a resampling 
scheme Resample, number of resampling iterations H, set of 
cluster numbers to try, K = {��� ��� ��� ����} 
Output:  
1. for k ��K, do 
2. M←� {set of connectivity matrices, initially empty} 
3. for h= 1, 2…, H do 
4. D(h) ←Resample(D) {generate perturbed version of D} 
5. M(h) ←Cluster(D(h),K) {cluster D(h) into K clusters} 
6. M←M�M(h) 
7. end {for h} 
8. M(K)← compute consensus matrix from M ={M(1),..., M(H)} 
9. end {for K} 
10. k ← best k��K based on consensus distribution of M(K)’s 
11. Return {M(K) :k�K} 

 

 The R package, ConsensusClusterPlus [26], was used for 
performing consensus clustering. Delta area plot generated 
from this package was used to determine the relative in-
crease in consensus and determine k at which there was no 
appreciable increase in area under plot. This method is very 
useful in estimating the prior value for k. 

2.5. Binning of Metagenome Data using PAM 

 PAM or k-medoids algorithm was used for each group in 
the first phase using TNF and log(GC) to obtain the final 
bins. PAM is found to be useful in handling outliers during 
clustering. PAM clustering is performed using the following 
steps: 
i. The first cluster center is picked at random between all 

data points  
ii. Other cluster centers are picked as far as possible from 

previous clusters centers  
iii. Associate each data point to the closest cluster center by 

computing median  
iv. Re-compute cluster centers based on new clusters  
v. Iterate until the clusters remain unchanged.  
 The results obtained after applying this algorithm on 
synthetic and real data are explained in the results and dis-
cussion section.  

3. EVALUATION MEASURES 

 The developed approach was evaluated using recall, 
specificity, accuracy and silhouette index as evaluation 
measures. The recall is the proportion of positively labelled 
instances that were predicted as positive. 

Fig. (1). Workflow of MetaConClust. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Specificity is the proportion of negatively labelled instances 
that were predicted as negative. 

����������	 �
��

�� � ��
 

Accuracy is the percentage of predictions that are correct. 

�������� �
�� � ��

�� � �� � �� � ��
 

Where, TP = True Positive, TN = True Negative, FP = False 
Positive, FN = False Negative. The silhouette coefficient or 
silhouette Index is a metric used to calculate the goodness of 
a clustering technique. Its value ranges from -1 to 1. 

�������		������� �
� � �

������� ��
 

where 
a= average intracluster distance (average distance between 
each point within a cluster). 
b= average intercluster distance (the average distance be-
tween all clusters). Silhouette Index was used to assess the 
cohesiveness in clusters.  
Rand Index is a measure of similarity between two data 
clusters. Its value ranges from 0 to 1 

� �
� � �
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 Given a set of n elements S= {o1, o2,… on}, and two 
partitions of S to compare X={X1, X2 , …, Xn}, a partition 
of S into R subsets, and Y={Y1, Y2, …, Yn}, a partition 
of S into s subsets, define the following:  
a = the number of pairs of an element of S that are in the 
same subset of X and in the same subset of Y. 
b = the number of pairs of an element of S that are in the 

different subset of X and in the different subset of Y. 
c = the number of pairs of an element of S that are in the 
same subset of X and in the different subset of Y. 
d = the number of pairs of an element of S that are in the 
different subset of X and in the same subset of Y. 

4. RESULTS 

4.1. Pre-processing of Metagenome Data 

 The contigs having length more than or equal to 1000bp 
in size were taken into consideration as an exhaustive litera-
ture study has shown that long contigs contains more infor-
mation about the genome in comparison to short contigs [9]. 
Metagenomic data were partitioned into groups based on 
coverage values as low coverage (1 to 60), high coverage 
(60-180) and very high coverage (greater than 180). The 
distribution of contigs in formed groups for 10s and Sharon 
dataset is given in Table 1 and Table 2, respectively. 
 Groups having more than fifty contigs were taken into 
consideration. Considering this criterion, the 10s dataset is 
partitioned into one group (coverage 1-60) and the Sharon 
dataset into two groups (coverage<1 and coverage (1-60)). 

4.2. Dimensionality Reduction Using PCA 

 Another major issue in the binning of metagenomics 
data is the high dimensional space, which leads to enhanced 
resource requirements in terms of computing power. In our 
case, the feature matrix has 256 features corresponding to 
tetranucleotide frequencies and one for GC contents. PCA 
was applied to the feature matrix for dimensionality reduc-
tion [12]. A Scree plot was used for selecting the number of 
dimensions representing maximum variation for both da-
tasets, as shown in Figs. (2 and 3). 
 For both datasets, the first six dimensions were found to 
be explaining the maximum variation in data and were se-
lected as the final examination. 

Table 1. Distribution of contigs in groups’ for10s dataset. 

Domain Species Name Number of Contigs 

Coverage <1 Coverage from 1 to 60 Coverage >60 

Bacteria Neisseria meningitidis 0 383 9 

Bacteria Rhodopseudomonas palustris 0 444 3 

Bacteria Bacillus clausii 0 106 0 

Bacteria Thiobacillus enitrificans 0 110 0 

Bacteria Escherichia coli 0 320 4 

Bacteria Lawsonia intracellularis 0 48 1 

Bacteria Listeria welshimeri 0 84 1 

Archeae Methanococcus maripaludis 0 69 3 

Bacteria Staphylococcus aureus 0 140 12 

Bacteria Crocosphaera subtropica 0 429 6 
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Table 2. Distribution of contigs in groups' for Sharon dataset. 

Species Label 

Number of Contigs 

Coverage<1 Coverage from 1 to 60 Coverage >60 

Species 1 102 6 0 

Species 2 0 14 0 

Species 3 2 73 0 

Species 4 0 1 0 

Species 5 7 52 0 

Species 6 0 14 0 

Species 7 0 27 0 

Species 8 0 23 0 

Species 9 0 1 0 

Species 10 0 23 1 

Species 11 0 1 0 

Species 12 2 6 0 

Species 13 18 41 0 

Species 14 0 21 1 

Species 15 6 13 0 

Species 16 0 0 9 

Species 17 0 0 2 

Species 18 3 0 0 

Species 19 11 2 0 

Species 20 0 1 0 

Species 21 0 1 0 

Species 22 0 1 0 

Species 23 5 5 0 

Species 24 0 7 1 

Species 25 0 2 1 

Species 26 251 92 0 

Species 27 391 0 0 

Species 28 357 1 0 

Species 29 211 0 0 

Species 30 258 0 0 

Species 31 253 0 0 

Species 32 8 0 0 

 
4.3. Finding Optimum Number of Bins (c) 

 The consensusClusterPlus function of R package was 
used for finding the optimum number of clusters for both 
datasets. This function was called with parameter values as 
k-means method for clustering with k as 10, the number of 

subsamples as 100, distance measure as Euclidean and de-
fault values for other parameters. Fig. (4) shows the delta 
plot for the 10s dataset whereas Figs. (5 and 6) show the 
delta plot obtained after applying consensus clustering on 
two groups for the Sharon dataset. 
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Fig. (2). Scree plot after PCA for 10s dataset. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
 

 
Fig. (3). Scree plot after PCA for Sharon dataset. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
 

Fig. (4). Delta plot used to find the optimum value of k for the 10s dataset for group 1.  
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Fig. (5). Delta plot used to find the optimum value of k for the Sharon dataset for group 1.  

 

 
Fig. (6). Delta plot used to find the optimum value of k for the Sharon dataset for group 2.  

 From Delta plot, the optimum number of k for 10s da-
taset was found as 8 and in the case of Sharon dataset the 
value of k for group 1 was 6 and 5 for group 2.  

4.4. Clustering and Merging 

 PAM clustering was applied to each group using the R-
package cluster available at https://cran.r-project.org/web/ 
packages/cluster/index.html. The clusters obtained from 
each group are combined for the Sharon dataset to get the 
final clusters.  

4.5. Comparison with Existing Binning Tools 

 The developed method, MetaConClust, was compared 
with unsupervised Coverage and composition based binning 
of Metagenomes (CoMet) tool for a single metagenomics 
sample and semi-supervised tools MetaBat2 and Maxbin2.0. 
For the evaluation of clusters, silhouette index, accuracy, 
specificity, precision and recall were used. The results are 
provided in Table 3 (for 10s dataset), Table 4 (for Sharon 
dataset), and Table 5.  

Table 3. Evaluation of MetaConClust for 10s dataset. 

- Rand Index Recall Accuracy  Specificity 

MetaConClust 0.935 0.898 0.828 0.975 

CoMet 0.779 0.302 0.25 0.916 

MetaBat2 0.986 0.946 0.966 0.996 

MaxBin2.0 0.975 0.951 0.920 0.993 

 
 MetaConClust predicted 8 clusters out of the expected 
10 for the 10s dataset and 11 out of 32 in the Sharon dataset, 
whereas CoMet produced 16 and 15 clusters. Although, 
CoMet can predict a greater number of bins in the Sharon 
dataset MetaConClust performed well with respect to evalu-
ation measures such as silhouette index, accuracy, specifici-
ty, precision, and recall. MetaConClust performed over 
CoMet in most aspects (Tables 3-5). Further, MetaBat2 and 
MaxBin2.0 predicted 10 and 9 bins, respectively, for 10s 
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dataset as compared to 8 by MetaConClust, but MetaBat2 
uses pre-trained probabilistic models during binning, and 
MaxBin2.0 makes use of single-copy marker genes. For 
Sharon's data set, the number of bins predicted by 
MetaBat2.0, MaxBin2 and MetaConClust are 7, 4 and 11.  
 
Table 4. Evaluation of MetaConClust for Sharon dataset. 

- Rand Index Recall Accuracy  Specificity 

MetaConClust 0.885 0.761 0.638 0.963 

CoMet 0.785 0.13 0.153 0.9383 

MetaBat2 0.861 0.631 0.812 0.987 

MaxBin2.0 0.559 0.936 0.3801 0.979 

 
Table 5. Evaluation using silhouette index for unsupervised 
methods. 

- Silhouette Index 

10s Dataset Sharon 

MetaConClust 0.49 0.265 

CoMet -0.24 -0.07 

 

4.6. Phylogeny Based Evaluation on 10s Dataset 

 To further check the accuracy of obtained bins, another 
approach based on phylogeny was used to find the similarity 
among species clustered together in the same bin. To inves-
tigate this, phylogenetic analysis was performed using Un-
weighted Pair Group Method with Arithmetic Mean (UP-
GMA) based on the assumption of the molecular clock. This 

analysis was performed using DAMBE software [23]. 
Phylogram obtained for the 10s dataset is shown in Fig. 7. 
 It was found that the majority of the contigs clustered in 
a single bin belong to the same clade in the phylogenetic 
tree. The clade-wise distribution of the contigs in the ob-
tained clusters (10s dataset) is given in Table 6. 

5. DISCUSSION 

 The mystery of genomes characteristics of the microbial 
communities is yet to unveil. Microbes are grown together 
in vivo, and it is very difficult to isolate themselves individ-
ually as in a microbial community, several strains of a spe-
cies exists. An exhaustive literature review reveals that it 
was a challenging task to do so. In this research, an attempt 
has been made to develop a suitable method for binning 
metagenomics data with diversified contig coverage.  
 In this proposed algorithm, the dataset is divided into 
groups based on their coverage. With the analysis of data, it 
can be seen that the contigs from the same species have 
more or less equal coverage. Another challenging task is to 
find the optimum number of bins (to predict the actual num-
ber of organisms present in the data). For this Consensus 
clustering method is used where the optimum number of 
clusters is decided based on multiple resampled units of the 
given data that tend to give a more accurate number of clus-
ters. For binning, PAM or k-medoid clustering technique is 
used. PAM is well known for its capability to handle outlier 
data. As metagenome data is highly diversified, PAM out-
performed other clustering techniques. The proposed algo-
rithm is also outperforming the existing unsupervised bin-
ning technique, CoMet. In the first phase of CoMet, 
DBSCAN clustering is used, which is more suitable for 
dense dataset. However, in the case of parse data, DBSCAN 
gives clusters with mixed instances. The datasets used in 
this study represent different microbial communities and 

Fig. (7). Phylogram obtained using DAMBE on 10s dataset.
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experimental setups. The performance of MetaConClust on 
both datasets was better than CoMet. However, still, there 
was a noticeable number of contigs present in a cluster from 
different species. To investigate this issue, a phylogenetic 
analysis was performed within a cluster. It has been found 
that the contigs belonging to a cluster are mostly belonging 
to the same phylogenetic group. This suggested to us that 
although contigs in one bin were from different species but 
are related as they belong to the same clade. This further 
strengthens our claim on the proposed method.  
 
Table 6. Clade wise contig distribution in clusters. 

Cluster Clade 1 Clade 2  Clade 3 

1 3 537 4 

2 129 2 19 

3 3 26 268 

4 100 55 24 

5 5 277 4 

6 71 37 0 

7 135 0 0 

8 430 3 1 

 
 The performance of MetaConClust was also compared 
with MetaBat 2.0 and MaxBin 2. Both are semi-supervised 
and perform better than the proposed algorithm, which de-
tected eight bins for 10s data. But for the Sharon dataset, 
MetaConClust performs better in the case of predicting bins 
than MetaBat 2.0 and MaxBin 2.  

CONCLUSION 

 The MetaConClust is a unsupervised binning method 
based on the compositional genomic features for clustering 
highly diversified coverage metagenomic data. However, 
some improvements can still be made in areas where the 
abundance of a species is very low. It is unable to cluster 
organisms having low contig contribution in the dataset. 
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