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Numerous epidemiological and pre-clinical studies have demonstrated that the
insulin/insulin-like growth factor (IGF) system plays a key role in the development and
progression of several types of cancer. Insulin/IGF signaling, in cooperation with chronic
low-grade inflammation, is also an important contributor to the cancer-promoting effects
of obesity. However, clinical trials for drugs targeting different components of this system
have produced largely disappointing results, possibly due to the lack of predictive
biomarker use and problems with the design of combination therapy regimens. With
careful attention to the identification of likely patient responders and optimal drug com-
binations, the outcome of future trials may be improved. Given that insulin/IGF signaling
is known to contribute to obesity-associated cancer, further investigation regarding the
efficacy of drugs targeting this system and its downstream effectors in the obese patient
population is warranted.
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Introduction

The insulin and insulin-like growth factor (IGF) signaling system, a key regulator of growth and
energy metabolism, is involved in the pathogenesis and progression of numerous malignancies.
Population studies have clearly established a link between insulin and IGF-I levels and the risk and
prognosis of certain cancers, with much of this research driven by the rapidly growing incidence of
obesity and metabolic syndrome across the globe (1–5). While a number of factors likely contribute
to the increased cancer risk and cancer-related mortality that accompanies obesity, dysregulated
insulin and IGF signaling is thought to play a significant role. Epidemiological evidence linking
the insulin/IGF system with cancer has been reinforced by a large body of pre-clinical work in
cell culture and animal models that has established many of the mechanisms underlying these
associations.

Consequently, enthusiasm regarding the development and testing of pharmaceutical agents
targeting the type 1 IGF receptor (IGF-IR) was very high in the 1990s and early 2000s. However,
while the early phase clinical trials for these agents showed some promise, large randomized phase
III trials failed to demonstrate that the addition of these drugs to a conventional treatment regimen
results in a significant clinical benefit (6, 7), andmany drug development programs targeting IGF-IR
were shut down. Several researchers have argued that these programs were abandoned too quickly,
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though. They suggest that the poor phase III trial results were
due to a number of factors, including the failure to use predic-
tive biomarkers for the identification of probable responders and
non-optimal drug combinations and timing (8, 9). With greater
attention to these considerations and a better understanding of
the complex insulin/IGF system, future trials may have more
success. Drugs targeting other components of this system (alone
or in combination), including the insulin receptor (IR) as well as
various ligands and downstream signaling molecules, may also
prove to be more efficacious.

This review will examine how dysregulation of the insulin/IGF
system, which occurs with obesity and metabolic syndrome, pro-
motes cancer risk and progression. Several cancer prevention
and treatment interventions targeting insulin/IGF signaling or
downstream factors will also be described, as well as recent results
from trials testing these agents. Finally, following an analysis of the
lessons learned from previous clinical trials, we will conclude with
a discussion of potential new strategies, including both pharma-
ceutical and lifestyle interventions. However, in order to under-
stand the links between dysregulated insulin/IGF signaling and
cancer as well as the variety of ideas regarding how to most effec-
tively block this signaling, one must first appreciate the system’s
complexity. We will thus begin with an overview of the structure
and functions of the components of the insulin/IGF system.

The Insulin/IGF Signaling System

Receptors
The IR and IGF-IR are transmembrane tyrosine kinase receptors
with a high degree of homology (10). Their functions also partially
overlap and can vary depending on cell type. However, the IR is
traditionally considered a regulator ofmetabolism, specifically the
storage and release of glucose, protein, and lipids, while the IGF-IR
controls whole body and organ growth. Both are heterotetramers
composed of two half receptors formed when the receptor gene
products are processed to glycosylated alpha and beta subunits
that associate together. The extracellular alpha subunit contains
the ligand-binding domainwhile the transmembrane beta subunit
possesses the tyrosine kinase domain (11). The exception to this
structural homology among the receptors is the type 2 IGF recep-
tor (IGF-IIR), which lacks tyrosine kinase function. This receptor
instead serves to clear IGF-II from circulation by binding and
internalizing its ligand, which is then subject to lysosomal degra-
dation (12). There are also two forms of the IR that are generated
by alternate splicing of exon 11 in the receptor’s gene. IR-A results
from the exclusion of exon 11 and has greater mitogenic function
than IR-B, which is formed when exon 11 is included and has
greater metabolic function. Both IR-A and IGF-IR are ubiqui-
tously expressed in normal adult tissues, but IR-B expression is
typically limited to metabolic tissues like the liver, muscle, and
adipose (13, 14). Hybrid receptors consisting of a half IR and a
half IGF-IR can also form. Given that most cancer cells express
both IR and IGF-IR, multiple homo- and heterodimer varia-
tions of these receptors may be found in tumors (11). However,
gene amplification or mutations resulting in overexpression or
ligand-independent activation of the insulin/IGF system receptors
are rare (8).

Ligands and Binding Proteins
In addition to the four receptors described above, the insulin/IGF
system involves three ligands: insulin, IGF-I, and IGF-II. Insulin is
produced by pancreatic beta cells and primarily in response to ele-
vated blood glucose levels. IGF expression ismorewidespread, but
the liver is the predominant site of production. IGF-I expression
in the liver is stimulated by growth hormone (GH), but tissue-
specific factors also play a role in its regulation elsewhere (8).
Both genetic and lifestyle factors impact an individual’s circulat-
ing IGF-I levels to an approximately equal degree (15). IGF-II
expression is also regulated by hormones and affected by lifestyle
factors like obesity (16). Cancer cells can produce the IGFs, so
while insulin must travel through circulation to reach a tumor,
IGFs have the potential to interact with a cancer cell via autocrine,
paracrine, and endocrine mechanisms (17). The insulin/IGF sys-
tem receptors have varying affinities for these different ligands.
While themetabolic IR-B primarily binds insulin only, IR-A binds
insulin and IGF-II with equal affinity (18). IGF-IR preferentially
binds the IGFs over insulin, but can bind all three. In addition,
the IGFs can bind the IGF-IR/IR heterodimers (Figure 1). Lig-
and binding stimulates the kinase activity of these receptors via
transphosphorylation of their beta subunits, resulting in phospho-
rylation of adaptor proteins, including the IR substrates (IRS 1–6)
and Shc. These activate the phosphatidylinositol 3′-kinase (PI3K)
and mitogen-activated protein kinase (MAPK) pathways, which
regulate cell proliferation, survival, migration, metabolism, and
angiogenesis (11) (Figure 2). Aberrant expression of the IGFs,
particularly IGF-II (19), is common in many malignancies and
may represent one mechanism by which the tumor stimulates its
own growth. In fact, the primary purpose of the IGF-IIR, which
lacks a tyrosine kinase domain, may be to counteract excessive
IR-A and IGF-IR bioactivity by sequestering IGF-II.

Insulin-like growth factor bioactivity also has an additional
level of regulation. Six IGF binding proteins (IGFBP) bind both
IGF-I and IGF-II with high affinity and protect them from pro-
teases while in circulation, which also effectively prevents their
ability to interact with receptors until released (Figure 1). The
IGFBPsmust deliver the IGFs to a target tissue and dissociate from
them via an enzymatic process in order to free them for activity.
This suggests that the IGFBPs may act as tumor suppressors by
limiting IGF activity, but conflicting study results and the fact that
the IGFBPs are also thought to have IGF-independent effects on
cancer (20) indicates that their rolemay bemore complicated than
originally hypothesized.

Insulin/IGF Connection to Cancer

Epidemiological Evidence
Numerous studies have linked the insulin/IGF system with an
increased risk of several cancers as well as a worse cancer prog-
nosis, driving researchers’ interest in the enhancement of our
understanding of these signaling pathways and the development
of agents targeting them. For example, two prospective studies
of postmenopausal women have found that hyperinsulinemia is
associated with an elevated risk of breast cancer, though the link
was limited towomennot receiving hormone replacement therapy
in one of the studies (21, 22). Ameta-analysis of earlier population
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FIGURE 1 | Interactions between the key components of the
insulin/IGF system. The receptors of the insulin/IGF system are tetramers
comprised of two half receptors, each with an extracellular ligand-binding
domain and an intracellular tyrosine kinase domain. IGF-IIR is the exception,
as it lacks a kinase domain. Both IGF-IR and IR homodimers and IGF-IR/IR
heterodimers can form, depending on the relative abundance of the half
receptors. Alternative splicing also results in two different forms of the IR half
receptor, IR-A and IR-B. The ligands of this system (insulin, IGF-I, and IGF-II)
vary in their affinity for the different receptors. IGF-I primarily binds to homo or
heterodimers containing an IGF-IR half receptor, while insulin has the greatest

affinity for IR-A and IR-B. In contrast, IGF-II binds IR-A with high affinity and
can also bind IGF-IR homo or heterodimers, but binding to IGF-IIR limits its
bioavailability. Similarly, the IGFBPs sequester both the IGFs, preventing their
ability to bind and activate their cognate receptors. The signaling pathways
downstream of the activated IR-A and IGF-IR homodimers are known to
stimulate cancer cell proliferation, survival, migration, and invasion, while IR-B
is more closely linked to metabolic regulation. The exact functions of the
various heteroreceptor combinations have not been clearly defined, but it is
likely that receptors containing an IR-A or IGF-IR holoreceptor will modulate
cancer growth and metastasis to some degree.

FIGURE 2 | Cellular signaling pathways downstream of the insulin/IGF
receptors. Insulin and IGF activate two major signaling pathways, Akt and
Ras-MAPK. Stimulation of Akt activates the mTOR signaling complex, leading
to greater protein translation. In addition, Akt and Ras-MAPK enhance cellular
proliferation, survival, angiogenesis, and invasion via regulation of gene
transcription.

studies examining insulin levels and cancer incidence confirmed
that hyperinsulinemia and high C-peptide levels (another mea-
sure of insulin production) are correlated with an increased risk
of breast cancer as well as colorectal and pancreatic cancer (4).
The link between serum IGF-I levels and cancer risk has also been

investigated extensively. Intriguingly, a nested case-control study
conducted within the Nurse’s Health Study found that an eleva-
tion in circulating IGF-I is associated with greater breast cancer
risk in premenopausal women (23). Subsequent meta-analyses of
several studies have substantiated these results (5, 24). Prostate
cancer incidence has also been positively correlated with IGF-I
in multiple prospective studies, with these findings confirmed by
meta-analysis (5, 25, 26). These links appear to be independent of
obesity-associated elevations in IGF-I, as obesity does not enhance
prostate cancer or premenopausal breast cancer risk. Finally,
researchers have demonstrated that both higher IGF-I and lower
IGFBP-3 levels are associated with increased colorectal cancer risk
inmen andwomen (27, 28). Reports regarding IGFBP-3 levels and
breast or prostate cancer risk have been contradictory, with some
finding no association and others a positive or negative correlation
(5, 23–26). These inconsistencies may be due to methodological
issues and the complicated role that the IGFBPs seem to play in
tumor growth, as argued by Renehan et al. (29). Regardless of the
explanation, the highly variable results indicate that IGFBP levels
are likely not an ideal indicator of cancer risk.

Researchers have also examined whether insulin/IGF signaling
impacts cancer prognosis and have generally found that circulat-
ing insulin levels appear to be more predictive than the IGFs. This
may be due to the relative importance of local IGF production and
autocrine/paracrine signaling within the tumor. That is, systemic
levels of the IGFs may not be as relevant to the growth of an
established tumor that is capable of producing its own IGF-I and
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2. In contrast, insulin is produced solely by the pancreatic beta
cells, except in very rare cases, so serum insulin is a relatively good
measure of the level of insulin signaling occurring at the tumor
site. In fact, several prospective studies have demonstrated strong
positive associations between different measures of insulin signal-
ing and a poor breast cancer prognosis, including an increased risk
of distant recurrence and mortality (1, 30, 31). Other investigators
have shown similar correlations between high C-peptide levels
and increased prostate and colorectal cancer mortality (2, 3).
Breast tumor total IR levels have also been analyzed and found to
be positively associated with poor survival (32, 33). In contrast,
reports regarding the prognostic significance of IGF-IR levels
in breast tumors are mixed, with some suggesting that its link
to a better or worse outcome may depend on the breast can-
cer subtype (34–36). The reason(s) for these differences remain
unclear. Greater tumor IGF-IR expression has been positively
associated with a worse disease outcome for several other forms
of cancer, including prostate cancer, gastric cancer, and renal cell
carcinoma (37–39).

Pre-Clinical Evidence
This epidemiological research has been accompanied by exten-
sive mechanistic investigations that have established the pro-
tumorigenic effects of insulin/IGF signaling. The mitogenic effect
of insulin on mammary tumors was first demonstrated more
than 40 years ago, when researchers found that insulin-deficiency
reduced chemically induced mammary tumor growth in rats (40).
Administration of exogenous insulin was also shown to reverse
these effects (41). Researchers later determined that insulin has
a similar effect on the growth of other forms of cancer (42, 43).
These early findings may not have been pursued further because
it was assumed that insulin signaling could not be targetedwithout
the stimulation of unacceptable metabolic side effects. However,
there has been renewed interest recently in the role of insulin in
carcinogenesis, possibly due to the realization that resistance to
IGF-IR inhibitors may be driven by continued IR signaling. In
addition, small-molecule IR/IGF-IR inhibitors have been better
toleratedmetabolically than anticipated, suggesting that it is possi-
ble to target IR signaling without triggering hyperglycemia (8). In
a recent series of papers, LeRoith and colleagues utilized a mouse
model of genetically induced insulin resistance that develops
hyperinsulinemia without obesity to examine how insulin signal-
ing impactsmammary tumor growth in vivo. Usingmultiplemod-
els of mammary carcinoma, these investigators demonstrated that
hyperinsulinemia promotes mammary tumor growth and pul-
monarymetastasis and that treatment with an insulin sensitizer or
a small-molecule IR/IGF-IR inhibitor can attenuate these effects
(44–47). Zhang et al. (48) have also shown that silencing the IR
using shRNA blocks breast cancer cells’ ability to form pulmonary
metastases in vivo. These results clearly illustrate the important
role that insulin signaling can play in cancer growth and invasion.

Early experiments also validated the hypothesis that IGF-I
signaling promotes tumorigenesis as well as cancer growth and
invasion. In fact, IGF-IR expression was found to be necessary for
the transforming action of the simian virus 40 large tumor antigen
as well as numerous other oncogenes (49, 50). With these findings
and indications that IGF-I stimulates cancer cell proliferation

and metastasis (51–54), interest in this pathway as a potential
pharmaceutical target grew. Animal models employing mutations
that reduce circulating IGF-I have also confirmed that this growth
factor does play a significant role in both mammary and prostate
tumor growth in vivo (55, 56). IGF-IR monoclonal antibodies
were the first IGF-I signaling drugs to be developed, and the
pre-clinical studies testing these produced promising results that
further reinforced earlier conclusions regarding this pathway’s
important impact on tumorigenesis. An early study from Arteaga
et al. (57) demonstrated that an IGF-IR monoclonal antibody
inhibits the growth of human triple negative breast cancer cell
xenografts in athymic mice. Other monoclonal antibodies target-
ing this receptor were later shown to inhibit the growth ofmultiple
forms of cancer in vivo, including breast, pancreatic, renal, lung,
and colon (58, 59). IGF-IR and dual IR/IGF-IR tyrosine kinase
inhibitors (TKIs) have also been found to significantly attenuate
the growth of several cancer cell lines (60–62). Overall, the pre-
clinical evidence strongly supports the hypothesis that insulin/IGF
signaling promotes the progression of numerous cancer types.
The continued rise in global rates of obesity, which is typically
accompanied by elevations in systemic insulin and IGF-I levels,
suggests that efforts to develop pharmaceutical agents that reduce
this signaling for cancer prevention and treatment are particularly
warranted. The role that elevated or dysregulated insulin/IGF
signaling, like that seen with obesity and other conditions, may
play in the development of cancer will be discussed further below.

Clinical Trial Evidence
Numerous pharmaceutical agents designed to specifically target
the insulin/IGF system have been developed and tested for their
tumor-inhibiting effects (Table 1). These can be divided into
two general categories: receptor-targeting agents and drugs that
reduce ligand bioactivity. The first includes both anti-receptor
antibodies and small-molecule TKIs (Figure 3). Many of the
agents that performedwell in pre-clinical studies and early clinical
trials have been further tested in phase II and III trials, with largely
disappointing results that led to the discontinuation of many
insulin/IGF-targeting programs. However, several experts in the
field of insulin/IGF signaling have suggested that these findings
do not indicate that this system is a poor cancer treatment target.
They argue that these studies suffered from flaws in design,
including a failure to use predictive biomarkers and to identify
optimal drug combinations based on a clear understanding of
insulin/IGF signaling (8, 9). Here, we will review the most current
clinical trial results and recent developments based on the lessons
learned from these.

Receptor-Targeting Agents: IGF-IR Monoclonal
Antibodies
These agents prevent ligand activation of the IGF-IR by binding
the receptor, which leads to its internalization and degradation.
While they do not cross-react with the IR, they can bind and
inhibit hybrid receptor activity (63). Figitumumab, an IGF-IR
monoclonal antibody produced by Pfizer, is perhaps the most
well-known member of this drug class. Despite promising phase
II trial data (64, 65), phase III trials examining the combination
of figitumumab with cytotoxic chemotherapy or the epidermal

Frontiers in Endocrinology | www.frontiersin.org May 2015 | Volume 6 | Article 774

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Bowers et al. The insulin/IGF system in cancer

TABLE 1 | Insulin/IGF-targeting drug trials.

Agent name Sponsor Cancer types Testing
stagea

Referenceb

IGF-IR monoclonal antibodies
AVE1642 Sanofi Advanced solid

tumors
Discontinued (69, 70)

Cixutumumab NCI Hepatocellular Phase I/II (83)
Pancreatic (84)
Sarcomas (85, 86)
Thymic epithelial (87)

Dalotuzumab Merck Advanced solid
tumors

Phase I/II (88, 89)

Neuroendocrine (91)
NSCLC (90)

Figitumumab Pfizer NSCLC Discontinued (6, 7, 65)
Prostate (64)

Ganitumab Amgen Advanced solid
tumors

Phase I/II (76)

Breast (79)
Colorectal (77, 78)
Ewing
family/desmoplastic

(82)

Small round cell
Neuroendocrine (80)
Pancreatic (81)

R1507 Hoffmann NSCLC Discontinued (73)
La Roche Sarcomas (72)

Robatumumab Merck Colorectal Discontinued (71)

IGF-IR/IR TKIs
AXL 1717 Axelar Astrocytomas Phase I/II

Lung
adenocarcinoma
NSCLC (104)
Squamous cell
carcinoma

BMS-754807 Bristol-Myers Advanced solid
tumors

Phase I/II
Squibb

Breast

OSI-906 Astellas Advanced solid
tumors

Phase I/II (95, 96)

Colorectal (97)

IGF monoclonal antibodies
BI 836845 Boehringer Advanced solid

tumors
Phase I/II

Ingelheim Breast
NSCLC
Prostate

MEDI-573 MedImmune Advanced solid
tumors

Phase I/II (108, 109)

Breast
Hepatocellular

aTesting stage indicates phase of current trials or most recent trials that have been
conducted.
bAbsence of a reference number indicates that the trial(s) for the indicated drug and cancer
type are ongoing or have been completed but not published. Only published trials are
reported for the IGF-IR monoclonal antibodies and OSI-906 due to the large number of
trials for these drugs. IGF, insulin-like growth factor; IGF-IR, insulin-like growth factor I
receptor; IR, insulin receptor; NSCLC, non-small cell lung cancer; TKI, tyrosine kinase
inhibitor.

growth factor receptor (EGFR) inhibitor erlotinib for non-small
cell lung cancer (NSCLC) were terminated early due to the drug’s
failure to improve overall survival (OS) and problemswith toxicity
(6, 7). In addition, some phase II results were later retracted
(66), and Pfizer discontinued its development of figitumumab.

FIGURE 3 | Mechanisms of insulin/IGF system-targeting drugs. The
three types of insulin/IGF system-targeting drugs are illustrated. IGF-IR
monoclonal antibodies bind IGF-IR, leading to its internalization and
degradation. IGF-IR/IR TKI drugs decrease receptor activity by competing for
the ATP binding site on the receptor’s kinase domain, blocking transduction of
a signal to downstream effectors. Finally, IGF monoclonal antibodies directly
bind both IGF-I and IGF-II, preventing them from binding and activating the
system’s receptors. Drug-induced decreases in IGF-IR signaling disrupt the
pituitary-mediated negative feedback loop regulating IGF-I production, leading
to higher IGF-I levels and, indirectly, greater insulin levels.

Unfortunately, several other IGF-IR antibodies have met a similar
fate. AVE1642 (Sanofi) inhibited mammary tumor growth and
metastases in pre-clinical studies (67, 68) and exhibited anti-
tumor activity in phase I trials for patients with advanced solid
tumors (69, 70). However, it failed in phase II trials, and its
development was discontinued. R1507 (Hoffmann-La Roche) and
robatumumab (Merck) also performed poorly in phase II trials
(71–73), and several studies were ended early along with the
research programs for these drugs.

Some IGF-IR monoclonal antibodies remain in active clinical
trials, though. Ganitumab (Amgen), like other drugs of this class,
demonstrated promising pre-clinical anti-tumor activity (74, 75),
and has moved into phase I and II trials with mixed results.
Most of the published phase II trial data have been negative, with
no improvement shown with ganitumab treatment for multiple
cancer types (76–80). A couple of the phase II trials did produce
positive results, though (81, 82), and while no new trials are
planned, studies examining this drug’s use in patients with newly
diagnosedmetastatic Ewing sarcoma, NSCLC, and advanced solid
tumors are still actively recruiting. The results from phase II trials
for cixutumumab (NCI) have also been mixed, with this agent
showing some benefit in patients with thymic epithelial tumors
and adipocytic sarcoma, but none in several other cancer types
(83–87). Dalotuzumab (Merck) demonstrated anti-tumor activity
in pre-clinical and phase I clinical trials of advanced solid tumors
(88, 89), but provided no improvement in patient outcome in two
phase II studies (90, 91). Both cixutumumab and dalotuzumab
remain the subject of a few active phase I and II clinical trials,
though, and have been utilized in several completed trials whose
results remain unpublished.

Receptor-Targeting Agents: Tyrosine Kinase Inhibitors
One hypothesis regarding the IGF-IR antibodies’ poor
performance is that IGF-IR inhibition alone allows IR-A
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signaling to continue and even significantly increase. This may
then promote cancer progression, as tumor IR-A expression
and activity have been correlated with worse survival (32, 33).
Consequently, excess IR-A signaling may be driving resistance
to the IGF-IR antibodies. Researchers have posited that one
solution to this problem may be dual inhibition of IGF-IR
and IR using TKIs. These agents prevent receptor activity by
competing for the ATP-binding site in the catalytic domain of the
IR and IGF-IR, which is found on the receptors’ beta subunits.
Due to the high degree of beta subunit homology between the
two receptors, most of these drugs inhibit both IR and IGF-IR
activity. Pre-clinical studies demonstrated that one TKI, OSI-906
(Astellas), exhibits anti-proliferative activity on a variety of
cancer cell types and enhances the effects of doxorubicin (92,
93). It also performed better than an IGF-IR inhibitor against
tumors with both IR and IGF-IR activation (94). The phase
I trial results for this agent have been partially positive, with
two recent papers reporting observations of anti-tumor activity
and good tolerance in patients with advanced solid tumors
(95, 96). However, the combination of OSI-906 and the mTOR
inhibitor everolimus did not produce an objective response in
metastatic colorectal cancer patients (97). In addition, some
trials have been terminated early due to safety concerns and/or
patient progression, though it appears that some patients are
benefiting from treatment with this TKI, as a rollover study is
available for subjects from completed trials. There are also active
and completed trials that have not yet published their results.
BMS-754807 (Bristol-Myers Squibb) and AXL 1717 (Axelar),
are two additional TKIs that produced positive pre-clinical data
(98–102). Hou et al. (103) demonstrated synergistic inhibition
of tumor growth in a mouse model of postmenopausal estrogen
receptor positive (ER+) breast cancer following treatment
with BMS-754807 plus letrozole or tamoxifen. A phase II
trial examining a BMS-754807 plus letrozole combination in
aromatase inhibitor (AI)-resistant breast cancer patients has been
completed, along with other phase I and II trials, but results have
not yet been published. The absence of any new trials with this
agent suggests that little to no benefit was produced, though.
AXL 1717, which only targets IGF-IR, was tolerated well in a
phase I trial for NSCLC. Patients also had indications of a possible
tumor response to the drug (104), but published data from other
completed trials involving this drug are also lacking. A phase
I/II trial for AXL 1717 in patients with recurrent astrocytomas
is still recruiting. Overall, as with the IGF-IR antibodies, the
TKIs have largely produced disappointing trial results. However,
some of the more recent ongoing or completed trials may have
benefited from the lessons learned from the early trial failures,
including the need for more rational therapy combination. These
lessons and future directions based on what we have learned
will be discussed in more detail below, following a review of the
ligand-targeting agents.

Prevention of Ligand Activity
Another approach to the inhibition of IR/IGF-IR signaling is
utilization of agents that target the ligands of this system. Insulin
secretion and action cannot be directly reduced because this
would result in unacceptable metabolic side effects. However,

IGF-targeting monoclonal antibodies have been tested pre-
clinically and in early clinical trials with some success. Because
these drugs cross-react with IGF-I and IGF-II, they result in the
inhibition of both IGF-IR and IR-A activity (105–107). Two com-
pleted phase I trials for MEDI-573 (MedImmune) demonstrated
that this agent is well-tolerated and has some anti-tumor activity
in patients with advanced solid tumors (108, 109). Additional
phase Ib/II trials for MEDI-573 remain active or are completed
but unpublished. Several phase I and II trials testing the safety
and efficacy of another IGF antibody, BI 836845 (Boehringer
Ingelheim), are currently recruiting patients. While it is too early
to declare these drugs more successful than the receptor-targeting
agents, their combined inhibition of both IR-A and IGF-IR (but
not IR-B) activity suggests that they may lead to an improved
clinical response with less metabolic toxicity.

Lessons Learned from Clinical Trials
The Need for Biomarkers
Perhaps themost prominent criticism of past phase II and III trials
for insulin/IGF-targeting agents is the researchers’ failure to utilize
any predictive biomarkers for the selection of likely responders.
To be fair, it should be acknowledged that there were no validated
biomarkers for sensitivity to these agents at the start of these trials.
In fact, there is still no consensus regarding which biomarker(s)
to use for patient selection. However, several have now been pro-
posed and tested in pre-clinical studies. In addition, retrospective
analysis of patient biospecimens for the identification of biomark-
ers linked to drug response has occurred following some trials.
These candidate biomarkers can be divided into two categories:
insulin/IGF system members and other markers connected to the
insulin/IGF axis.

Insulin/IGF system biomarkers
One of the first biomarkers proposed was serum IGF-I. Despite
the retraction of one study suggesting that elevated pre-treatment
free IGF-I levels were associated with NSCLC patient response to
figitumumab (110), additional evidence supporting these findings
has been published. Figitumumab response in another trial for
NSCLC patients was correlated with higher baseline total serum
IGF-I concentrations (65). Other IGF-IR monoclonal antibody
trials have reported a similar link between circulating IGF levels
and drug response (73, 111, 112). In addition, studies utilizing
pre-clinical models of multiple forms of cancer have found that
response to insulin/IGF-targeting agents is associated with greater
IGF-I and IGF-II levels (113–115). While these positive results
are encouraging, it is potentially problematic to use systemic IGF
levels as biomarkers when tumors are capable of autocrine IGF
signaling. Measurement of serum IGFs does not account for local
IGF production and could fail to detect tumors that are addicted
to autocrine IGF signaling and possibly responsive to insulin/IGF
signaling inhibition.Whilemore invasive than a simple blood test,
this could be remedied bymeasuring tumor IGF expression aswell
as serum levels. Others have also shown that a high IGFBP-5/4
ratio predicted sensitivity to an IR/IGF-IR TKI in a pre-clinical
breast cancer model and was correlated with a worse breast cancer
outcome, suggesting that this ratio may be indicative of patient
response (116). In addition, some studies have reported that
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tumor IGF-IR expression can predict response (114, 115, 117),
but the results have been conflicting (118, 119). Two factors may
explain these mixed findings. First, these studies do not account
for the possible expression of IR/IGF-IR heteroreceptors, and
varying levels of these hybrids versus holoreceptors may also be
affecting drug response. Second, there is no standardized protocol
for the measurement of tumor IGF-IR expression, so differences
in detection methods could contribute to variations in results.

Other biomarkers
The remaining candidate biomarkers include gene signatures
indicative of elevated tumor insulin/IGF system activity, signal-
ing molecules connected to the insulin/IGF axis that may medi-
ate drug resistance, and other markers signifying drug response
(120). In the last category is a pre-clinical study demonstrating
that a reduced 2-deoxy-2-[18F]fluoro--glucose positron emis-
sion tomography (18FDG-PET) reading following a single dose of
the TKI OSI-906 was a marker for cellular sensitivity to this drug
(121). This represents a relatively simple method for determining
drug response, but may not be practical for trial enrollment since
the patient must be started on the drug to measure sensitivity.
Others have noted that constitutive Akt and MAPK pathway acti-
vation is associated with resistance to the insulin/IGF-targeting
drugs (122–124), leading to the idea that the presence of acti-
vating mutations in these pathways may be a negative marker
for drug sensitivity. However, this idea is confounded by the fact
that KRAS mutant NSCLC cells do respond to IGF-IR inhibition
(125). This speaks to the complexity of the insulin/IGF signaling
system, whose activity can differ by cancer subtype and molecular
environment. Finally, an IGF-I gene signature has been identified
that was associated with a poor breast cancer prognosis and could
be reversed by different anti-IGF-IR agents in the pre-clinical
setting. In addition, the gene signature, when combined with
measurement of IGF-IR expression, was predictive of IR/IGF-IR
TKI sensitivity in breast cancer cells (113, 126). The one clear
conclusion that can be drawn from these studies is that more
research is needed to test and validate these biomarkers before a
consensus can be formed around one candidate.

Optimal Drug Combination
The second major criticism of past trials for the insulin/IGF-
targeting drugs is that inadequate consideration was given to
determining the optimal combination of agents and timing of
their administration. Many of the initial trials used the prag-
matic approach of simply adding an insulin/IGF-targeting drug
to the current standard of care for randomized patient pop-
ulations where that standard was not performing adequately.
This approach, however does not take into consideration the
effect previous treatments can have on the biology of the cancer
cell, in particular the emergence of resistant cells. Exposure to
chemotherapy will kill the majority of cells, but those which can
adapt and persist may do so by derailing signaling pathways and
reducing their dependence on systems such as insulin/IGF. There
is now abundant pre-clinical and clinical evidence that can be
used in the design of future trials to achieve improved efficacy.
For example, many trials have examined the impact of combining
insulin/IGF-targeting drugs to standard chemotherapy regimens,

and several phase I trials demonstrated that IGF-IR inhibition is
tolerable with standard chemotherapeutic regimens (127, 128).
Traditional chemotherapy, in particular platinum-based com-
pounds, targets rapidly dividing cells primarily by inducing DNA
damage. Pre-clinical studies suggest IR/IGF-IR signaling protects
cells fromDNAdamage and induces DNAdamage repair via non-
homologous end joining (NHEJ) and homologous repair (129,
130). Consistent with this, inhibition of IGF-IR causes sensitiza-
tion to cisplatin (98, 131, 132), doxorubicin, and trabectedin (133),
as well as ionizing radiation (129, 134–136) in ovarian, prostate,
colon, and breast cancer cells and in mouse xenograft models.
Consequently, it may be most beneficial to combine insulin/IGF-
targeting drugs with DNA-damaging chemotherapy agents versus
those with an alternate cytotoxic mechanism, like the taxanes.

In addition, timing of drug administration may be a key fac-
tor in the efficacy of anti-insulin/IGF therapies in combination
with chemotherapeutic regimens. Pre-clinical data indicate that
the most effective inhibition of tumorigenesis occurs when the
drug is administered following chemotherapeutic treatment (68,
92). This is likely due to the fact that IGF-IR inhibition blocks
cell cycle progression, thereby reducing the pool of cells being
targeted by the chemotherapy. The timing of drug administration
was not incorporated into the design of the failed clinical trials.
Furthermore, the half-life of the inhibitor should be taken into
consideration, as monoclonal antibodies with extended activity
may still affect the chemotherapy given in the next treatment
cycle. While the clinical trials focused on insulin/IGF system
inhibition as a monotherapy or in combination with standard
chemotherapy, the effect of inhibition of the system in conjunc-
tion with radiotherapy was not addressed. From the abundant
pre-clinical data on IGF-IR and DNA damage and repair, such
a combination would be appropriate in future clinical trials. As
with chemotherapy combinations, certain considerations should
be taken in the design of such clinical trials, such as resistance
to radiation, timing of therapies, and predictive biomarkers of
response. IGF-IR expressionmay be a useful predictive biomarker
for radiation response, as cervical cancer patients with high levels
of IGF-IR have a 28.6-fold greater risk of treatment failure (137).

Additional drug combinations have generally been chosen
based on IGF-IR’s ability to mediate resistance to inhibitors
of other receptor tyrosine kinase (RTK) and hormone signal-
ing pathways. These other pathways can also be upregulated in
response to IGF-IR inhibition. The most obvious example of this
reciprocal interaction is the increase in IR activity that can occur
following IGF-IR inhibition. Reduced IGF-IR signaling results
in a pituitary feedback loop that stimulates increased GH secre-
tion, resulting in elevated IGF-I production and hyperinsuline-
mia (Figure 3). These side effects have been evident in many
clinical trials for IGF-IR-targeting agents (89, 138, 139). Insulin,
IGF-II, and elevated IGF-I levels can all activate IR-A, driv-
ing resistance to IGF-IR antibodies (140–142). Dual IR/IGF-IR
TKIs and ligand-targeting antibodies may be able to block this
compensatory signaling, leading to improved efficacy over the
IGF-IR antibodies (94).

Crosstalk between the insulin/IGF system and ER signaling
pathway has been well-established (143–146), and IGF-IR is a
known mediator of endocrine therapy resistance in breast cancer
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(147). The combined inhibition of both pathways has also been
shown to be effective pre-clinically (148). Consequently, there was
substantial evidence supporting trials examining treatment with
IGF-IR antibodies plus endocrine therapy for hormone-resistant
breast cancer. The phase II trial results have been disappointing,
though, showing no clinical benefit (79). This may be because a
complete blockade of insulin/IGF signaling using a TKI or ligand-
targeting antibody is needed. Trials investigating the efficacy of an
AI plus the TKI BMS-754807 or the IGF antibody MEDI-573 in
ER+ breast cancer patients are completed and ongoing, respec-
tively, but no results have been published. Pre-clinical evidence
indicates that tamoxifen-resistance is associated with decreased
breast cancer cell IGF-IR expression (149, 150), and this would
likely reduce the effectiveness of a tamoxifen plus IGF-IR antibody
combination treatment. The addition of an insulin/IGF-targeting
agent to androgen deprivation therapy for prostate cancer is also
supported by pre-clinical evidence, as insulin has been shown to
promote androgen production by prostate cancer cells, possibly
hastening the development of castration-resistant prostate cancer
(151). There are ongoing trials examining the combination of anti-
hormone medications with the IGF-IR antibody cixutumumab or
the IGF antibody BI 836845.

Finally, several trials have combined insulin/IGF-targeting
drugswith EGFR inhibitors in a number of different cancers based
on pre-clinical studies showing that EGFR signaling mediates
resistance to IGF-IR inhibition and vice versa (152–154). But like
so many others, the results from these trials have been largely
disappointing, with no clinical benefit shown (7, 73, 77, 90).
However, these studies may also have suffered from the failure to
utilize biomarkers for patient selection. Some recently completed
or ongoing trials for an EGFR antibody plus TKI OSI-906 or IGF
antibody BI 836845 combination treatment were open only to
NSCLCpatients with activating EGFRmutations, whichmay have
improved efficacy. No results have been published yet from the
completed studies. Promising data have emerged from in vitro and
in vivo pre-clinical investigations regarding anti-EGFR/IGF-IR
inhibitor “nanobullets,” EGFR nanobody liposomes loaded with
the IGF-IR inhibitor AG538. This therapy may aid specificity,
but would also benefit from stratification of patients through
predictive biomarkers (155).

A number of researchers are trying a new direction in their
quest to the overcome resistance to the insulin/IGF system
inhibitors, looking to the common pathways found downstream
of the RTKs for different targets. Specifically, the PI3K/Akt/mTOR
pathway has become the focus of intense interest, as a feedback
loop allows Akt signaling to continue despite IGF-IR inhibition
(156). Conversely, mTOR inhibition also promotes Akt activa-
tion through a feedback loop, but this compensatory mechanism
can be blocked via IGF-IR inhibition (157). Phase I and II clin-
ical trials combining insulin/IGF-targeting agents with mTOR
inhibitors have produced some promising results (118, 158–160)
as well as some negative data indicating no clinical benefit (85).
Additional phase II trials are ongoing or have been completed,
but remain unpublished. One ongoing trial for advanced solid
tumors is comparing a ganitumab and everolimus combination
with this dual treatment plus the EGFR antibody panitumumab. It
appears that many of the current trials are utilizing more carefully

considered treatment regimens and screening participants for
biomarkers. It remains to be seen whether this translates into
better response rates. Interesting pre-clinical data also exist for the
combination of insulin/IGF system inhibitors with other drugs,
including the lipidmodulator simvastatin in prostate cancer (161),
the VEGF antibody bevacizumab in ovarian cancer (162), and
methyl jasmonate in endometrial cancer (163).

Energy Balance, Insulin/IGF-I, and Cancer

Role of Insulin and IGF-I in the
Obesity-Cancer Link
The prevalence of obesity, defined as having a body mass index
[BMI, body weight (in kilograms) divided by height (in meters)
squared] ≥30 kg/m2, has tripled in the past 50 years in the United
States (US). Today, nearly 40% of adults and 20% of Ameri-
can children are considered obese (164). Worldwide, an esti-
mated 750 million people are currently obese (165). Among obese
adults, approximately 60% meet the criteria for the metabolic
syndrome, a state of metabolic dysregulation characterized by
insulin resistance, hyperglycemia, hypertension, and dyslipidemia
(166). The hyperinsulinemia induced by insulin resistance is
a hallmark of obesity and/or metabolic syndrome (167), and
bioavailable IGF-I also increases in the obese state, possibly via
hyperglycemia-induced suppression of IGFBP synthesis and/or
hyperinsulinemia-induced promotion of hepatic GH receptor
expression and IGF-I synthesis (168). Through these mediators,
obesity and metabolic syndrome are linked to various chronic
diseases, including cardiovascular disease, type II diabetes, and
the focus of this review, cancer.

The American Society of Clinical Oncology’s recent position
statement onobesity and cancer (169) calls obesity the leading pre-
ventable cause of cancer in theUS and a central challenge to cancer
prevention and care. It estimates that by 2030, 500,000 Americans
will be diagnosed with obesity-caused cancers each year unless
corrective action is taken. Overall, an estimated 20–25% of all
cancer deaths in in the US are attributable to overweight and
obesity (170).

Insulin/IGF-I, Inflammation, and Cancer
The link between chronic inflammation and cancer develop-
ment was first noticed more than 100 years ago by Rudolph Vir-
chow, who observed an abundance of leukocytes in neoplastic
tissue (171). Now, several tissue-specific inflammatory lesions
are established neoplastic precursors for invasive cancer, includ-
ing gastritis for gastric cancer, inflammatory bowel disease for
colon cancer, and pancreatitis for pancreatic cancer (172, 173).
In addition to elevated levels of circulating insulin and IGF-
I, obesity and metabolic syndrome are associated with a low-
grade, chronic (smoldering) state of inflammation characterized
by increased circulating free fatty acids and the chemoattraction
of immune cells, like macrophages, into the local adipose tis-
sue milieu (174–176). These effects are further amplified by the
immune cells’ release of inflammatory cytokines, including inter-
leukin (IL)-1β, IL-6, TNF-α, and monocyte chemoattractant pro-
tein (MCP)-1. Adipocytes can enlarge past the point of effective
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oxygen diffusion, which results in hypoxia and eventually necro-
sis. Dannenberg and colleagues have established that crown-like
structures, rings of activatedmacrophages surrounding these dead
or dying adipocytes, are common in the adipose tissue of obese
subjects and are important contributors to the proinflammatory
and pro-cancer effects of obesity (177, 178). In addition, free
fatty acids escape the engorged/necrotic adipocytes and deposit in
other tissues, which in turn promotes insulin resistance and dia-
betes (through downregulation of IRs and glucose transporters),
hypertension, and fatty liver disease. Fatty acid deposition also
activates signalingmolecules involved in epithelial carcinogenesis,
including NF-κB (174–176). This transcription factor is activated
in response to bacterial and viral stimuli, growth factors, and
inflammatory molecules (e.g., TNF-α, IL-6, and IL-1β) and is
responsible for inducing the expression of genes associated with
cell proliferation, survival, angiogenesis, metastasis, and further
inflammation. Activation of NF-κB is a common characteristic
of many tumors and has been associated with insulin resistance
and elevated circulating levels of insulin and/or IGF-I (176, 179–
181). In summary, there is close reciprocal relationship between
obesity-associated elevations in insulin/IGF and inflammatory
signaling, such that both factors should be considered in the
development of interventions to improve cancer prevention and
treatment in the obese patient population (Figure 4).

Alternative Pharmaceutical Targets
In addition to pharmacological agents targeting insulin/IGFRs
or ligands, including emerging work on microRNA-based
approaches (182), a wide variety of natural agents with
demonstrated cancer chemopreventive or chemotherapeutic
activity have recently been reported to target components of the
insulin/IGF pathway (183). These agents, which likely exert only
modest inhibitory effects on insulin/IGFR activity, may provide a
promising and safe approach, especially if effective combinations
can be identified, for breaking the obesity-cancer link.

Pharmacological mTOR inhibitors have emerged as lead candi-
dates for so-called calorie restriction (CR) mimetics, agents that

FIGURE 4 | Targeting insulin/IGF signaling may attenuate the
pro-tumor effects of obesity. Obesity is associated with higher insulin and
bioavailable IGF-I levels which, in cooperation with chronic inflammation,
contributes to greater risk and progression of many cancers. The pro-tumor
effects of obesity can be mitigated directly by obesity reversal using calorie
restriction and increased physical activity. Pharmaceutical interventions
targeting obesity-associated insulin/IGF and inflammatory signaling or their
downstream effectors may also improve patient risk and outcome.

mimic the anti-cancer or anti-aging effects of CR without the
restriction of dietary energy intake. Rapamycin treatment extends
lifespan and delays cancer in mice, providing additional support
for mTOR as a target for mimicking the effects of CR (184). We
have shown that rapamycin or its analog, Afinitor® (everolimus),
can offset the obesity-associated increased growth of mammary
or pancreatic tumors (185–187). Rapamycin and the so-called
rapalogs are potent inhibitors of mTOR complex 1, but chronic
rapamycin exposure has been linked in some studies to disrup-
tion of mTOR complex 2 signaling, resulting in impaired glucose
tolerance and insulin action (188). Thus, while inhibiting mTOR
complex 1 appears to be a good strategy for mimicking many of
the anti-cancer effects of CR, the search for agents that can do so
without disrupting mTOR complex 2 signaling is ongoing.

Metformin, a biguanide commonly used to treat type 2 diabetes,
is an mTOR-inhibiting drug with great promise as a CR mimetic
that overcomes the concerns about glucose intolerance associ-
atedwith rapamycin/rapalogs. It inhibits gluconeogenesis through
indirect activation of AMPK in the liver and may also exert direct
effects on AMPK in cancer cells. Administration of metformin
suppresses tumor development and/or growth in multiple exper-
imental models, including colon, mammary, and hematopoietic
cancer models (189). Epidemiological studies have suggested that
type 2 diabetic patients treated with metformin have lower risk
of developing or dying from cancer relative to diabetic patients
receiving sulfonylureas, insulin, or other therapies (190–192).
A randomized trial is now underway to evaluate the effect of met-
formin on breast cancer recurrence (193). Phenformin, another
biguanide that has been abandoned for diabetes therapy due to its
toxicity from lactic acidosis, is amore potentAMPK inhibitor than
metformin and may also have some potential as a CR mimetic at
lower, non-toxic doses (189).

In addition to these pharmaceutical strategies, dietary mod-
ulation may also be useful in controlling the high serum IGF-I
and insulin levels present in obese cancer patients. While CR is
restrictive and difficult to employ, low carbohydrate/high fat diets
such as the ketogenic diet can mimic CR in many ways (194) and
may be a more amenable dietary alteration for obese individuals
at risk for, or diagnosed with, cancer. Low carbohydrate/high fat
diets rewire energy metabolism to utilize ketones derived from
fatty acids, in particular medium chain triglycerides (MCTs), as
an energy source rather than glucose. The ketogenic diet has long
been used successfully as a means to reduce epileptic seizures
(195) and more recently to regulate blood glucose in type 2 dia-
betes (196), and studies have shown that the diet has no adverse
effects in cancer patients either as an adjuvant or monotherapy
(197). Pre-clinical studies using the ketogenic diet have shown
promising results in reducing tumor growth in mammary (198),
prostate (199, 200), brain (201), and gastric cancer models (202),
and it has been shown to promote response to adjuvant therapy
(197, 203). In addition to restricting glucose as fuel for tumors, the
tumor suppressive effect of the ketogenic diet appears to be medi-
ated through reduction of serum IGF-I and insulin levels via GH
resistance (204). Intriguingly, a switch to a low carbohydrate diet
can also prevent cachexia in patients undergoing chemotherapy,
assisting in the retention of lean body mass (205, 206). The appli-
cation of low carbohydrate/high fat diets is a promising strategy
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not only for obesity reversal, but also as a potential treatment in
conjunction with normal anti-cancer therapies.

Conclusion

Insulin and IGF signaling play an important role in the devel-
opment and progression of many cancers, as they can promote
tumor cell proliferation, survival, migration, and invasion as
well as angiogenesis. However, despite strong pre-clinical sup-
port for their efficacy, most clinical trials testing inhibitors of
the insulin/IGF system have produced disappointing results. By
increasing the use of validated predictive biomarkers and opti-
mized drug combination treatments, trial outcomes may be
improved in the future. Researchers should consider specifically

focusing on whether drugs targeting the insulin/IGF system and
its downstream signalingmoleculesmay particularly benefit obese
cancer patients, who generally have higher circulating insulin and
IGF-I levels as well as a greater risk of treatment failure and cancer
mortality. There is also a need for more research regarding cancer
prevention interventions that counteract the effects of obesity-
related elevations in insulin/IGF signaling. Together, these initia-
tives may lead to a significant reduction in the burden of obesity
on cancer risk and mortality.
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