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Malaria Parasites: The Great escape
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Parasites of the genus Plasmodium have a complex life cycle. They alternate between 
their final mosquito host and their intermediate hosts. The parasite can be either extra- or 
intracellular, depending on the stage of development. By modifying their shape, motility, 
and metabolic requirements, the parasite adapts to the different environments in their dif-
ferent hosts. The parasite has evolved to escape the multiple immune mechanisms in the 
host that try to block parasite development at the different stages of their development. 
In this article, we describe the mechanisms reported thus far that allow the Plasmodium 
parasite to evade innate and adaptive immune responses.
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iNTRODUCTiON

Malaria, a disease caused by Plasmodium parasites and transmitted by Anopheles mosquitoes, 
remains one of the most deadly diseases. There are six species able to infect humans, namely, 
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and the 
zoonotic monkey malaria species Plasmodium knowlesi (1) and Plasmodium cynomolgi (2). Around 
300 million cases of clinical malaria are recorded every year. Approximately, half a million deaths 
occur in Africa and are mainly due to P. falciparum infections (3).

Plasmodium parasites have a complex life cycle. It starts when sporozoites are inoculated into the 
dermis of the mammalian host by infected mosquitoes. Sporozoites are highly motile and a majority 
of them migrate from the skin to the capillaries for dissemination by the bloodstream (4, 5). They are 
retained in the liver where they transmigrate through Kupffer cells and hepatocytes before seeding 
in final hepatocytes (6, 7). Depending on the species of their mammalian hosts, sporozoites mature 
in 2–14 days. At maturity, budding vesicles called merosomes are released and are ruptured in the 
lung circulation where the merozoites are released, ready to infect red blood cells (RBC) (8). During 
the erythrocytic cycle, a fraction of parasites differentiates into male and female gametocytes which 
can be taken up during the feeding of an Anopheles mosquito. In the mosquito midgut, ookinetes, 
generated by the gametocyte fusion, cross the mosquito midgut wall and develop into oocysts. 
Sporozoites released from mature oocyst then migrate to the salivary gland, ready for the next round 
of infection during the mosquito’s next blood meal.

Malaria is a disease characterized by fever, headache, chills, sweating, and vomiting (9). Unlike 
viral or bacterial infections, the main indication of clinical malaria is the recurrent fever which 
varies between species. This is due to the release of parasite toxins into the bloodstream during the 
erythrocytic cycles of merozoite egress and reinvasion of erythrocytes. As the infection progresses, 
the number of RBC decreases and this may lead to severe anemia (10). In addition, RBC containing 
parasites such as P. falciparum can also sequester in deep tissues by cytoadhering to endothelial 
cells (11). This may cause organ failure, and is partly responsible for cerebral malaria. All these 
pathologies can eventually lead to death (9, 12, 13).
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In the last two decades, the mortality to malaria has decreased 
substantially (3). This results from the combined efficacy of 
prevention measures, such as the use of insecticide-impregnated 
bednets, the development and use of rapid and easy to use 
diagnostic tools, and the potent artemisinin-based combinations 
therapies against the malaria parasites (14). However, this gain of 
lives might be temporary. In the recent years, all these interven-
tions have shown some limitations. With the advent of decreased 
efficacy of artemisinin (15, 16), it is now clear that new drugs and 
other interventions should be developed (9, 17, 18). New drug 
families, such as spiroindolones (19, 20) and imidalopiperazines 
(21, 22) compounds, have shown promising results in phase II 
clinical trials in the recent years and have a great future ahead. 
However, a vaccine would be the most important tool in the 
armamentarium against malaria.

While vaccines have been readily developed for many bac-
terial and viral infections, there are currently no vaccines to 
protect against human parasites. The need to develop a vaccine 
to protect against malaria has been highlighted as early as the 
identification of the parasite in 1897 (23). There have been two 
schools of thought for the development an antimalarial vaccine. 
The first is based on the fact that naturally acquired immunity is 
often observed under field conditions. However, this immunity 
requires long period of time to develop. It first targets the disease 
and then the parasite (24). This immunity has been called pre-
monition or relative immunity. It has been defined by Edmond 
Sergent in 1935 as “a special type of immunity connected with the 
persistence of living germs in the organs of the immunized host” 
(25). In other words, immunity is maintained as long as the host 
immunity is stimulated by the continuous or repeated parasite 
exposure. Understanding the mechanisms responsible for this 
premonition will help to develop a vaccine.

The other approach is based on the Jenner principle of vac-
cination, which was further exemplified by Louis Pasteur. Instead 
of letting Nature takes its course, this approach uses an inoffen-
sive target as a formulation to induce an immune response in 
healthy individuals to protect against a subsequent infection. It 
might not be surprising, that the first attempt was reported by the 
same Sergent mentioned above, who was working in the Pasteur 
Institute in Algiers in Algeria. Sergent was able to partially pro-
tect birds from Plasmodium lophurae, an avian malaria parasite, 
using inactivated sporozoites (26). Decades later, in 1946, the first 
attempt in human was done by Heidelberger et al. using formalin-
inactivated P. vivax-infected blood to immunize volunteers, how-
ever no protection was induced (27, 28). Jules Freund took it one 
step further by inventing the Freund adjuvant and combining the 
adjuvant with formalin-inactivated-blood infected with P. lophu-
rae or P. knowlesi, a monkey malaria parasite. Freund was more 
successful in protecting ducks or rhesus monkeys, respectively 
(29, 30). However, because of its toxic side effects, the adjuvant 
could not be used in humans. Since then, various approaches and 
technologies have been used for vaccine development against the 
malaria parasites. Purified parasite preparation has been used as 
immunogens. Peptides, recombinant proteins, DNA plasmids, 
bacterial and viral vectors, and genetically modified malaria 
parasites, in combination with new adjuvants, have also been 
used as vaccine delivery systems (31). However, despite having 

more than thousands of pre-clinical trials in rodent and monkey 
models and more than 200 trials in humans, very few vaccine 
candidates have shown vaccine efficacy in human. The subunit 
vaccine, RTS,S, a chimeric molecule based on a large part of the 
circumsporozoite (CS) protein, the major surface protein of the 
sporozoite, fused to the S antigen of the hepatitis B virus, together 
with a strong adjuvant in the formulation, is the only candidate 
that has moved to Phase III clinical trials. However its efficacy 
was at best ~50% against infection or clinical disease (32, 33). So 
far, only whole-parasite based approaches have repeatedly shown 
high efficacy (34–36).

MeCHANiSMS OF iMMUNiTY AGAiNST 
THe MALARiA PARASiTe

The parasite has a complex life cycle. Depending on the stage of 
development in its mammalian host, the parasite can be extracel-
lular or intracellular. The parasite exists in different forms and 
shapes, possibly expressing different sets of its ~ 5000 gene pool 
(37) at a particular time. The parasite also has different localiza-
tions during development, infecting different cell types. Hence, 
various innate and adaptive immune mechanisms are involved 
in parasite control and elimination (38, 39). Thus, for any vaccine 
development, it is important to know the protective immune 
mechanisms to induce.

immunity to the Pre-erythrocytic Stage
During the pre-erythrocytic stage, antibodies can (i) inhibit 
sporozoite motility in the dermis or in the liver (40), (ii) bind 
to sporozoite and facilitate phagocytosis by monocytes or mac-
rophages in the spleen or the liver (41), (iii) block sporozoite 
invasion into hepatocytes by preventing the sporozoite ligand 
to interact with the hepatocyte receptor(s) (42), and (iv) inhibit 
sporozoite development inside the hepatocytes (42). Antibodies 
can also recognize parasite neo-antigens such as heat-shock 
protein expressed at the surface of infected hepatocytes and 
induce liver parasite killing through an antibody-dependent 
cell-mediated mechanism likely involving Kuppfer cells or NK 
cells (43). The production of high levels of antibodies is depend-
ent of CD4 T cell help, preferably by recognizing (an) epitope(s) 
present in the sporozoite to facilitate boosting of the antibody 
during natural infection with the parasite. When the parasite is 
inside the hepatocytes, it can become the target of CD4 or CD8 
T cells (44–46). Hepatocytes express MHC Class I and Class 
II molecules that can be loaded with parasite antigen-derived 
epitopes following the TAP or the endosomal pathways (44–47). 
T cells kill the parasite either directly or through the action of 
cytokines, such as IFN-γ. IFN-γ induces the inducible nitric 
oxide enzyme to produce nitric oxide which directly kills the 
liver parasites (48–51). Innate immune mechanisms involving 
type I interferon pathway induced by the parasite infection and 
active against late schizonts or against reinfection have been 
recently uncovered (52–54).

immunity against the erythrocytic Stage
Adaptive immunity against the blood stage is more complex than 
in the liver stage. Merozoite-specific antibodies can (i) prevent 
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merozoites from invading RBC alone (55–57) or, in conjunction 
with complement factors, (ii) prevent merozoite egress from 
RBC, (iii) agglutinate released merozoites, (iv) promote phago-
cytosis of merozoites, and (v) facilitate clearance of infected RBC 
(iRBC) by phagocytic cells through a mechanism called antibody 
cell-dependent inhibition (ADCI) (58). In ADCI, anti-merozoite 
cryophilic (IgG1 or IgG3) antibodies bind to merozoites and the 
immune complexes stimulate phagocytes to release cytokines 
such as TNF-α, which in turn stimulate the phagocytes to produce 
mediators that lead to the killing of intra-erythrocytic parasites 
(59, 60). Plasmodium parasites express antigens at the surface 
of iRBC (61). These antigens are mainly encoded by multigene 
families such as the var (62), stevor (63), and rifins gene families 
(64, 65) for P. falciparum or the pir gene family for P. vivax, P. 
knowlesi, and the rodent malaria species (66). The antigens they 
encoded have been implicated in the cytoadherence phenotype to 
endothelial cells in deep tissues in order to avoid splenic clearance 
(67, 68). They are also involved in other adhesive phenomena, 
such as rosetting (the binding of an iRBC to non-infected RBC) 
(69–72) and agglutination (the binding to iRBC to iRBC through 
bridging by platelets) (73, 74). The cytoadherence abilities of the 
malaria parasites have been proposed to be responsible for some 
of the pathologies during malaria infection. Antibodies target-
ing the surface antigens are thought to act through preventing 
cytoadherence, promoting iRBC phagocytosis, or iRBC aggluti-
nation (74, 75).

Antibodies targeting the parasite toxins could also protect 
from disease. During infection, multiple parasite toxins are 
released at the time of iRBC rupture. These toxins include the 
malaria pigment, a by-product of heme degradation by the 
parasite (76–78), glycophosphatidylinositol (GPI) moieties that 
are present in many merozoite proteins, a TatD-like DNase (79), 
a tyrosine-tRNA synthase (80), or lipids extracted from P. vivax 
schizonts (81). Protection from disease by anti-toxins antibodies 
has been demonstrated experimentally using synthetic glycans 
mimicking GPI (82).

T cells are also critical effectors in the immunity against 
blood-stage malaria infections, despite the lack of MHC 
antigens on the surface of iRBC. First and foremost, blood-
stage parasite-specific antibodies secreted by B cells depend 
on CD4+ T helper cells enhancement for optimal production 
(39). Cytokines released by CD4 T cells are important for 
multiplication and maturation of B cells. The cytokines pro-
duced by malaria-specific T cells influence the isotype of the 
antibodies produced (83, 84) and thus possibly affecting the 
type of antibody-mediated responses induced. It  has been 
shown that ADCI against P. falciparum is mediated by human 
IgG3 (induced by a Th1 response) and antagonized by IgG2 and 
IgG4 (induced by a Th2 response) (59, 85). Inducing the right 
isotype is thus important for an antibody-based vaccine. Recent 
studies have shown that inducing an immune response skewed 
toward the IgG3 could be achieved through the use of the right 
adjuvant (86). CD8 T cells were once thought to have only a 
minimal role in blood-stage immunity (87, 88). However, there 
is now evidence that these cells can inhibit blood-stage infection 
(89, 90). In particular, IFNγ-secreting CD8 T cells are important 
for preventing chronic blood-stage infection in mice (91).

immunity against the Sexual Stages
The sexual forms of Plasmodium parasites, gametocytes, are also 
targets of the immunity against the disease. They are targeted by 
antibodies which can induce complement-mediated killing of the 
gametocytes in the host blood (92, 93). In the mosquito, antibod-
ies can (i) prevent gamete fusion (94), (ii) induce complement-
killing of gametes or ookinetes (95), and (ii) prevent ookinete 
motility, penetration of the midgut wall and formation of oocyst 
(96–99). Sexual-stage parasite-specific antibodies depend on 
CD4 T helper cells for optimal production. However, although 
antibodies specific for gametes or ookinetes can be produced by 
vaccination, the humoral immune response cannot be boosted 
by repeated infections since these forms are not present during 
infection in the mammalian hosts. Monocytes/macrophages 
stimulated during infection by the parasites produce cytokines 
such as TNF-α which in turn stimulates the monocytes/mac-
rophages to produce nitric oxide, a potent inhibitor of gameto-
cytes (100).

MeCHANiSMS OF iMMUNe evASiON

To avoid being eliminated by the host immunity, the parasite has 
developed many escape strategies (Table 1).

evASiON OF THe COMPLeMeNT SYSTeM

The complement system is one of the first innate immune defense 
mechanisms against pathogens. Many proteins are involved in 
the activation or the regulation of its lytic activity (101). During 
the blood-stage, the parasite has developed multiple ways of 
evading the action of complement. P. falciparum merozoites and 
iRBC bind to the factor H (fH), a complement regulator factor, 
and its alternatively spliced form fH-like protein 1 through its 
surface molecule Pf92. In the mosquito, gametes bind the fH 
through PfGAP50 (102). In both situations, this allows protec-
tion against the activation of complement-mediated lysis. In 
addition, ookinetes express Pfs47, which disrupts the c-Jun 
N-terminal kinase pathway and prevents mosquito midgut 
epithelial nitration, making the parasite undetectable by com-
plement system (103).

ANTiBODY-DePeNDeNT eNHANCeMeNT 
OF iNFeCTiON

Antibody-dependent enhancement of infection was first 
described for viruses (104). Similarly, antibody-dependent 
enhancement of infection has been described for all stages of 
parasite development in the mammalian host. It was first reported 
in the early 1990s that antibodies against the repeat region of 
the CS protein enhance sporozoite entry and development in 
hepatocytes for both rodent (42, 43) and human parasites (105). 
Antibodies against the P. falciparum asparagine-rich protein 
enhance merozoite invasion of RBC in vitro (106). Merozoite-
specific antibodies in conjunction with complement can also 
facilitate RBC invasion (107). Antibody-dependent enhance-
ment of infection was also observed in vivo after immunization 
with a Plasmodium berghei parasite blood-stage preparation 
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TABLe 1 | Host immunity and parasite immune escape strategies.

Host immunity Parasite stage Parasite evasion strategy Outcome

Complement AS, S Bind complement regulatory factor, factor H
Disrupt c-Jun kinase pathway

Prevent complement activation system
Avoid recognition by complement

Monocytes/macrophages AS Subvert or kill phagocytes by

 (1) inhibiting phagocytosis and
 (2) inducing apoptosis

Prevent parasite elimination by

 (1) inhibiting phagocyte function and
 (2) reducing phagocyte numbers

Dendritic cells (DC) AS Subvert or kill DC by

 (1) inhibiting DC maturation and
 (2) engaging apoptosis receptor, Fas

Decrease DC functions by

 (1) preventing T cell priming and expansion and
 (2) inducing immunosuppression through decreased   

pro-inflammatory (IL12) cytokine production and increased 
immunosuppressive (IL10) cytokine production

Antibodies/B cells Spz, AS, S 

Spz, AS, S
AS
AS
AS
AS 

AS
Spz, AS, S
AS
AS

Antibody enhancement invasion and/or 
growth
Antigen polymorphism
Antigenic variation
Antigenic diversion
Epitope masking
Smoke-screen strategy 

B cell dysregulation
Homology with host proteins
B cell apoptosis
Redundancy in cell invasion pathways

Expansion of parasite in host 

Avoid recognition by antibody
Avoid recognition by antibody
Prevent the action of neutralizing antibodies
Prevent the action of neutralizing antibodies
Avoid antibody recognition by diverting neutralizing antibody from 
their target
Poor or limited B cell memory
Poor or no antibody response by inducing immunological tolerance
Poor antibody response
Allow continued invasion and expansion of parasite even when one 
invasion pathway is inhibited by antibody

T cells LS 

AS
AS 

AS

T cell epitope polymorphism 

Apoptosis
Induction of expression of check-point 
inhibitors
Regulatory T cells

Avoid T cell recognition prevent T cell priming and activity, and 
interfere with memory T cell development
Poor T cell response
Anergy and/or T cell exhaustion 

Negative regulation of immune responses

Hepatocytes LS Cellular shelter Avoid immune surveillance due to intracellular niche

Spz, sporozoite; LS, liver stage; AS, asexual blood stage; S, sexual stage.
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which led to increased death after challenge (108). In the sexual 
stage, anti-gamete antibodies were shown to enhance transmis-
sion to the mosquito (109).

Antibodies against proteins expressed in one stage of the 
parasite’s development might mediate an enhancement effect in 
another stage of the parasite’s development. This was observed for 
antibodies against two antigens, the CS protein and heat-shock 
protein 1 (HSP-1) (110). The CS protein is expressed during 
sporogony in the mosquito and in the subsequent sporozoite 
stage. Do Rosario et al. showed that sporozoites generated during 
sporogony in the presence of anti-CS protein antibodies can-
not be inhibited by human polyclonal anti-CS (sporozoite CS) 
protein (111). HSP70-1 is expressed by the liver stage and the 
blood stages (43, 110). HSP70-1 antibodies have no effect against 
the blood-stage parasites but they can partially mediate inhibi-
tion of liver-stage development through ADCI (43). However, 
vaccination with a recombinant protein against the C-terminal 
fragment of HSP70-1 increased the number of gametocytes 
generated and the subsequent transmission to mosquito (112). 
Thus, it was proposed that antibodies against the liver-stage 
parasites can drive merozoites to differentiate into gametocytes 
and facilitate transmission (112). Immune cross-talk between the 
different stages of the infection has not been extensively studied 
beyond the two reports mentioned above. This cross-talk has 
wider implications. Indeed vaccination against one stage may 

influence the subsequent stages positively or negatively. For any 
vaccine against the pre-erythrocytic or blood stages, there will 
be a need for follow-up studies on the effect on transmission and 
development of the parasite in the mosquitoes.

ANTiGeNiC POLYMORPHiSM

Similar to all other organisms, the parasite is prone to mutation 
since the replicative machinery is not error free. In its mammalian 
host, the parasite is haploid and the mutation rate is ~1–0.7 × 10−9 
mutations per base per generation (113). Since the Plasmodium 
parasites have a 24- to 72-h blood cycle, there is a high prob-
ability that mutation can occur and generate different parasite 
clones. In the mosquito host, the parasite undergoes sexual 
reproduction where two haploid gametocytes will generate four 
haploid sporozoite progenies. Recombination does occur in the 
mosquito stage, and, thus, it will increase the occurrence of gene 
polymorphism. For some antigens, hundreds of haplotypes have 
been observed (114). Polymorphism in the coding sequence can 
be due to point mutations, insertions, or deletions. Interestingly, 
many Plasmodium antigens possess regions of repeats which can 
vary in size and number of repetitive units (115). Such diversity 
is, in most cases, the result of immune pressure since mutations 
often occur in regions which can be recognized by antibodies 
or T  cells. Mutations in B epitopes abolish the recognition of 
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parasites by antibodies and may lead to the selection of parasites 
with a different haplotype. This is important for vaccine develop-
ment since antibody-based vaccine formulation targeting poly-
morphic epitopes may either have limited efficacy or select for 
vaccine-resistant parasite. One such example is the vaccine based 
on the AMA-1 protein, a highly polymorphic antigen (116–118). 
However, it is possible to envisage that immunogen(s) inducing 
broadly inhibitory antibodies recognizing multiple variants 
may circumvent polymorphism. Studies to identify structural 
conserved constraints in different variants may pave the way for 
new vaccines against polymorphic antigens (56).

Polymorphism in T cell epitopes may have profound conse-
quences in T cell responses and have shown to limit the efficacy 
of the RTS,S vaccine (119). T cell epitopes are, in general, 8–11 
amino acid (aa) and 11–25 aa in length for CD8 T cell and CD4 T 
cells, respectively (120). After the digestion of parasite protein in 
the cytoplasm, CD8 antigenic peptides are generated and trans-
ported to endoplasmic reticulum by the transporter antigenic 
peptide protein in the endoplasmic reticulum where they are 
loaded onto MHC class I molecules and beta 2-microglobulin. 
CD4 epitopes are generated in endosomes after phagocytosis 
and protease digestion where they meet MHC class II. Peptide–
MHC complexes are then expressed in the surface. Exogenous 
antigens can also be presented by cross-presentation by MHC 
class I (121). These complexes can be recognized by the T cell 
receptor (122). Mutations in the amino acids that anchor the 
epitope to the MHC grove can prevent binding of the peptides 
to the MHC or recognition by the TCR and thus abrogate T cell 
activity (123, 124). This was demonstrated for the CS protein 
(125). Altered peptide ligand (APL) can still bind to the MHC 
molecules; however, they prevent T cell proliferation, no matter 
if it was used singly or concurrently with a wild-type peptide. 
They can also prevent cytokine production (126) or change their 
production pattern, i.e., from IFN-γ to the immunosuppressive 
cytokine interleukin-10 (127). These APL can also interfere 
with induction of memory T cells from naïve T cells (128). 
This potent mechanism of immune escape is a major hurdle for 
vaccine development. For any T cell-based vaccine to succeed, a 
thorough analysis of T cell polymorphism and their effect should 
be performed.

ANTiGeNiC vARiATiON

Antigenic variation was first described by Neil Brown during P. 
knowlesi chronic relapsing infection in Rhesus monkeys induced 
by sub-curative drug treatment (129). In an agglutination assay, 
antibodies produced against different relapse parasite broods 
agglutinated only schizonts of the immunizing brood but not 
the other broods. It was further shown that antibodies (130) 
and spleen could induce antigenic variation in Rhesus monkey 
infected with a cloned line of P. knowlesi (67) or monkey infected 
with cloned lines of P. falciparum (131). The latter experiments 
suggested that, contrary to antigenic polymorphism where 
parasites have different alleles and can be categorized as genomic 
clones, antigenic variation is a phenotypic variation occurring 
with the same genomic clone of the parasite. The molecular 
basis of this phenomenon was elucidated with the sequencing 

of large segments of the P. falciparum and P. knowlesi genomes 
and the subsequent complete sequencing of the genome of many 
Plasmodium species. Antigens prone to antigenic variation are 
often expressed on the surface of iRBC. Examples includes the 
multigene family, such the var genes (62), the stevor gene family, 
the rifin gene family (63), the surfin gene family (132), the sicavar 
gene family (133), and the Plasmodium interspersed repeats (pir) 
genes. The var gene family is the most studied and has been shown 
to be the target of protective anti-blood-stage antibodies (134, 
135). It is also involved in many of malaria pathologies due to 
parasite sequestration resulting from iRBC cytoadherence (136). 
PfEMP1 proteins, encoded by the var gene family, are highly 
polymorphic and have different variable domains, called Duffy 
binding-like domain, which determine their binding specificities 
to various ligands on endothelial cells such as thrombospondin 
(137), CD36 (138), ICAM-1/CD54 (139), chondroitin sulfate A 
(140–142), VCAM-1, E-selectin (143), αvβ3 integrin (144), hya-
luronic acid (145), PECAM-1/CD31 (146), gC1qR/HABP1/p32 
(147), or endothelial protein C receptor (148). PfEMP-1 proteins 
bind also to RBC through complement receptor 1 to form rosettes 
(149). P. falciparum parasites possess ~60 var genes distributed 
over the 14 chromosomes of the parasite (37). Var genes expres-
sion is extremely regulated and only one PfEMP1 type is produced 
and displayed on the surface of iRBC (150). At each cycle, the 
parasite switches the expression of the var gene at a rate of 2% 
in vitro, generating new clones with new antigenic and adhesive 
phenotype (151, 152). Vir proteins, members of a superfamily of 
the pir multigene superfamily, also mediate cytoadherence of P. 
vivax iRBC to endothelial cells (153), resulting to sequestration 
of mature iRBC (154). There are ~350 vir genes, and they are 
also highly polymorphic (155, 156). Stevor and Rifin proteins 
are involved in cytoadherence processes and are also highly 
polymorphic (70, 71). In the recent years, it has become clear 
that some members of these multigene family has a particular role 
and may be involved in certain pathology. As example, var2CSA 
mediated the specific cytoadherence of iRBC to placenta (142) 
and is associated with placental pathology, such as still birth and 
fetus growth retardation Vaccination using immunogens based 
on var2CSA will thus induce inhibitory antibodies, preventing 
cytoadherence (157, 158) and placental sequestration. Thus 
defining the role of members of these multigene families may lead 
to tailored immune intervention.

ANTiGeNiC DiveRSiON

Antigenic diversion occurs when non-inhibitory anti-parasite 
antibodies prevent the action of inhibitory antibodies. Antigenic 
diversion has been observed with the merozoite surface protein 
(MSP)-1. MSP-1 is a surface protein which binds to glycophorin 
A, a molecule present on the surface of RBC, and thus is essential 
for merozoite invasion (159, 160). MSP-1 is cleaved at the time 
of invasion. Neutralizing antibodies, which block the proteolytic 
cleavage in the C-terminal part (MSP-119) of the protein (anti-
bodies), can prevent invasion (152, 161). However, antibodies 
against the adjacent or overlapping region can block the effect 
of MSP119-inhibitory antibodies (blocking antibodies) and thus 
allowing invasion to occur (162). One possibility to overcome this 
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phenomenon is to design immunogen(s) that either induce(s) 
neutralizing but not blocking antibodies in naïve individuals or 
tip the balance to greater production of neutralizing antibodies 
over blocking antibodies in naturally exposed individuals. So far, 
there has been limited success with MSP-1 (159, 163).

ePiTOPe MASKiNG

Epitope masking is the capacity of non-parasite-specific antibod-
ies to prevent parasite-specific inhibitory antibodies to react with 
their epitopes. During the establishment of an antibody response, 
IgM precedes IgG production and thus are the first line of humoral 
response either alone or in combination with complement (164). 
Malaria-specific IgM have been shown to have efficient inhibi-
tory activity against sporozoite and iRBC (165). However, IgM 
with different specificities can also bind to PfEMP-1 molecules 
expressed at the surface of iRBC through their Fc portion (Fc) 
(166). Non-parasite-specific IgM (NpsIgM) promote rosetting 
and thus may facilitate sequestration, in order to avoid splenic 
elimination. NpsIgM binding to the PfEMP-1 VARCSA2, which 
is involved in the binding of iRBC to chondroitin sulfate in the 
placenta, appears to protect iRBC from phagocytosis mediated 
by IgG (167). NpsIgM also binds to the MSP DBLMSP and 
DBLMSP2 and prevents IgG binding to these molecules by mask-
ing epitopes (168). The role of these two molecules in merozoite 
biology is still unclear but non-specific IgM epitope masking may 
be important for protecting the parasite against a specific IgG 
inhibitory response.

SMOKe-SCReeN STRATeGY  
BY CROSS-ReACTiviTY

Smoke-screen strategy is often used by the parasite to divert the 
antibodies specific for one antigen (antigen A, e.g., an epitope of 
inhibitory antibodies) to react against another antigen (antigen 
B, e.g., an epitope of non-inhibitory antibodies) which possess 
regions homologous to antigen A. Antibody reactivity to seg-
ments shared by the two proteins will decrease the amount of 
antibodies reacting to antigen A and thus reducing efficacy of 
inhibitory antibodies that can inhibit parasite invasion or devel-
opment. Many Plasmodium antigens contain repeats, and it was 
shown that cross-reactivity can occur between different blocks 
of repeats (169). Cross-reactivity has been observed: (i) between 
different epitopes from the same block of repeats [i.e., within 
the same block of repeats in the CS protein, or Ring-erythrocyte 
surface (RESA), or S-antigen or falciparum interspersed repeat 
antigen (FIRA)]; (ii) between epitopes present in different blocks 
of the same antigen (i.e., RESA or FIRA), between repeats of dif-
ferent antigens [between the CS protein and the cross-reactive 
antigen (CRA), between the histidine-rich proteins]. So far, the 
importance of this mechanism in the immune response evasion 
has remained uncertain.

DYSReGULATiON OF B CeLLS

Atypical memory B cells are a population of hypo-responsive 
memory cells which have been first described in chronic HIV 

infections (170). They increase in numbers during chronic 
exposure to malaria and are poor responders to antigen res-
timulation (171). However, they are able to produce neutral-
izing antibodies (172). These cells might be important during 
repeated stimulation due to constant exposure and help to con-
trol parasite density. However, in regions with lower exposure 
or in the absence of reinfection, immunity might wane rapidly.

As mentioned in the previous section, many Plasmodium 
antigens contain repeats. Similar to many viral antigens (173) and 
haptenated polymers (174), repeats-containing Plasmodium anti-
gens can stimulate B cell independently of T cell help. However, 
this often leads to the production of mainly IgM and limited B 
cell memory (175). In addition, exposure to antigens containing 
repeated motifs can result in the suppression of an ongoing T cell 
response (176, 177).

HOMOLOGieS wiTH HOST PROTeiNS

Many Plasmodium antigens involved in the invasion of host 
cells have regions which strong homologies with host proteins 
involved in protein–protein interactions. Thrombospondin 
type-1 repeat (TSR) domains and von Willebrand factor (vWF)-
like A domains are present in the CS protein, thrombospondin-
related anonymous protein (TRAP) (178, 179), CS protein 
TRAP-related protein (CTRP) sporozoite surface protein (180), 
secreted protein with an altered thrombospondin (SPATR) (181), 
and thrombospondin-related apical merozoite protein (TRAMP) 
(182). These molecules are involved in different stages of parasite 
development, in sporozoite and merozoite motility, and in inva-
sion of mosquito midguts, salivary glands, hepatocytes, and RBC. 
Many merozoite proteins such as MSP-1, MSP-4, MSP-5, MSP-8, 
and MSP-10 (183), PfRipr (184) and sexual-stage protein, such as 
P25 or P28 (185, 186), have been found to contain an epidermal 
growth factor domain that is involved in its binding to their 
receptor. Due to the homology to the host protein, the induction 
of antibodies to epitopes contained in these homologous regions 
is difficult since the host is tolerized against its own proteins. 
Immunization with immunogens containing these motifs with 
strong adjuvants could possibly escape immunological tolerance 
but may have the risk of inducing auto-immunity.

iMMUNOSUPPReSSiON

Myeloid cells are essential mediators of an efficient immune 
response against the malaria parasites. Monocytes, macrophages, 
and neutrophils phagocytose iRBC, which eventually leads to the 
elimination of the parasites (187). Phagocytosis by monocytes/
macrophages can be mediated through the interactions of 
PfEMP-1 and CD36 without inducing or increasing a protective 
pro-inflammatory response (188). However, during infection, 
phagocyte functions can be diminished after the ingestion of the 
malaria pigment or hemozoin (the digested product of hemo-
globin by the parasites) (189, 190). Pigment-loaded macrophages 
cannot phagocytose more iRBC, and their capacity to generate 
radical oxygen intermediates is also reduced (191).

Dendritic cells (DCs) are essential to induce adaptive immune 
responses (192). Engagement of CD36 and CD51 (the αv integrin 
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chain) on DCs by PfEMP-1-expressing parasites impair DC 
maturation and its capacity to prime T cell responses, leading to 
reduced production of pro-inflammatory cytokines such as IL-12 
and increased production of immunosuppressive cytokines such 
as IL-10 (193).

Acute blood-stage infection induces a strong activation of 
mononuclear cells. This can result in apoptosis in monocytes, B 
cells, T cells, and DCs (194–199). Acute infection can also lead to 
thymus apoptosis and depletion, thereby diminishing the output 
of new naïve T cells (200). On the other hand, chronically activated 
T cells (both αβ and γδ) during lingering blood infection or mul-
tiple reinfections can also enter a phase of anergy (201–203) and/
or exhaustion (204). Plasmodium infection activates check-point 
inhibitors molecules such as program cell death protein 1 (PD-1), 
program death ligand 1 (PD-L1), PD-L2, lymphocyte-activation 
gene 3 (LAG-3), and cytotoxic T lymphocyte antigen-4 (CTLA-4) 
in CD4 and CD8 T cells. In rodent models, blockade of these 
molecules facilitates the elimination of blood parasites (91, 205, 
206) and the establishment of T cell memory (207). Regulatory 
T cells often expand during infection (208). Their principal role 
is to control the excessive pro-inflammatory response which 
depending on the parasite species may be beneficial or detri-
mental (209–211). Taken together, these mechanisms leading to 
immunosuppression are likely to favor survival of the parasite in 
the host and prevent the establishment of an efficient memory 
response. In addition, while it might also be beneficial for the host 
to prevent immunopathogenesis (212), ensuring host survival is 
advantageous to parasite survival.

ReDUNDANT PATHwAYS OF ReD BLOOD 
CeLL iNvASiON

Invasion of RBC by merozoites is a complex process. It involves 
a precise and coordinated expression of different sets of proteins 
which are either expressed on the surface of the merozoite or in 
the organelles such as rhoptries, micronemes, and dense granules 
located at the apical end of the merozoite (183). The invasion 
process has been amply studied for P. falciparum. It was shown 
that the parasites can use multiple pathways involving at least 
nine ligand/receptor combinations to invade a RBC. There are 
two parasite protein families involved in the host-cell selection 
and invasion process; the reticulocyte-binding protein homologs 
(Rh) and the erythrocyte binding-like proteins (EBL) (213). These 
proteins are polymorphic, and their expression varies depending 
on parasite clones. Polymorphisms in a P. falciparum EBL have 
been shown to result in a change in their receptor specificity (214) 
or in a switch to Rh-dependent invasion, a different invasion 
pathway for RBC invasion (215). Variation in the use of eryth-
rocyte invasion pathways results in evasion of human inhibitory 
antibodies (216). Thus, this suggests that vaccines targeting only 
one pathway will select parasite using other pathways. However, 
so far, the pathway involving Rh5 and its ligand Basigin/CD147 
has been shown to be required for all parasites clones and isolates 
tested so far and has shown limited polymorphism (217). It thus 
represents a promising vaccine candidate (218, 219).

Contrary to P. falciparum, P. vivax was thought to use only one 
pathway to invade RBC (220). P. vivax merozoites only invade 

reticulocytes, the immature RBC. Since people in West Africa 
or with West African origins naturally lack the Duffy antigen, 
they are resistant to P. vivax blood infection (221, 222). This 
serves as a strong argument for the existence of only one invasion 
pathway for P. vivax. However, in the recent years, many studies 
have reported P. vivax infections in Duffy-negative patients (220, 
222–228), suggesting that P. vivax merozoites may use another 
pathway to invade reticulocytes (229). This may limit the efficacy 
of vaccine based on the Duffy-binding protein, the ligand of the 
Duffy antigen (230), by selecting for parasites that are able to 
invade via this alternative pathway.

SHeLTeRS

Infection with sporozoites from some human/primate parasites, 
such as P. vivax, P. ovale, P. cynomolgi, Plasmodium simiovale, and 
Plasmodium fieldi, may lead to relapse (231). After a patent blood 
infection is completely cleared by the immune system or by drug 
treatment, blood parasites may reappear and induce new clinical 
attacks (232). This new infection originates from long-lasting 
liver forms, called hypnozoites (233). These non-dividing and 
metabolically active forms (234) can persist in the liver of their 
infected hosts for long period of time. Histological analysis on 
liver from infected rhesus monkeys did not show any signs of cel-
lular immune responses against hypnozoites or late-developing 
schizonts originating from these forms (235, 236). This suggests 
that hypnozoites do not trigger any immune response, and do not 
lead to the expression of MHC molecules containing parasites-
derived peptides. Due to the difficulty in studying these forms 
in vitro and in vivo (237), the mechanisms by which the parasite 
subverts immune recognition is unknown. Vaccine development 
against the pre-erythrocytic of P. vivax has been limited, and 
formulations targeting the liver forms may not work against the 
hypnozoites.

As mentioned above, during primary sporozoite-induced 
infection in natural hosts, no cellular immune responses are 
observed (8, 238–240). The liver is rich in macrophages and 
Kupffer cells, which can phagocytose emerging hepatic mero-
zoites. To avoid being recognized by phagocytes, merozoites are 
released inside vesicles called merosomes in to the sinusoid lumen. 
Merosomes do not express macrophage-recognition signal such 
as phosphatidyl-serine and thus escape being phagocytosed (8). 
Merosomes are carried to the lung vasculature where blood cir-
culation is low (241) before releasing their merozoite cargo (242).

Vesicles containing merozoites have been observed inside 
other cell types other than RBC, such as platelets (243), in 
macrophages (244), and in DCs (245, 246). It has been shown 
that merozoites can also divide in the DCs expressing CD317/
tetherin, and eventually initiate new infections (245). It is not yet 
known how the phagocytosed parasites evade digestion or if a 
population of merozoites can infect and multiply in these cells. 
Free merozoite-containing vesicles, called merophores, have also 
been observed in the lymph circulation during rodent malaria 
infection (247, 248). This could explain recrudescence or latency 
of infection. However, as for the merosomes, these vesicles may 
be devoid of recognition signals for phagocyte uptake and may 
not express parasite antigens on their surface.
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CONCLUSiON

Malaria parasites have been interacting with its mammalian 
hosts for more than 150 million years (249) and have efficiently 
evolved to survive under the pressure of the host immune 
system. The parasite has developed numerous immune evasion 
mechanisms. Since new host immune mechanisms against the 
parasite are constantly being discovered, it will be of no surprise 
that new immune escape mechanisms by the parasite will be 
uncovered. For example, there is still little known on how innate 
immunity are induced during infection and on how protective 
epitopes are generated. The ultimate goal of understanding the 
immune responses to the malaria parasites is the development 
of vaccines. The selection of antigens and delivery system is 
governed by the target. Historically, before the whole genome 
was sequenced, the first malarial antigens, that were cloned and 
sequenced, have been assumed to be good vaccine candidates 
(250). However, all these antigens are immunodominant and are 
involved in immune escape. For vaccines to develop in a timely 
manner, the selection criteria should involve a more stringent 
GO-NO Go selection based on the analysis of the potential of 

the vaccine candidate to avoid immune escape. This also calls 
for an immunological approach to define correlates of protec-
tion to guide vaccine development. The development of the 
experimental human malarial challenge model, where complete 
sterile protection can be obtained (34, 35), is strong evidence 
that a vaccine against malaria can be obtained. Together with 
parasite genetics, the development of the rodent models and 
the experimental human challenge model would greatly assist 
in making the critical GO-NO Go decisions and facilitate the 
development of an efficacious vaccine against malaria in the 
foreseeable future.
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