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Introduction

Recent advances in deep-learning technology have brought revolutionary changes to artificial 
intelligence (AI) research and application across industries, yielding major innovations such as 
facial recognition and self-driving cars. Medicine is no exception, and radiology, which is based on 
the interpretation of image data obtained through various methods-and has often been compared 
with computer vision using pattern analysis-is anticipated to experience a major revolution. Despite 
expectations for increasing research and development of AI-empowered ultrasonography, the clinical 
implementation of AI in medical ultrasonography faces unique obstacles. It will be necessary to 
standardize image acquisition, regulate operator and interpreter qualification and performance, 
integrate clinical information, and provide performance feedback to maximize benefits for patient care.

Fundamental Limitations of Ultrasonographic Image Data

Computed tomography and magnetic resonance imaging generate predictable, reproducible 
imaging without much dependence on operator skill. However, the quality of ultrasound imaging is 
significantly dependent on the ability and experience of the person performing ultrasonography. Even 
the most competent ultrasound examiner may not produce high-quality diagnostic results depending 
on the patient’s body habitus and compliance. Imaging is further dependent upon the angle of the 
probe meeting the skin, shadowing from superficial structures, and the depth of the target lesion. 
These limitations, in addition to common variables such as ultrasound machine operating settings 
and artifacts, make it difficult to apply AI in ultrasound examinations. As a result of these complex 
interactions, ultrasound image information as input data for AI applications is subject to various 
random noise from unidentifiable sources. 

Standardizing Image Acquisition

In order to overcome these fundamental limitations, standardized protocols for the acquisition 
of static images and additional cine images are required. Cine images are routinely obtained to 
complement anatomic variance among patients and reduce the perception gap between the person 
performing ultrasonography and the person interpreting the images. Unfortunately, cine images often 
fail to provide a clear depiction of the intended image information since the ideal physical conditions 
for obtaining optimal images change with dynamic anatomy. Long-range cine swiping results in 
visually inconclusive features with minimal benefit. The best results of cine swiping can be produced 
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when applied to a very small or fixed anatomic structure. For 
example, in echocardiography and obstetric pelvic ultrasonography, 
where measurement and visual analysis are required, video clips 
could provide a full set of relevant structured data, allowing 
spatiotemporal analysis and maximizing the advantages of deep 
learning. To this end, in February 2020, a cardiac ultrasound 
software utilizing AI called Caption Guidance received the first Food 
and Drug Administration (FDA) approval for its algorithm, which can 
calculate the ejection fraction from the best auto-captured three-
dimensional (3D) video clips [1]. The software allows clinicians to 
easily utilize 3D anatomical information diagnostically by using the 
AI algorithm to obtain optimal images. In addition, the AI algorithm 
is capable of recording loops of echo data that allow it to calculate 
the left ventricular ejection fraction that is in agreement with 
human experts [1]. Similarly, there have been advances in obstetric 
and gynecologic research pertaining to ultrasound, including 
the automatic detection of endometrial thickness and automatic 
classification of ovarian cysts [2]. The concept of 3D ultrasound 
acquisition using cine clips can be applied to many complex 
anatomic areas, including various joint diseases, fetal evaluation, 
neonatal disease, and binary classification of benign or malignant 
tumors. From these examples, it seems that software capable of 
overcoming the fundamental limitations of ultrasound acquisition 
will have the ability to produce standardized image data using 3D 
acquisition of focused anatomical areas of interest by limiting noise. 

Understanding Deep Learning

Computer-aided diagnosis (CAD) has been utilized in medical 
imaging, including ultrasonography, for decades. Image information 
obtained by ultrasonography provides the foundation of input 
data for the development of a machine learning algorithm, either 
using traditional handcrafted feature extraction or automated 
feature extraction via deep learning [3]. As the input data are the 
results of numerous complex factors, it is difficult to have a well-
classified, structured ultrasound image data set. Variables in the 
ultrasound image acquisition process produce enormous amounts 
of unintentional image data, making it difficult for either the 
conventional method or deep learning to create a usable algorithm 
in practice. The traditional handcrafted feature extraction method is 
heavily dependent on the domain expert’s knowledge, which has a 
high possibility of bias due to dependence on a single expert and 
a potentially skewed selection of the best-quality images for the 
training set. The conventional method is also time-intensive because 
an expert must annotate images manually. Deep-learning technology 
with a convolutional neural network is known to have the best 
performance in image pattern recognition. This method could bypass 

the image selection process and extract relevant information from 
image data through multiple processing layers that human cognitive 
function cannot recognize [3]. It is uncertain whether large amounts 
of input data could guarantee good outcomes in the computer 
analysis of ultrasound imaging due to the fundamental limitations 
of high variance and high bias in image acquisition. Well-curated 
input data that have meaningful display objects in the research 
environment may not be applicable in real-life situations. In addition, 
the algorithm may not be generalizable for use in different clinical 
settings and patients with different demographic characteristics 
from those present at the start of the data gathering process. 

Opportunities for Clinical AI Applications

There is substantial research in the literature regarding ultrasound 
AI applications in areas such as the thyroid, breast, and prostate, 
which are located on the superficial aspect of the body and are 
less affected by overlying structures, for the binary task of tumor 
characterization. Many CAD systems have been developed to improve 
the diagnostic accuracy of thyroid and breast nodules with a certain 
degree of success. However, despite the high sensitivity of CAD 
systems, they have failed due to variable diagnostic performance 
and low specificity [4]. Recent research has demonstrated improved 
diagnostic performance for breast cancer using quantitative color 
Doppler radiomics features [5]. Research has been further expanded 
to demonstrate the feasibility of neural networks for activity scoring 
of arthritis with impressive results compared to a human expert [6]. 
Further research on musculoskeletal disease, including cartilage 
segmentation, is expected to progress in the future [7]. Better results 
could be obtained by adding color Doppler or elastography to high-
quality grayscale images in the analysis.

Regulation of Operator and Interpreter 
Qualification and Performance

Despite the necessity for expert image acquisition to aid diagnostic 
accuracy, operator capabilities have never been examined 
thoroughly in the literature. Institutional quality assurance is not 
intended to provide individual performance feedback. Anecdotal 
malpractice claims are rare and cannot be used as feedback for 
real improvement of operator skills. Ultrasound images are a 
calibrated image representation of the operator's knowledge-based 
perception, which requires a significant learning curve for ultrasound 
use and interpretation. Performing ultrasonography requires a high 
level of training that may take years to develop. A well-trained 
radiologist or sonographer can distinguish between normal and 
abnormal structures by subjective judgement. Although there may 
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be some minor variation, the imaging results are generally agreeable 
among experts. However, even an expert radiologist's interpretation 
of ultrasound imaging is subject to error owing to an inadequate 
examination by the sonographer. If the operator misses the lesion 
when scanning the patient, there is no way that either a human or 
an AI system can detect the lesion based on the provided images. 

Medical ultrasound is increasingly used by non-radiology-
trained medical personnel due to the widespread dissemination 
of affordable portable ultrasound equipment and the need for 
urgent clinical decisions at the bedside. This leads to ultrasound 
examinations being performed by non-radiology-trained physicians 
in the emergency department or intensive care unit without 
extensive quality assurance or a standardized training system 
compared to traditional radiology [8]. In most developed countries, 
a governing body stipulates the training requirements and licensure 
of sonographers and physicians (radiologists). While there is a 
regulatory system for continuing education requirements and quality 
assessment for recertification in the United States, it is not intended 
for the evaluation of individual performance. An ideal system would 
have institutional practice guidelines to set the scope of individuals 
who perform or interpret ultrasound examinations.

Integration of Clinical Information

Deep-learning ultrasound has been studied for pattern recognition 
and classification based on hepatic echogenicity to make a diagnosis 
of fatty liver disease [9]. Subsequently, hepatic fibrosis grading using 
a deep-learning technique with ultrasound shear wave elastography 
has been developed [10,11]. While these studies provide important 
insights, further investigations in patients with many etiologies 
are necessary, as different morphologic changes over time may be 
expected in relation to different etiologies. 

A CAD algorithm, based on a morphologic feature analysis, has 
been developed for the differential diagnosis of ovarian lesions. AI 
has tremendous capabilities to integrate clinical information such 
as family history, genetic information, menstruation status, and 
hormonal treatment with image analysis, which could improve the 
diagnostic ability to differentiate benign and malignant ovarian 
lesions and could add predictive information for management. 
Clinical information should be integrated into image data analysis 
tools both to improve performance and to maximize clinical 
usefulness.

Institutional and Individual Feedback

The American College of Radiology has developed the Ultrasound 
Liver Imaging Reporting and Data System (US LI-RADS) algorithm 

to standardize interpretation utilizing two components: detection 
scores and visualization scores [12]. Son et al. [13] evaluated the 
US LI-RADS algorithm and reported that 86% of hepatocellular 
carcinomas were missed among patients with an elevated body 
mass index and moderate/severe fatty infiltration. While AI could 
provide further insight by integrating demographic information 
on the incidence of hepatocellular carcinoma, it is uncertain how 
the individual performance of the operator and interpreter affects 
tumor detection. AI has the ability to provide both institutional 
and individual performance feedback. Current AI has the potential 
to eventually provide performance feedback for operators with 
integrated clinical information and demographics. Ultimately, AI 
ultrasonography will not simply assist novice operators, but will help 
to improve outcome-based performance via continuous feedback 
with system improvement. 

Future Development Directions

The application of AI in ultrasonography will likely have the greatest 
impact in fields where there is no significant difference between 
beginners and experts in the initial image acquisition process. The 
more complex the image acquisition process is, the more difficult 
it may be to apply AI tools. Further research will likely focus on an 
easily approachable organ with the application of elastography, 
color Doppler ultrasonography, and contrast-enhanced Doppler 
ultrasonography [14]. Three-dimensional acquisition of anatomy 
has the potential to expand the efficacy of AI applications. Recent 
advances have been made in research and clinical application of 
point-of-care ultrasound with the intent to problem-solve single 
tasks in specific anatomic areas of interest, including the detection 
of ascites, pleural effusion, pericardial effusion, pneumothorax, and-
more recently-the complicated diagnosis of coronavirus disease 2019 
pneumonia [15,16]. It is hoped that the addition of AI-empowered 
tools could eventually help non-radiology-trained clinicians in 
certain clinical scenarios. In a recent article, point-of-care chest 
ultrasonography demonstrated a sensitivity of 75%, a specificity of 
100%, a positive predictive value of 100% and a negative predictive 
value of 94.9% for the diagnosis of pneumothorax, though there are 
various situations that decrease the performance of ultrasonography 
such as subcutaneous emphysema [15]. An AI-enabled ultrasound 
diagnostic algorithm for pneumothorax has been investigated and 
proven clinically effective in a small number of patients [17]. 

Regulatory Aspects of AI in Ultrasound

AI technology has continued to evolve with research advances 
following FDA approval. Previously, FDA-approved AI applications 
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had locked-in models that were an obstacle to the adaptive 
evolution of AI algorithms. To overcome this regulatory problem, 
in January 2021, the FDA announced an action plan including 
a Predetermined Change Control Plan, which allows future 
modification to their original devices within a predefined range of 
"what to change" and "how to learn" while maintaining safety [18]. 

Conclusion

AI-empowered ultrasonography has the potential to further 
accelerate the use of medical ultrasound in various clinical settings 
with broad usage by medical personnel. The application of AI in 
ultrasonography could help to assist physicians in the diagnosis and 
triage of patients. The standardization of ultrasound examinations 
and qualifications for operators and interpreters should be discussed 
in medical disciplines, institutional leadership, and governing 
bodies [8]. These discussions are essential in the looming era of 
AI. Before using any AI tools, each institution should conduct an 
internal validation process to verify whether it is suitable for their 
patients and practitioners, as there is a lack of evidence-based non-
randomized prospective studies to validate the efficacy of AI tools 
[19]. Otherwise, the increasing use of ultrasonography coupled 
with AI assistant tools could result in wasted resources, malpractice 
caused by misdiagnoses, and eventually a great burden on medical 
institutions and their patients.
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