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We present a framework to assist the diagrammatic modelling of complex

biological systems using the unified modelling language (UML). The frame-

work comprises three levels of modelling, ranging in scope from the

dynamics of individual model entities to system-level emergent properties.

By way of an immunological case study of the mouse disease experimental

autoimmune encephalomyelitis, we show how the framework can be used to

produce models that capture and communicate the biological system, detail-

ing how biological entities, interactions and behaviours lead to higher-level

emergent properties observed in the real world. We demonstrate how the

UML can be successfully applied within our framework, and provide a cri-

tique of UML’s ability to capture concepts fundamental to immunology and

biology more generally. We show how specialized, well-explained diagrams

with less formal semantics can be used where no suitable UML formalism

exists. We highlight UML’s lack of expressive ability concerning cyclic feed-

backs in cellular networks, and the compounding concurrency arising from

huge numbers of stochastic, interacting agents. To compensate for this, we

propose several additional relationships for expressing these concepts in

UML’s activity diagram. We also demonstrate the ambiguous nature of class

diagrams when applied to complex biology, and question their utility in

modelling such dynamic systems. Models created through our framework

are non-executable, and expressly free of simulation implementation concerns.

They are a valuable complement and precursor to simulation specifications

and implementations, focusing purely on thoroughly exploring the biology,

recording hypotheses and assumptions, and serve as a communication

medium detailing exactly how a simulation relates to the real biology.
1. Introduction
Computational modelling and simulation methods are increasingly employed as

a complement to traditional wet-laboratory techniques in exploring biological

processes such as those of the immune system [1]. Computer simulators that com-

bine experimental data with theories of system operation and composition offer a

flexible means by which to test hypotheses, perform preliminary exploratory

experiments and potentially guide subsequent laboratory experimentation [2–4].

The construction of a well-engineered simulator that models the behaviour

of a complex biological system is a non-trivial exercise, which will often involve

an interdisciplinary collaboration between a biologist (the domain expert) and a

computer systems engineer responsible for the implementation of the simulator

code [5]. Communication between these parties is key in order that a sensible

model of the biology is implemented in a sensible manner. Likewise, communi-

cation of the biological model underlying the simulator to the wider community

helps to ensure a healthy research field. This process of domain modelling helps

establish what is part of the model, and just as importantly what is not part of
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Figure 1. An overview of the artefacts comprising the CoSMoS process, and
the flow of information between them. Adapted from [7].
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the model, and is essential for correct interpretation of simu-

lation results, and assessing their contribution in the wider

biological research context.

The role of a domain model is to present a coherent and

transparent model of a biological system. It captures assump-

tions, abstractions and hypotheses made of a biological

system, which can arise in a variety of manners. It is often

unclear which biological factors are implicated in a particular

biological phenomenon of interest, and furthermore, it is both

computationally and conceptually intractable to capture in

simulation every aspect of a biological system, and assump-

tions (often implicit) are made to address this. The process

of constructing a domain model entails a thorough explora-

tion of the biology, examining the biological system from a

variety of perspectives, including low-level components

such as cells or, conversely, top-down perspectives of how

system-level behaviours emerge. Domain modelling can high-

light inconsistencies in available data, or a lack thereof, which

again necessitate that assumptions and hypotheses be

adopted. A domain model captures how system-level beha-

viours are hypothesized to manifest from the mass action of

low-level components such as cells, and these hypotheses

may be subjected to evaluation in subsequent simulation.

Domain modelling is a key element of our wider strategy

for engineering high-quality simulations for use in exploring

biological domains: the ‘CoSMoS process’ [6–8], further

reviewed in the electronic supplementary material and sum-

marized in figure 1. CoSMoS comprises several modelling

activities and artefacts intended to capture, justify and expli-

citly document the assumptions made of a biological system

in the various stages of simulator development and use.

The biology under study is referred to as the domain. The

domain modelling stage intentionally omits any simulation

implementation concerns, and the resultant domain model

is non-executable; it focuses purely on what is known of

the biology, not how it is to be implemented. Implemen-

tation-specific information, assumptions and constructs are

recorded in the platform model, a subsequent CoSMoS model-

ling phase that builds on the domain model and yields a

software specification from which a simulation can be con-

structed. A domain model can be simulated in a number of

different ways, and each possible strategy for implementation

is accompanied by its own set of assumptions. Furthermore,

the hypotheses and emergent properties explicitly captured

in the domain model should not appear explicitly in any soft-

ware specification; these emergent properties should be

observed as high-level simulation behaviours in the same

manner that they are in the domain, and hypotheses are to

be tested based on simulation results. Neither should be

directly coded into the simulation. These reasons necessitate

the separation of domain and platform models; the former

dealing with scientific concerns in the domain, the latter con-

cern with issues relating to implementation. An example of

the separation between domain and platform models may

be found in the supporting materials. The platform model

is implemented as a simulation platform which can be executed

and facilitates computer-based experimentation, from which

results are recorded (as the results model) and interpreted in the

context of the biology. This may entail evaluating hypotheses

or making predictions.

The CoSMoS process is intended to be an iterative

process, where each of the models undergoes potential modi-

fication between iterations. An iteration is envisaged to
comprise three stages: discovery where the domain model is

modified to reflect further investigation of the domain or

changes to the context in which research is to be conducted;

development in which the platform model and simulation plat-

forms are updated to reflect the modified domain model; and

exploration, where simulation experiments are performed. If

the simulation fails to adequately capture the biology, then

further iterations of the CoSMoS process are warranted,

which may begin with re-examining the biology and amend-

ing the domain model, and then tracing these amendments

through the other CoSMoS artefacts.

In this paper, we describe a framework for creating a

domain model, which captures and communicates biological

concepts as a collection of diagrams at various levels of scope

and abstraction. The tool chosen for creating the diagrams

advocated in our domain modelling framework is the unified

modelling language (UML) [9]. The UML is a collection of dia-

grammatic notations allowing for a wide range of specification

scopes, from high-level system overviews to low-level focuses

on particular system components [9,10]. It can represent both

static and dynamic views of a system, at various levels of

abstraction. Static views depict the relationships that com-

ponents hold with one another, whereas dynamic views

express the collaborations between system components and

the changes to their internal states that influence their beha-

viours. This ability to specify a system from different views

has made the UML a popular modelling tool, and it finds appli-

cation outside of the software domain within which it was

conceived [10].

Here, we discuss advantages and disadvantages of using

elements of the UML to apply our framework in the context

of a domain model of experimental autoimmune encephalo-

myelitis (EAE) [11–13], a mouse model of multiple sclerosis

[14]. Immunological phenomenon has been subjected to

exploration by simulations ranging from receptor modelling

[15], organ-level modelling [16,17], to systemic disease

[4,18,19]. The EAE case study highlights the spatial and tem-

poral scales of complexity seen throughout biology whereby

systemic behaviours manifest from the interactions of

millions of cells and signalling molecules, of differing types,

in various heterogeneous spatial compartments. Networks

of cells and molecules comprise numerous positive and nega-

tive feedback pathways, which can result in either stable

system-level behaviours, or frequent switches. Both the EAE

domain model and its subsequent simulation are published

in full, as open access, elsewhere [4]. Here, the domain

model is used to illustrate our domain modelling framework,

and present a critique of modelling EAE with the UML.
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The appeal of diagrammatic modelling to biologists

stems from its approachability compared with other methods

(e.g. equation-based) [2]. The perceived parallels with the

manner in which biologists reason about the systems have led

to the promotion of UML as a tool for the expression of

agent-based simulation behaviours [20,21], and Harel state-

charts (upon which UML state machine diagrams are based)

were originally put forward for the modelling of complex

systems [22]. Alternatives to the UML for graphically expressing

biological systems include the systems biology graphical nota-

tion [23], which attempts to rectify the ambiguities and lack of

universal applicability of existing notations for representing,

primarily, biochemical systems. There is no universal standard

accepted by the wider computational biology community [23],

and we consider no modelling formalism to be superior to all

others across all biological domains. Modellers should select

the most appropriate modelling tool for the given problem.

The UML is chosen here for its ease of abstraction that coincides

with the multiple layers of abstraction in our domain modell-

ing framework, and its successful record in representing

multicellular multi-spatial biological systems [20,24–28].

Integrated technologies, such as IBM’s rational rhapsody,

the play engine and live sequence charts [29], can facilitate

the diagrammatic specification and implementation of compu-

ter programs. They have been used to simulate biological

systems such as the adaptive immune response generated

within the lymph node with Harel statecharts [30] and

Caenorhabditis elegans precursor cell fate with sequence dia-

grams [31]. These technologies have considerable appeal as

integrated simulation specifications and implementations.

They are, however, unsuitable for domain modelling as their

executable nature necessitates the incorporation of implemen-

tation-specific assumptions and constructs that obscure the

purely biological focus of a domain model.

Our paper is structured as follows. Section 2 describes our

requirements for the modelling exercise, and is followed by

an overview of EAE in which we discuss the usefulness of

less formal diagrams that exist outside of the UML. Section

4 critiques the use of the UML’s activity, class, sequence

and state machine diagrams that have been applied to the

description of various aspects of EAE. In §5, we show how

the syntax of activity diagrams can be modified to better cap-

ture the nature of an immunological process such as EAE.

Finally, we discuss the utility of the UML for modelling

complex biological systems.
2. Domain modelling requirements
The model of EAE is to consist of a series of UML diagrams

that capture and describe the biological processes of interest

as they are currently understood by the EAE community, in

particular our domain expert (co-author V.K.). The domain

model should capture the scope, structure and behaviours

of the domain using various diagrams as appropriate to rep-

resent different elements of the biology. The diagrams as a

whole represent the system behaviours we are wanting to

explore and simulate.

The domain model should coherently and transparently

capture any assumptions and abstractions made of the

biology. These arise from, and are necessitated by, the lack

of understanding in biological systems (it is often this

lack of understanding that motivates the simulation effort
in the first place). The domain model helps to make the

initial interpretation of the biology explicit before further

abstractions are made during implementations.

In order to fulfil our EAE domain model requirements,

we have developed a modelling framework that helps us

describe it both systemically and from the view of individual

actors. The framework defines three levels of modelling, with

each level populated by multiple diagrams capturing a

behavioural subset from a particular viewpoint:

System: the top modelling layer captures a system-level over-

view of the domain model components, how their

interactions integrate to provide high-level behaviours

and how these high-level behaviours are believed to con-

tribute to phenomena observable in the real-world

domain. This layer specifies which aspects of the biology

are to be incorporated into the model, because only a

subset of the entire real-world domain can be represented.

Perspectives: the second modelling layer represents a

decomposition of system-level phenomena into various

perspectives. System-level patterns, such as disease onset

or resolution, are identified and their manifestation from

component-level interactions depicted.

Single-entity: the third and lowest layer of modelling concerns

the specification of single-entity-level dynamics in which

the physical low-level entities of the system, such as cells

and molecules, are considered as individuals and their

behavioural dynamics specified.

Assumptions made of the biology can be captured in a

number of ways. The diagrams created in accordance with

our framework capture what of the biology is represented

in the model, and textual accompaniment can highlight

how known key aspects of the biology have been abstracted.

Note, however, that it is impossible to create an exhaustive

list of what is not represented in a model, as the field of

biology is too large and new discoveries are made constantly.

For this reason, we focus on capturing which elements of a

biological field are represented, rather than which are not.
In the sections that follow, we explore the use of the UML

and alternatives for capturing EAE with reference to expres-

sing the three levels of modelling comprising our framework.
3. The domain: experimental autoimmune
encephalomyelitis

EAE is an autoimmune disease in mice that acts as a model of

multiple sclerosis [14] in humans. EAE results in neurons of

the central nervous system (CNS) being killed, causing

paralysis. The cells involved in this particular EAE disease

model are summarized in figure 2. Animals induced into

EAE autoimmunity experience a period of partial paralysis,

after which they spontaneously recover [12,13].

At the centre of this disease lie the immune cells called

dendritic cells (DCs), T cells and macrophages. DCs ingest

intercellular debris and other cells throughout the body and

process them into materials recognized by certain varieties

of T cells, resulting in T cell activation. The autoimmune

paralysis-inducing stage is mediated through a cascade of cel-

lular interactions that result in CNS-resident macrophage

cells killing neurons. The recovery stage of EAE involves

CD4Treg and CD8Treg cells (both varieties of T cell), the
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latter of which kill autoimmunity-inducing CD4Th1 cells

(another variety of T cell) and interrupt the autoimmunity

cascade. This paper contains only select examples of the full

EAE domain model, used to demonstrate concepts. The full

domain model, and a comprehensive review of EAE, may be

found in the supporting information of Read et al. [4] which

describes the full implementation of EAE as a simulation.

A non-exhaustive list of key assumptions made of the biology

may be found in the electronic supplementary material.

Having provided a brief overview of EAE, it is appropriate

to present the top level of modelling first as it captures the over-

all scope of the biology of interest. While figure 2 is a useful

complement to the text description for illustrating to the

reader an informal overview of EAE, this type of cartoon does

not address our requirements or fit within our three levels of

modelling outlined above. Looking into the UML, we have

not found any of its diagram types to be suitable for this require-

ment. In the light of this, we fall back on less formal

diagrammatic notions to capture the top-level overview.

We have developed a diagram called the research context
diagram to capture the top level of modelling for a complex

biological system such as EAE (see figure 3 for the research

context diagram for EAE). This diagram provides an immedi-

ate overview of the biology being modelled, highlighting the

components hypothesized to play a significant role in the

real-world phenomena and the system-level behaviours that

result from their interactions. It does not have any formal

semantics or syntax rules, and requires textual accompani-

ment to explain its use in a specific biological domain. The

top of the figure details phenomena of interest in the bio-

logical system; the modelling and simulation endeavour

is motivated by a desire to better understand them. Boxes

annotated with ‘�expected�’ tags in the middle represent

emergent system-level phenomena expected to manifest

from low-level component (cellular, in this case) interactions.

The components themselves, and an abstract indication of

their interactions with one another, are represented at the

bottom of the diagram. It is not claimed that other biological

aspects not represented in the research context diagram are

irrelevant, only that the abstractions represented on this dia-

gram are sufficient for the emergence of phenomena

observed in the real world.
For EAE, figure 3 shows how the immune system is

hypothesized to be responsible for paralysis observed in mice

induced into EAE, with DCs activating populations of

CD4Th1 and CD4Th2 cells, the former of which stimulate

CNS macrophages into harming neurons. The spontaneous

recovery observed in mice is also hypothesized to be due to

the immune system. DCs prime CD4Treg and CD8Treg popu-

lations, the latter of which kill CD4Th1 cells. The lack of a link

from ‘protection against subsequent attempts to induce auto-

immunity against the CNS’ serves to recognize the existence

of this phenomenon, but asserts it to be beyond the current

scope. The research context diagram does not describe the

spatial aspects of EAE, which are separately represented in

figure 4. This diagram complements the research context dia-

gram, specifying the migration patterns of cells across the

spatial compartments represented in the domain model.
4. Using the unified modelling language
The diagrams of the UML are useful in capturing the

perspectives and single-entity levels outlined in our model-

ling requirements. Specifically, activity diagrams are well

suited to capturing perspectives and state diagrams the

single-entity dynamics. We explore here the use of these dia-

grams along with a discussion on the use of class diagrams

and sequence diagrams.

4.1. Activity diagrams
Activity diagrams have provided a natural way to represent the

mid-level perspectives of our modelling framework, as they

allow any abstract concept to be represented as an activity,

and can depict the order in which cellular events and inter-

actions occur constituting a system-level behaviour. The

perspectives represented by activity diagram expand on the

research context diagram by decomposing complex system-

level biological phenomena into stages that reveal greater

detail, yet can still be captured on single diagrams. For example,

EAE paralysis and subsequent recovery are represented as four

phases: the initial inception of autoimmunity in the CNS fol-

lowing EAE induction; the snow-balling self-perpetuation of

autoimmunity; the establishment of recovery-associated
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regulation, whereby CD4Th1 cells are killed by CD8Tregs; and

the switch from an autoimmunity-inducing CD4Th1 immune

reaction to a less harmful CD4Th2 variety. The former two

expand upon the ‘immune system harms neurons’ expected be-

haviour in figure 3, and the latter two expand ‘regulation targets

encephalitogenic immune cells which results in reduction in

harm to neurons’.

4.1.1. Capturing cell interactions
An example activity diagram showing the cellular interactions

and events that lead to the instigation and perpetuation of

the regulatory immune response is presented in figure 5. It
demonstrates how autoimmunity-inducing CD4Th1 cells are

ingested by DCs which activate CD4Treg and CD8Treg cells,

the latter of which counter autoimmune activity. It has no

end state, indicating the cyclic population-level events taking

place; there is no clear singular point in time or cellular event

that constitutes regulation having been established, it is a con-

tinuous and ongoing activity. The diagram also makes use of

an additional syntax called the propagating relationship to

depict the proliferative creation of daughter cells. An

explanation of this relationship is presented later in §5.

Figure 5 is typical of our use of activity diagrams to cap-

ture the biological perspectives of our domain model. The
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activities in these diagrams are largely cellular interactions

and state changes that take place in particular compartments

of the domain model (such as those outlined in figure 4).

Where appropriate, we use the UML ‘swim lane’ syntax

(dotted lines) in the activity diagrams to segregate groups

of activities according to the compartments in which they

take place, an example of which is shown later in figure 14.

The diagrams denoting our biological perspectives also

differ from many other applications of activity diagrams by

being cyclic in nature, and often do not contain end states.

They have, however, been given start states to facilitate

exploration of the diagram.

The major source of ambiguity in the use of activity

diagrams to capture the biological perspectives arises from
the multiplicity of cellular and molecular entities that interact

and contribute to system-level behaviours in the real domain.

The cellular events and interactions depicted as activities are

mostly expressed at the single-cell level for clarity; however,

for the perspective being modelled to occur, large numbers

of cells must engage as captured. Additionally, perspectives

should not be interpreted as implying that all cells exhibit the

behaviours indicated; cells are highly stochastic and different

individuals of the same type may exhibit very different

dynamics. For the behaviours shown in the diagrams to be

expressed by the biological system may require that sufficiently

many, but not necessarily all, cells perform the activities indi-

cated on the diagrams. Additionally, the cells engaging in the

activities depicted do not necessarily do so simultaneously;
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at each point in time, there may be many populations of cells

undertaking each of the activities depicted on the diagrams.
4.1.2. Inability to represent compounding concurrency
To attempt to address the ambiguity of biological entity multi-

plicity, we have examined the use of UML activity diagram

expansion regions for depicting ‘compounding concurrency’

in cell populations: the snow-balling effect of ever increasing

numbers of cells engaging in some activity, and populations

of which exhibit positive and negative feedbacks on one

another. Expansion regions are used to indicate multiple invo-

cations of some activities. The region marks an area of the

diagram where actions occur once for each item in a collection

comprising the region’s input. Inputs and outputs are denoted

using small adjoining boxes. Figure 6a shows an example

expansion region: the output of A leads to multiple instances

of B leading to C, all of which must complete before activity

D commences. A shorthand compact notation for a single

activity being invoked multiple times is shown in figure 6b.

Figure 6c depicts three different applications of expansion

region concepts to a simple hypothetical perspective, where

an immunization leads to the maturation of many DCs, each

of which go on to activate (‘prime’) many T cells. The first

example, (i), shows the encapsulation of expansion regions,

reflecting the fact that each of many DCs primes many T

cells. However, when applied to a larger and more realistically

scoped perspective, entailing many more compounding
concurrent activities, this notation potentially adds significant

complexity to the diagram. Furthermore, it is not clear where

the termination of the expansion region should lie for perspec-

tives containing cyclic paths. The second example, (ii), makes

use of the compact notation. The output collections have

been omitted in an attempt to indicate that activities following

an expansion region do not wait for all the invocations of the

region to complete. However, while UML syntax allows for a

region’s inputs and outputs to differ in number, its semantics

dictate that the region then acts as a filter, with some tokens

of execution being dropped [10]. This is not the intended

interpretation. The third example, (iii), makes use of multiple

outputs from a region containing only a single input, to indi-

cate that many invocations may follow the activity. Although

(iii) most closely matches the intended concept, it fails to do

so satisfactorily. The undesired implication of a sequential

transfer of control remains: that no T cells can commence prim-

ing until all DCs have matured as a result of immunization.

These activities are in fact ongoing and overlapping.

Expansion regions offer no satisfactory means to represent

the compounding concurrency of biological systems, and

this motivates the creation of our propagating relationship,

discussed below in §5.

4.2. Class diagrams
To complement the role of activity diagrams in capturing the

perspectives of our domain model, we investigate the ability



CD4Th1

type 1 cytokine

co-stimulatory molecules

type 2 cytokine

CD4Th2

CD4Th

DC

neuron

CD8Treg

0..

0..

0..

0..

0..

0..
0..

0..
0..

0..

0.. 0..

0..

0..

0..

0..

0..

0..

0..

0..

0..

0..

0..

secretes

influences
polarization of

influences
polarization of

influences
polarization of

influences
polarization of

phagocytoses

induces co-stimulatory
expression

expresses

derives signal 2 from

derives signal 2 from

derives signal 2 from

kills

secretes

secretes

secretes

primes

apoptoses

0..10..1

1..

1

0..1

0..1

0..1

0..1

0..1 0..1

0..1

primes

1..

1..

1..

phagocytoses

Figure 7. UML class diagram depicting relationships between entities of the domain model responsible for switching the CD4Th1 response to a CD4Th2 response.
Adapted from [4].
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of class diagrams in specifying the quantities of entities that

engage in particular activities. For example, figure 7 deno-

tes a class diagram of the cells and molecules involved in

switching the CD4Th1 response to a CD4Th2 response. The

diagram highlights relationships between entities such as

cells, receptors and soluble signalling molecules (cytokines),

and the number of these entities that may engage in these

relationships. The central component of this response is the

DC, which activates T cell populations.

4.2.1. Relationships between entities
In our example (figure 7), the generalization relationship has

been used in only one context in perspective class diagrams,

denoting that both CD4Th1 and CD4Th2 cells are examples

of CD4Th cells. With respect to our domain modelling

requirements, generalization provides little meaning at the

biological level as cells and molecules have no notion of gen-

eralization. However, these concepts can prove useful when

attempting to abstract behaviours into a domain model,

where they can serve to reduce the number of associations

depicted. Generalization is a fundamental aspect of quality

coding practice, but this is outside the scope of this paper.

UML composition relationships capture well the mutually

exclusive manner in which cell-surface molecules (such as

MHC-II : MBP) can be expressed by only one cell instance,
even when many cell types are capable. This is demonstrated

in figure 8a. Composition relationships have ‘no sharing’

semantics that entail only one composition relationship may

be exercised by a particular entity instance at a time [10]. Fur-

thermore, the destruction of the ‘owner’ instance entails the

destruction of all ‘owned’ instances; the ingestion and proces-

sing of a cell by a DC entails the destruction of all cell-surface

receptors it expresses. However, this relationship is not

appropriate for modelling cell-signalling molecule relation-

ships. A molecule instance can only be secreted by a single

cell instance, yet the destruction of the cell has no bearing

on the molecule’s existence. Secretion by only a single cell

could be expressed as a constraint using notes; however

this information has instead been stated in text accompanying

the diagrams (see the supporting information of [4]) as the

number of notes would clutter the diagrams.

The complex, dynamic and stochastic nature of biological

cells entails that most relationships depicted on class diagrams

have ‘0..*’ cardinalities. Cells may bind and disassociate with

many other cells during their lifespans; some might do this

many times, others never. The remainder tends to have ‘0..1’ car-

dinalities, reflecting secretion and expression constraints of the

biology. The classes are also highly connected, reflecting the

complex nature of systems such as EAE that involve highly

connected biological entities. This does not aid their readability.
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4.2.2. Ambiguity in class diagrams
It is questionable that the information provided by these class

diagrams is useful when trying to capture dynamic nature of

the domain model perspectives. Class diagrams are ideal for

depicting static relationships, but the inherently dynamic

nature of biological systems can lead to ambiguity when inter-

preting them, for example the time frame over which an

association with a cardinality holds is not necessarily apparent.

Cardinalities indicate the number of instances that engage in

relationships over time, and the ambiguity arises where there

are multiple relevant temporal aspects to a relationship.

To illustrate the time ambiguity of cardinalities, figure 8b
shows the relationship between a molecule called ‘type 1 cyto-

kine’ and a CNS macrophage cell. The molecule ‘stimulates’ a

CNS macrophage, and both ends of the relationship are anno-

tated with ‘0..*’ cardinalities. The relationship between a type 1

molecule and a CNS macrophage, and how different aspects

of this relationship result in the requirement for different

cardinalities, can be summarized as follows:

— Over the course of its lifespan, a CNS macrophage

instance may perceive any number of type 1 cytokines;

some instances will perceive none, others a great many.

This suggests that cardinality ‘Q’ in figure 8b should be

‘0..x’, 0 � x � *.

— CNS macrophage stimulation requires exposure to a

threshold concentration of type 1 cytokine, suggesting car-

dinality ‘Q’ should be ‘x’, 0 , x , *. However, this fails to

adequately represent CNS macrophages that are not stimu-

lated during their lifetimes, which is better reflected

by ‘0..x’.

— In this model, type 1 cytokine instances are not destroyed

through cellular interaction and they may disengage and

interact with other cells. This suggests a ‘0..*’ cardinality

for ‘V’ (figure 8b). However, a cytokine instance can be

perceived only by a single cell at any single point in

time, suggesting a ‘0..1’ cardinality.

A further example of ambiguity concerning the time frame

over which relationship cardinalities apply may be found in

figure 8c, which denotes cellular proliferation. It is valid to

interpret cardinalities as the number of instances that engage

in the relationship at any single point in time. Under this

interpretation, the relationship indicates that a cell provides

any number of daughter cells simultaneously, for example

that it may divide five ways to produce five daughter cells.

However, this is biologically inaccurate: only single daughter
cells are produced at a time through cell division. The relation-

ship is intended to describe the fact that a CD4Th cell has only a

single parent cell, but that a parent cell may spawn any number

of daughter cells during its proliferative cycle.

Like many complex biological systems, immunology is a

highly dynamic and stochastic domain, cells and molecules

engage and disengage frequently. Some instances engage in

particular relationships frequently, whereas others never

engage. There are many temporal aspects of the relationship

that are relevant to the domain, and UML class diagrams

present no means to reflect them all; each end of a UML

relationship is permitted only one cardinality. There are no

UML guidelines on the temporal scope to which a cardinality

applies, and further, in immunology this is specific to the par-

ticular relationship. Modelling dynamic and stochastic systems

using a notation intended for specifying static relationships can

lead to ambiguities that obfuscate rather than clarify. Coupled

with cardinalities that are predominantly ‘0..1’ or ‘0..*’, and the

highly connected nature of classes, we do not consider the

class diagram a particularly informative or comprehensible

formalism for capturing perspectives in a domain model.
4.3. Sequence diagrams
Given the timing intricacies involved in capturing the domain

model perspectives that we have explored with activity and

class diagrams, UML’s sequence diagrams offer an alterna-

tive notation for expressing how dynamic system entities

collaborate. A simple example sequence diagram is presented

in figure 9. Like activity diagrams, sequence diagrams allow

for the depiction of concurrent and alternative paths of

execution. However, their syntax contains an inherent

single thread of control such that time is represented linearly

along only one dimension, preventing the expression of cyclic

groups of events that appear throughout the biology. Further-

more, the vertical notation depicting ‘lifelines’ during which

messages are passed between participants implies that par-

ticipants pass control to one another and wait until other

lifelines have completed before they are themselves able to con-

tinue. This is in contradiction with biological reality, where

entities are entirely concurrent and do not typically block one

another from being able to interact with one another. This

may be overcome using multiple, coupled sequence diagrams,

each of which captures a specific subset of the overall dynamic

being modelled; the behaviour specified in each sequence dia-

gram is invoked when its preconditions are met, as exemplified

in [31]. In this manner, a perspective could be represented by a
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Figure 9. An example UML sequence diagram, depicting the messages
passed between participants A, B and C.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140704

10
collection of sequence diagrams. However, as only a single

activity diagram can fulfil the requirements for modelling

a perspective, as laid out in §2, we consider activity dia-

grams the more appropriate format for the current EAE

case study.

4.4. State diagrams
To fulfil the lowest level of our domain modelling framework

outlined above in our requirements, we have used state dia-

grams to capture the single-entity dynamics of domain

entities in a natural and useful way. In particular, transition

guards between states provide a way of modelling logical,

probabilistic and time-dependent concepts. In the state

diagrams presented here, the following notation has been

used in transition guards:

— ‘&’ and ‘j’ indicate logical conjunction and disjunction

respectively.

— ‘d (condition)’ indicates probabilistic events.

— ‘l (condition)’ indicates events that occur after some

period of time.

While these are well-established concepts in modelling,

the UML 2.4.1 does not specify a syntax for their expression

in state machine diagrams [32,33]; hence, we define our own.

Most biological cells, such as T cells or DCs, have complex

multi-dimensional dynamics (e.g. receptor expression levels).

Furthermore, these dimensions are not always completely

orthogonal. These features of cellular dynamics can compli-

cate their depiction as state machine diagrams: expressing

high-dimensional partially orthogonal information on a

two-dimensional diagram is challenging. For example,

figure 10 captures the dynamics of CD8Treg cells as a state

machine diagram. The locations in which CD8Treg cells

may reside are depicted as a mutually exclusive set of

states that are orthogonal to the rest of the cell’s dynamics,

such as its states of maturation. However, these sets of

states are not entirely mutually exclusive: state transitions

resulting from receptor binding (e.g. TCR:Qa-1:CDR1/2

binding) can occur only in spatial compartments where the

corresponding receptor targets are found. In this case, the

targets (Qa-1:CDR1/2 expressed by DCs) are not found in

the circulatory system. This can be determined through
cross-reference with other state machine diagrams (for DCs,

figure 11; and CNS macrophages, see supporting information

of [4]). However, depicting these constraints directly on the

CD8Treg cell state machine diagram would increase its com-

plexity and hinder its comprehension, which undermines the

goal in presenting a transparent and informative domain

model. UML state machine diagram transition guards have

been employed in dealing with partial orthogonality. For

example, state transitions pertaining to the cell’s migration

into spatial compartments are guarded based on the cell’s

state of maturation; effector CD8Treg cells cannot enter the

cervical lymph node (CLN), spleen or secondary lymphoid

organ (SLO) compartments.

State machine diagrams are effective in capturing orthog-

onal and categorical concepts where states do not overlap.

Molecular expression in the present domain model has

been represented in this manner: a DC (figure 11) either

expresses MHC-II:MBP in sufficient quantities to activate

(prime) T cells, or it does not. However, this is an abstraction;

real DCs express constantly varying levels of MHC, low

while immature and increased following maturation [34].

T cells in certain developmental stages require more MHC-

receptor bindings to be stimulated than others. Fine-grained

quantities such as levels of molecule expression or rates of

molecular secretion cannot be captured using UML state

machine diagram notation, and require mathematical or

textual accompaniment.

UML provides no explicit syntax for representing probabil-

istic or temporal parameters, such as transitions that may occur

only after some period of time has elapsed, or transitions that

occur probabilistically or at some rate. These are highly rel-

evant to stages of a cell’s life cycle, and nearly every cell’s

state machine diagram in the EAE domain model contains

such a notion. We have addressed this by employing guard

statements of the form [l (condition)] and [d (condition)] to

concisely indicate the passage of sufficient time or transitions

that occur probabilistically. Bersini et al. [35] have represented

probabilistic events as guards in combination with a state

machine diagram choice node. In our present model, choice

is to either remain in the current state, or traverse to another,

and as such we have omitted the choice node in our diagrams.

We have found it useful to create state machine diagrams

containing single states with no transitions, and which are

orthogonal to other states. An example of this may be

found in figure 11, where a mature DC is always capable

of expressing MHC-II. It is unconventional for states on

state machine diagrams to exist in isolation such as this; how-

ever, it is relevant and informative in communicating

immunological concepts such as receptor expression.

It has also proven useful to create state machine diagrams

containing states that do not actually describe an entity’s

internal state. It may be argued that the spatial compartment

in which a cell resides is not part of its internal state, yet it has

proven informative to indicate on cellular state machine dia-

grams which compartments the cell may reside in, and the

conditions necessary for it to migrate elsewhere. A further

example is found in figure 12, which depicts the influence

of a signalling molecule on the cells that can perceive it.

The diagram indicates the conditions necessary for their per-

ception to induce behavioural changes in the various cells of

the system. The influence a molecule has on another entity of

the domain is not part of its internal state, yet it is informative

to consolidate this information onto a single diagram.
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5. Modifying activity diagrams
Standard activity diagram notation was shown above to be a

useful tool for capturing the system-level perspectives of a

complex biological domain. However, there are a number

of important biological concepts and modes of behaviour

that are not easily expressed using this standard notation.

Figure 13a depicts the standard sequential state transition of

a UML activity diagram. In biology, an entity (e.g. a cell)

undertaking some action does not necessarily become inac-

tive afterwards, as implied by the arrow; it may continue to

interact with others in a manner not depicted on the diagram.

Here, we present three modifications that fill this gap: the

propagation relationship, the interruptible relationship and

the contributory relationship.
Propagation relationship: figure 13b depicts a propagation

relationship, which depicts an entity performing some

activity which has a number of consequences elsewhere,

without necessitating that the former activity terminates.

In the example, activity A leads to activity B. Activity B

results in activities C and D taking place, whereas B con-

tinues. Hence, activities C and D may be considered new

tokens of execution, and they may occur any number of

times as a result of B taking place. At some point, B termi-

nates, leading to activity E, at which point no more

occurrences of C and D are generated. This relationship

might be used to represent cellular division, with a

mother cell generating a number of daughter cells, before

engaging in some other activity.
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Interruptible relationship: figure 13c depicts a relationship that

can be downregulated or interrupted. Ordinarily, activity

A leads to B. However, the occurrence of activity C can par-

tially, or fully, prevent transitions from A to B. For example,

C might represent secretion of a soluble factor that interferes

with a population represented in A having an effect on

another population represented in B. The interference is

not necessarily absolute, it may be partial.

Contributory relationship: figure 13d depicts a contributory

relationship. Activity A leads to decision B, after which

either activity D or E will take place. The decision is influ-

enced by activity C, which did not itself instigate it, and

represents a separate token of execution. In this example,

the influence of C on B is propagative, and as such, a

single activity C can influence many decisions B.

Examples of these three relationships are shown in

figure 14, which depicts biological perspective expressing
the switch from an autoimmune-inducing CD4Th1 immune

response to a less harmful CD4Th2 response. CD4Th1 and

CDTh2 responses cross-regulate and suppress one another

through the actions of both soluble signalling molecules

(cytokines) and by influencing the actions of DCs. DCs

ingest dead neurons, and the particular balance of signall-

ing molecules in their local environment influences their

subsequent receptor expressions and polarizations. This is

depicted by a combination of our propagating and contribu-

tory relationships: cells secrete many molecules, and these

have multiple influence on other cell populations. A DC’s

polarization and levels of receptor expression influence

whether they activate CD4Th1 or CD4Th2 cells, or neither

(for tolerogenic DCs). It is in this way that both these T cell

populations suppress one another: by secreting the signalling

molecules influencing DC behaviours. Recovery from auto-

immunity is mediated partially by CD8Treg cells which kill

CD4Th1 cells, depicted as an interrupting relationship, and
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hence prevent the secretion of signalling molecules favouring

CD4Th1 activation.
6. Discussion
We have presented a case study in constructing a model of a

complex biological domain using aspects of the UML. The
modelling was driven by the requirement to capture biologi-

cal behaviours as they are understood by the relevant

research community. This requirement led us to outline a

multi-level modelling framework where levels are populated

with multiple diagrams. Each level captures a behavioural

subset: a system-level overview that relates the key model

entities and behaviours to the observed biology; system-

level perspectives that describe how cellular interactions
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lead to particular biological behaviours and consequences; and

single-entity-level diagrams describing the dynamics of entities

(such as cells) and their interactions in the environment. The col-

lection of diagrams (and accompanying text) from each of these

three levels forms our overall domain model of the biology.

We believe that this multi-level framework is generalizable to

modelling other complex biological systems.

Based on our modelling framework, we explored the uti-

lity of the UML’s diagrams. We have not shown examples of

using all the UML’s diagrams, but instead focused on those

that have been, or appeared to be, most useful. We found

activity diagrams to be a natural means of capturing the

mid-level perspectives, and state diagrams are a similarly

natural way of capturing the single-entity dynamics. Class

diagrams and sequence diagrams have not proved to be par-

ticularly useful for the highly dynamic (in terms of numbers

of entities and timings) nature of EAE, the biological system

used as the case study. For biological systems with more

static structures, class diagrams may prove more useful; how-

ever, most biological systems are inherently dynamic, which

leads to the nonlinear emergent behaviours that characterize

them. At the top, system overview level of modelling, we

could not find a UML diagram notation able to capture the

required concepts. Instead, we resorted to using speciali-

zed informal diagrammatic notations, such as the research

context diagram, to capture the required biological concepts.
While activity diagrams were shown to be useful for

capturing biological perspectives, their inability to unambigu-

ously represent a number of core biological concepts led us to

propose several modifications to the activity diagram syntax.

These modifications, the propagating, interruptible and con-

tributory relationships, help us capture the action of entity

populations in the context of activities. Their expressiveness

enabled us to better represent the biology as it is understood

by the research community, and thus model the action of

large populations of entities, which often result in the emergent

behaviours seen across biological systems.

Our application of activity and state diagrams often dif-

fers from ‘conventional’ use. Along with our modified

activity diagram syntax, biological feedbacks and compound-

ing concurrency have manifested as activity diagrams with

no terminating state, which, though unconventional, do

express the intended concepts. The creation of state machine

diagrams expressing the effects that a molecule can have on

cells is also unconventional, as these effects do not represent

state; however they are useful in conveying the biology. The

primary focus of our domain modelling is not to obey the

conventions of UML, but to clearly communicate the biology.

This may entail using UML in a non-standard way, and the

characteristics of biological systems often make this desirable.

As long as the modifications to usage are explained and

understood by the parties using the diagrams, we believe
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this is an acceptable way of using the UML notations. Simi-

larly, where no natural fit to UML exists, specialized

diagrams with less stringent semantics can be used, so long

as they are well explained.

Constructing the EAE domain model has been an incre-

mental task following the CoSMoS process, our wider

strategy for engineering high-quality simulations for use in

exploring complex system domains, explored in further

detail in the electronic supplementary material and in

[6–8]. The domain model focuses purely on biological con-

cerns, it captures hypotheses, abstractions and assumptions,

and communicates the biology that a simulation represents

in a clear and coherent manner. It intentionally does not

consider implementation-specific details. Rather, a sub-

sequent CoSMoS modelling phase translates the domain

model into a software specification (termed the platform
model), explicitly recording implementation-specific concerns,

assumptions and constructs. An example of how domain and

platform models differ in purpose and scope may be found in

the electronic supplementary material. From the platform

model, an executable simulation platform is constructed,

which can be used to run experiments and evaluate hypoth-

eses. The CoSMoS process is iterative, and where simulation

results fail to adequately capture the biology, each of the

modelling phases is revisited. This commences through

consultation with a domain expert where hypotheses,

assumptions and abstractions recorded in the domain

model are revisited. Literature survey is conducted to further

identify significant aspects of the biology, and the domain

model diagrams are amended as inconsistencies arise and

additional biological information emerges. These amend-

ments are then filtered through the rest of the CoSMoS

process, and the revised simulation is re-evaluated. After a

number of iterations, the domain model (and the simulation)

is able to capture the relevant biological concepts to the satis-

faction of the domain expert. It is interesting to note that the

process of developing the domain model can facilitate reason-

ing about the biological domain as the modelling process

forces one to produce a consistent, logical description of the

behaviours, which in turn can throw up contradictions or

gaps in biological knowledge. This can be a rewarding

experience for all parties involved in the modelling. The pre-

sent EAE domain model became a shared resource for

discussions between the domain expert and simulation

engineers for developing an implementation of the model

(a simulator), running simulation experiments and interpret-

ing simulation results with respect to the biology. The

simulator that resulted from the EAE domain model is

called artificial murine multiple sclerosis [4,18,19], and as a

result the domain model records the biology that underpins

the simulator and its results.

There exist technologies for creating executable diagram-

matic models, for example, using IBM’s rational rhapsody
to create executable state-machines [27,30,36], using live

sequence charts in conjunction with the play engine to

create executable sequence diagrams [29,31], or generating

ordinary differential equations from UML state machine dia-

grams [35]. These technologies are well suited to platform

model and simulation implementations, and the manner in

which domain models can be translated into executable soft-

ware specification using the aforementioned technologies

warrants further investigation.

The domain modelling discussed here is a vital element of

the CoSMoS process. Other elements of CoSMoS include pro-

viding a structured argument laying out evidence to support

a simulation’s fitness for purpose [37]; statistically analysing a

simulation to identify criticalities and sensitivities in com-

ponents and pathways, and considering these in the context

of the biology [38,39]; providing automated approaches

to calibration [40]; and maintaining close ties with expert

biologists in the fields being modelled [5].

Appreciating a simulation’s biological model is essential for

correctly interpreting its results, and understanding their contri-

bution in the wider biological research context. Effectively

communicating the biological model that a simulation captures

is vital for a healthy simulation-based biological research field.

The UML helps us to capture and communicate this model.

Core to the process of science is the requirement that results

be reproducible by third parties. This has culminated in calls

to make research simulation code public, and arguably open

source [41]. A clear and concise model of the biology that a

simulator captures should help open source science to succeed

and facilitate the validation of the simulators.

Computational modelling and simulation techniques

have far-reaching potential in biological fields such as immu-

nology. For instance, they can be used to gain insights into

disease manifestation, consolidate data, and thereby help

identify and evaluate promising pharmaceutical targets

[42]. Simulations of human beings can be parametrized

to particular patients, reflecting their medical history and cur-

rent situation, and be used to explore and optimize potential

disease treatment strategies [43]. However, it is critical that

simulation results are demonstrated to be appropriate rep-

resentations of the biology. Simulators, as man-made

artefacts, have as much potential to mislead as they do to

enlighten. Rigorous domain modelling is one important

facet to a more principled biological simulation field.
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