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Abstract

It has recently been demonstrated that the nucleobase-density profiles of mRNA coding

sequences are related in a complementary manner to the nucleobase-affinity profiles of their

cognate protein sequences. Based on this, it has been proposed that cognate mRNA/protein

pairs may bind in a co-aligned manner, especially if unstructured. Here, we study the depen-

dence of mRNA/protein sequence complementarity on the properties of the nucleobase/

amino-acid affinity scales used. Specifically, we sample the space of randomly generated

scales by employing a Monte Carlo strategy with a fitness function that depends directly on

the level of complementarity. For model organisms representing all three domains of life, we

show that even short searches reproducibly converge upon highly optimized scales, implying

that the topology of the underlying fitness landscape is decidedly funnel-like. Furthermore,

the optimized scales, generated without any consideration of the physicochemical attributes

of nucleobases or amino acids, resemble closely the nucleobase/amino-acid binding affinity

scales obtained from experimental structures of RNA-protein complexes. This provides sup-

port for the claim that mRNA/protein sequence complementarity may indeed be related to

binding between the two. Finally, we characterize suboptimal scales and show that intermedi-

ate-to-high complementarity can be reached by substantially diverse scales, but with select

amino acids contributing disproportionally. Our results expose the dependence of cognate

mRNA/protein sequence complementarity on the properties of the underlying nucleobase/

amino-acid affinity scales and provide quantitative constraints that any physical scales need

to satisfy for the complementarity to hold.

Author summary

Messenger RNAs and proteins, two essential types of biopolymers, have recently been

shown to exhibit closely related, complementary physicochemical properties. Specifically,

density profiles of certain groups in messenger RNA sequences directly match the affinity

profiles for precisely those groups in protein sequences they encode. Based on this, it has

been suggested that these molecules may interact with each other specifically and in a co-
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aligned fashion, especially when unstructured. Here, we explore different amino-acid

scales used in the above analysis to assess which of their properties dictate the observed

matching. Specifically, we define the constraints that need to be satisfied by physical scales

for the complementarity to hold and show that the previously derived nucleobase/amino-

acid affinity scales indeed satisfy these constraints. As a whole, our work provides a quan-

titative foundation for understanding the putative messenger RNA/protein complemen-

tarity with implications in different areas of RNA/protein biology including transcription,

translation, splicing and viral assembly.

Introduction

The relationship between mRNAs and the proteins they encode is one of the key defining char-

acteristics of life at the molecular level [1–3]. While this relationship has primarily been studied

in the context of biological information transfer, less attention has been paid to a potential link

between the physicochemical properties of the two biopolymers. Recently, however, we have

reported an unexpectedly strong connection between the nucleobase-density profiles of

mRNA coding sequences and the nucleobase-affinity profiles of their cognate proteins [4–6].

For example, purine (PUR) density profiles of E. coli mRNA coding sequences match their

cognate protein’s guanine (GUA) affinity profiles with an average Pearson correlation coeffi-

cient of -0.76 (note the negative values for R indicate matching as a result of the standard defi-

nition of binding affinities) [4,5]. As illustrated in Fig 1A, the protein GUA-affinity profiles in

this analysis were calculated by weighting their sequences with the GUA-affinity values for

individual amino acids, which in turn were derived from known 3D structures of RNA/protein

complexes by using a knowledge-based formalism [4]. In addition, we have also studied other

affinity scales derived by diverse experimental and theoretical approaches: 1) a chromato-

graphically determined scale of amino-acid affinity for pyrimidine (PYR) mimetics pyridines

[7], 2) a computationally derived variant of the same scale [8], 3) absolute binding free energy

scales between nucleobases and amino-acid sidechain analogs in different solvents [9], and 4)

affinity scales obtained from simulated partitioning experiments using realistic RNA nucleo-

bases [10,11]. The consensus of these studies has been that the mRNA regions rich in a particu-

lar nucleobase or a type of nucleobases (PUR or PYR) tend to encode the protein regions with

a pronounced affinity for precisely those or similar bases. This novel finding is well illustrated

by the mRNA PUR-density profile and its cognate protein’s GUA-affinity profile of a typical,

representative mRNA/protein pair in E. coli whose Pearson correlation coefficient (-0.76)

equals that of the mean of the entire E. coli distribution (Fig 1A). Importantly, the only excep-

tion to the above rule was seen in the case of adenine (ADE). Namely, protein regions with a

high affinity for the purine base ADE tend to be encoded by mRNA regions rich in PYR bases

[5,6].

Although robust and of potentially far-reaching implications, the above findings still lack a

definitive explanation. We have suggested two possibilities: one, concerning the reasons for

the observed complementarity, and another one, concerning its implications. First, the above

observations are consistent with a possibility that genetic encoding may have arisen from bind-

ing, as postulated by the stereochemical hypothesis of the origin of the genetic code [2,12–13].

This hypothesis dates back to 1960s, but we believe our results provide the strongest-yet evi-

dence for it. Importantly, however, our results shift the focus towards analyzing the binding in

the context of longer biopolymers and not just isolated codons and amino acids [4–6,14]. Sec-

ond, the compositional mirroring between mRNAs and their cognate proteins at the level of

mRNA/protein complementarity and affinity scales
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primary sequences supports the possibility of complementary, co-aligned binding between the

two even in modern systems, especially if they are unstructured [4–6,14]. On the side of pro-

teins, this pertains to both intrinsically disordered proteins as well as the unfolded states of

otherwise folded proteins, such as during translation or upon thermal/chemical stress. While

we do not exclude the possibility of interactions in the structured states of either partner [15],

this also more likely involves mRNA stretches that are not base-paired. Overall, the potential

implications of this interpretation concern different facets of RNA/protein biology including

translation control, structure of ribonucleoprotein particles, the behavior of non-membrane-

bound cellular compartments, viral capsid assembly and others [5]. More than two decades

ago, Kyrpides and Ouzounis proposed that cognate mRNA/protein interactions may be an

ancient mechanism for auto-regulation of mRNA stability [16]. Our findings now provide

mechanistic details behind such a possibility. Here it should also be mentioned that the oppo-

site behavior of ADE suggests that there may have been at least two major phases in the code’s

development, the more recent of which introduced ADE to modulate in a negative manner the

complementarity engendered by other bases [5].

The statistical significance of the cognate mRNA/protein sequence complementarity has

already been probed by different tests involving randomizations of the genetic code table,

Fig 1. Cognate mRNA/protein sequence profile comparison and scale optimization. A) top and bottom:

mRNA nucleobase-density profiles are obtained by window-averaged smoothing of their nucleobase composition

strings, while nucleobase-affinity profiles of their cognate proteins are obtained by weighting their sequences with

the aid of nucleobase-affinity scales and subsequent window-averaged smoothing; center: comparison between

an mRNA PUR-density profile and the cognate protein’s GUA-affinity profile for a typical, representative mRNA/

protein pair in E. coli. Matching between the two profiles (Pearson R = -0.76) corresponds to the mean Pearson

correlation among all cognate mRNA/protein pairs in E. coli; right: distribution of Pearson Rs for all E. coli cognate

mRNA/protein pairs. Note that the scale used for these profiles is the knowledge-based scale derived from the

structures of RNA-protein complexes. In our simulation, we have explored the full space of such scales as shown

in the text; B) pseudo code of the Monte Carlo strategy employed in the simulation.

https://doi.org/10.1371/journal.pcbi.1005648.g001

mRNA/protein complementarity and affinity scales
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shuffling of both the affinity scales and the primary mRNA/protein sequences and analyzing

the behavior of other physically realistic amino-acid property scales in the same context

[4,6,14]. However, these approaches, although valid and necessary, have thus far not included

a systematic exploration of the whole space of nucleobase/amino-acid affinity scales. On the

other hand, several important questions can only be answered with an in-depth knowledge of

the properties of the space of affinity scales and their influence on the observed complementar-

ity. A key open problem in this regard concerns the uniqueness of the affinity scales that yield

a high degree of cognate sequence-profile matching. Is there an optimal scale that results in

maximized matching between mRNA nucleobase-density profiles and their cognate protein

sequence profiles or are there multiple scales that produce the same or similar levels of match-

ing over complete proteomes? How many different scales are there that show intermediate-to-

high levels of matching? Finally, are there specific amino acids whose affinities for different

nucleobases dominate the matching? It is easily imaginable that there are amino acids that

exhibit similar affinities to different nucleobases, while the specificity i.e. the sequence comple-

mentarity, is dictated by a select few. To address these questions, one needs to consider not

only the already published, physically realistic scales, but also those that do not produce

strongly matching profiles. In other words, one would like to sample the space of randomly-

generated scales using a fitness function that is related to the degree of cognate mRNA/protein

sequence complementarity engendered by those scales.

Here, we present a Monte Carlo (MC) search method that satisfies the above criteria and

explores the space of nucleobase/amino-acid affinity scales, while at the same time assessing

their impact on the degree of cognate complementarity (Fig 1A and 1B). More specifically, our

MC searches start from a uniform scale with identical weights for all 20 amino acids and evolve

through a succession of random perturbations, which are accepted or rejected according to a

fitness function. The latter, in turn, is related to the degree of complementarity as captured by

the proteome-average Pearson correlation coefficient <R> between the cognate sequence pro-

files (see Materials and Methods for details). In other words, we search for amino-acid scales

(i.e. 20-element linear arrays of amino-acid weights), which result in a given level of prote-

ome-wide average matching between mRNA nucleobase-density profiles and the cognate

protein profiles generated by weighting their sequences using these scales. Notably, our pro-

cedure is completely computational and does not impose any physicochemical constraints

on the sampled scales. As a consequence, it provides an unbiased, detailed characterization

of the space of amino-acid scales and their effect on the cognate mRNA/protein sequence

complementarity. Finally, there are ongoing efforts in our and other laboratories to test the

hypothesis that compositional sequence complementarity between mRNAs and their cog-

nate proteins implies binding between them. The primary aim of the present work, how-

ever, is to assess the impact of affinity scales on such sequence complementarity, which

remains a fact even in the absence of experimental verification of the hypothesis that it

implies binding [4–6,9,11].

Materials and methods

Data sets

Complete annotated proteomes of Escherichia coli, Methanocaldococcus jannaschii and Saccha-
romyces cerevisiae along with the corresponding mRNA coding sequences were analyzed. The

protein sequence data was extracted from the UniProtKB database with the maximal-protein-

evidence-level set to 4, including only reviewed Swiss-Prot entries for the analysis [17–19].

Coding sequences for each protein were extracted using the ‘Cross-references’ section of each

entry in the UniProtKB. Of all the entries, the first one satisfying the length criterion of mRNA

mRNA/protein complementarity and affinity scales
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length = 3 x protein length + 3 was selected and the sequence downloaded from the European

Nucleotide Archive Database. All sequences containing non-canonical amino acids or nucleo-

bases were disregarded in the analysis. The complete sets of mRNA/protein data used in this

study are included in S1 Dataset. Note that in the present study our analysis is reserved for pri-

mary sequences of complete mRNA coding sequences and their cognate proteins only, without

consideration of higher-order structural organization. This not only enables a direct 1-to-1

mapping between mRNA and protein sequences, but also allows for a full exploration of the

complementarity hypothesis in the unstructured context. Analysis of the influence of structure

on the side of protein has been published elsewhere [15], while an analogous analysis on the

side mRNAs will be the topic of our future work.

Correlation calculation

The mRNA nucleobase-density profiles and the corresponding protein nucleobase-affinity

profiles were compared by calculating the linear Pearson correlation coefficients R between

them. Prior to calculation, the sequences were smoothed via a window-averaging procedure

with a 63-nucleotide window for mRNAs and a 21-residue window for proteins as used before

[4–6,20]. Importantly, sequence profile comparison is largely insensitive to the size of the aver-

aging window, as shown previously [4]. Furthermore, the scale values obtained during the sim-

ulation may result in any arbitrary value including negative numbers. Once the simulation is

finished, the resulting scales are rescaled so that the values are in the range of [0, 1] i.e. the low-

est value is set to 0, the highest to 1 and the rest are rescaled accordingly. This is done in order

to distinguish between truly different scales and the rescaled versions of the same scale. Impor-

tantly, this procedure has no impact on our analysis since both window-averaging and calcula-

tion of Pearson correlation coefficients are invariant with respect to linear rescaling.

Monte Carlo simulations

The simulations were carried out using a combination of a C++ program for calculating the

proteome-average correlation coefficients between mRNA and protein sequence profiles [6]

and a Python script for implementing the Monte Carlo (MC) search. At each step in a given

MC simulation, anywhere between 1 and 4 randomly chosen scale values were perturbed by a

randomly chosen offset. A simulated annealing procedure was implemented in order to vary

the size of the offsets from a randomly chosen value between [-0.1, 0.1] in the beginning of the

simulation to a value between [-0.01, 0.01] in the end, with a linear ramp between the two. A

given MC move i.e. a given scale, is accepted according to a zero-temperature, downhill

Metropolis criterion: if a new scale results in a lower average Pearson R across the proteome

(<R>) as compared to the scale it was derived from, it is accepted, and it is rejected otherwise.

Affinity scales were generated individually for each of the four RNA nucleobase (uracil—URA,

cytosine—CYT, adenine—ADE and guanine—GUA) as well as PUR (preference for both

ADE and GUA). Given that the mRNA PYR fraction in a given stretch is directly related to the

PUR fraction (%PYR = 1—%PUR), the PYR scales are by definition the inverses of the PUR

scales and were for this reason not explicitly included in our analysis. Finally, the number of

steps and the speed of simulated annealing both influence the final result. The number of steps

has been chosen to be at least 3 times the number of moves necessary to reach a stable

minimum.

Selection of scales for landscape generation

The MC approach does not produce interaction scales for a given level of matching but the

other way around–only once a scale has been created, its level of matching is calculated. In

mRNA/protein complementarity and affinity scales
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order to generate the full landscape, we chose those scales that showed the closest value of

matching to the target value of the reported Pearson R. In the construction of the landscape,

we include individual scales that are within +/-0.01 in Pearson R from each reported value of

<R>. Considering the very fast evolution of interaction scales, for some low values of<R>

we did not obtain a full set of 1000 scales that would match this criterion, which were therefore

not included.

Analysis and software used

Data analysis was performed using the R statistical programming language. Calculations were

performed using custom software written in C++ and Python. Plotting and data visualization

was performed in R and Python, while figures were generated in Gimp and Inkscape.

Statistical significance tests

The MC-optimized scales were compared with the corresponding physically realistic knowl-

edge-based scale by calculating the Pearson correlation coefficient R between them. The signif-

icance of the obtained correlation coefficients was ascertained by a randomization procedure

whereby the reported p-values correspond to the fraction of a set of 106 scales with randomly

chosen values exhibiting a more negative Pearson R than the MC-generated scales (a one-

tailed significance test). Two-tailed p-values were calculated by multiplying the initial p-value

by 2 if below 0.5, or as 1—p-value otherwise. Combined p-values were calculated according to

Fisher’s method based on two-tailed p-values [21,22]. The p-values were calculated from their

respective Χ distributions utilizing Microsoft Excel’s function CHIDIST().

Results

Optimized scales, which lead to a close matching between mRNA nucleobase-density pro-

files and sequence-weighted cognate protein profiles, could be identified in an extremely

low number of MC moves. For example, the number of MC moves required to reach a pro-

teome-wide average matching of mRNA PUR-density profiles with <R>� -0.86 in E. coli
is only 322 ± 66.5 (standard deviation) as evaluated over 1000 independent MC simulations

initiated with the system time as a random seed for each run (S1 Fig). Importantly, for all

the combinations tested, the optimal scales appear to be extremely well defined and emerge

robustly at the end of all independent MC simulations (scales with average weights are

given in S1 Table). Also, the equivalent optimized scales for the three organisms studied are

highly similar to each other with pairwise Pearson Rs in all cases exceeding 0.86 (S1 Table).

The minor deviation between the scales of different organisms can be explained by the

codon usage bias as well as different amino-acid composition of the respective organisms.

For example, the difference between CYTE. Coli and CYTM. Jannaschii can be traced back to the

different choice of codons for arginine.

In Fig 2A and 2B, we trace the evolution of the average and the standard deviation of the

normalized values of individual amino-acid weights corresponding to a scale that was opti-

mized for matching the mRNA PUR-density profiles in E. coli. The mean weights correspond-

ing to the majority of amino acids, as obtained from 1000 independent repetitions, exhibit

well-defined ranks starting already with low levels of matching and attain their definitive ranks

already at approximately <R> = -0.5 (Fig 2A). In this particular case, the extreme weights cor-

respond reproducibly to Phe on the high side and Glu and Lys on the low side. The reproduc-

ibility of optimal scales is attested by the extremely low standard deviations of amino-acid

weights at the extremely high values of<R> (Fig 2B). Importantly, although a sharp drop in

standard deviation towards high levels of matching is observed, a clear trend for the specific

mRNA/protein complementarity and affinity scales
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values is achieved only very late in the simulations i.e. for the most extreme values of<R>

only. Expectedly, the highest diversity of scale values is obtained for<R> ~ 0, but a substantial

variability is retained even for intermediate-to-high values of matching: e.g. for <R> between

-0.4 and -0.6, the standard deviations remain close to 0.25 in normalized units (Fig 2B). For

comparison, a uniform random distribution between 0 and 1 results in a standard deviation of

1/
p

12 ~ 0.29.

The sequences of mRNAs and their cognate proteins are, of course, linked by the universal

genetic code. Therefore, suitable amino-acid scales for weighting protein sequences to match

their cognate mRNA’s density profiles correspond, for a particular nucleobase, to the relative

fractions of that nucleobase in the respective codons, weighted by the codon usage bias. For

example, the scale derived in such a way results in an average matching of<R> = -0.86 for the

mRNA PUR-density profiles in E. coli and the cognate protein sequences weighted by the

Fig 2. Dependence of profile matching on scale properties. The average level of cognate matching between mRNA PUR-

density profiles and cognate protein PUR-affinity profiles in E. coli in relation to A) the average and B) the standard deviation of

the rescaled PUR-affinity values for each amino acid yielding the given level of matching. The color code in B is the same as in

A; C) distribution of PUR-affinity scale values at a matching level of <R> = -0.80; D) distributions of values of the best-matching

PUR-affinity scales generated in 1000 different MC simulations (<R> = -0.86). Panels A,B and C,D share the same x-axis.

https://doi.org/10.1371/journal.pcbi.1005648.g002

Table 1. Minimum <R> values achieved for each organism for the MC-optimized scales.

ADE CYT GUA URA PUR

E. coli -0.89 -0.75 -0.84 -0.80 -0.86

M. jannaschii -0.90 -0.85 -0.89 -0.87 -0.92

S. cervisiae -0.87 -0.78 -0.86 -0.84 -0.89

https://doi.org/10.1371/journal.pcbi.1005648.t001

mRNA/protein complementarity and affinity scales
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average, usage-bias-weighted PUR content of the respective codons. Equivalent levels of

matching were obtained for all nucleobases and organisms (Table 1). Interestingly, the scale

composed of the average MC-optimized weights derived from E. coli mRNA PUR-density pro-

files correlates with the scale derived from codon PUR fractions with a Pearson R = 0.997 (S1

Table). Similar results were obtained for all other nucleobases and in all other organisms, albeit

with slightly lower levels of correlation in some cases (S1 Table).

The main advantage of the MC approach, besides its efficiency, is that it also provides thor-

ough sampling of suboptimal scales. This has allowed us to explore the development of scale

properties in relation to the degree of mRNA/protein sequence complementarity. When look-

ing at the distribution of specific values for a given level of<R> over the whole set of mRNAs

and proteins, strong differences between the final optimized values and the intermediate values

are identified. In Fig 2C and 2D, we show the complete distributions of weights for different

amino acids at two different levels of average matching in E. coli (<R> = -0.80 and <R> =

-0.86) for the PUR-density scales. Here, from each independent simulation, the scale resulting

in<R> closest to the target value was selected. Note that the<R> values of all selected scales

round to the reported target value at the second decimal place. As can be seen, only the most

extremely optimized scales i.e. those with<R> = -0.86, exhibit well-defined weights for the

majority of amino acids. For example, although an average Pearson <R> of -0.80 can be con-

sidered a high level of matching, most scale weights are still broadly distributed at that level

(Fig 2C). Importantly, different amino acids exhibit distributions of different widths at a given

value of<R>, with some converging to tighter distributions earlier than others. For example,

the weights for Phe, Lys and Glu attain their final values early on and exhibit standard devia-

tions that are lower than for any other amino acids at most values of<R>. In general, the dis-

tinct behavior of the optimized weights corresponding to individual amino acids is also seen

for other scales and in other organisms (S2 Fig).

How many distinctly different scales are able to perform similarly well when it comes to the

sequence profile matching of mRNAs with their cognate proteins? To separate scales at a given

level of matching into several subsets, we have applied a hierarchical clustering algorithm,

which has allowed us to build dendrograms for each level of<R>. As a natural distance mea-

sure between scales in this clustering approach, we have used 1—R, with lower numbers signi-

fying higher similarity between two given scales and vice versa. In Fig 3A, we show two such

dendrograms capturing the diversity of scales obtained by matching mRNA PUR-density pro-

files in E. coli at<R> = -0.8 and<R> = -0.86. To build a landscape of affinity scales, we have

cut these dendrograms at specified distance cutoffs and have reported the number of clusters

at a given cutoff as exemplified in Fig 3A for E. coli. The landscape is presented in Fig 3B with

the values given representing the upper cutoff for the distance (1—R) of two scales in one clus-

ter. From this landscape, it is clear that only at the highest levels of correlation between mRNA

nucleobase profiles and nucleobase-affinity profiles of their cognate proteins do the affinity

scales show a very similar structure. At lower levels, a very diverse set of scales is able to per-

form comparably well i.e. the lower values of matching can be attributed to a wider class of

interaction scales.

Previously, several complete interaction scales for nucleobase/amino-acid interactions have

been reported from different groups [23–26]. While some of these scales focus on the general

affinity of amino acids for RNAs, but do not differentiate between specific nucleobases, other

scales report on the specific propensities of the 20 amino acids for each of the four RNA

nucleobases. The latter, for example, include scales derived in different ways including chro-

matographic experiments [7], absolute binding free energy calculations [9], classical and

quantum-mechanical interaction enthalpy calculations [26], knowledge-based analysis of

nucleobase/amino-acid contacts derived from X-ray and NMR structures [6] and simulated

mRNA/protein complementarity and affinity scales
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partitioning experiments [10,11]. Here, we focus on the knowledge-based scales as they are

arguably the most relevant proxies for the nucleobase/amino-acid affinities at the realistic

RNA/protein interfaces. In Fig 4A, we show the Pearson Rs between each of MC-derived scale

Fig 3. Landscape of affinity scales. A) two dendrograms exemplifying the process of clustering of scales for landscape generation (top, <R> = -0.80;

bottom, best level of matching with <R> = -0.86). The height of the barrier between two clusters (left axis) is given as distance = 1—R between two scales.

The presented results are obtained for mRNA PUR-density profiles and cognate protein PUR-affinity profiles in E. coli. The dotted lines capture the cutoffs

of 0.2 and 0.4 used in Fig 3B; B) the number of clusters of scales at a given average level of matching as obtained by Pearson R-based clustering (left: linear

scale; right: logarithmic scale) at different values of the upper cutoff for the distance (1—R) of two scales in one cluster.

https://doi.org/10.1371/journal.pcbi.1005648.g003

Fig 4. Comparison between MC-optimized scales and physical affinity scales. A) Pearson Rs (bold, top)

and the associated p-values (regular, bottom) between all the MC-optimized scales derived from E. coli and

the published knowledge-based nucleobase/amino-acid affinity scales [6]; B) comparison between the

optimal scale derived from matching the mRNA PUR-density profiles in E. coli and the knowledge-based

GUA-affinity scale (Pearson R = 0.85 between the two).

https://doi.org/10.1371/journal.pcbi.1005648.g004

mRNA/protein complementarity and affinity scales
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for the E. coli dataset with each of the physical, knowledge-based scales derived by Polyansky

and Zagrovic [6]. Below the correlation coefficients, we list the p-value capturing the statistical

significance for the specific correlations. Importantly, three out of five pairs of the correspond-

ing scales (GUA, CYT, PUR) exhibit Pearson Rs> 0.5 and p-values� 0.024 each, suggesting

high statistical significance. Moreover, the URA scales also exhibit a positive correlation coeffi-

cient (R = 0.30, p-value = 0.098), albeit not as strong as the other three pairs. Interestingly, the

knowledge-based ADE-affinity scale displays a strong anti-correlation with its MC-generated

counterpart. This anti-correlating behavior is also seen if one focuses on PURs only. Namely,

although ADE is a purine base, its affinity scale correlates inversely with the values for MC-

generated PUR scale. On the other hand, the GUA-affinity knowledge-based scale shows by

far the strongest correlation with the generated PUR scales: the relative preferences of amino

acids when it comes to interaction with GUA in RNA-protein structures show values very sim-

ilar to those obtained by our MC procedure, which only considers the matching between

mRNA PUR-density profiles and appropriately weighted cognate protein profiles. The two

correlate with a Pearson R of 0.85 and no major outliers (Fig 4B).

We have also calculated the combined p-values from the two-tailed values given in Fig 4 for

two different combinations of entries in the table. In the case of the Fisher method for combin-

ing p-values, the individual tests need to be independent from each other [21,22]. Arguably,

the closest subset to this requirement is the combination of the four individual diagonal ele-

ments, entailing a comparison between the corresponding scales for individual bases. This set

results in a highly significant combined p-value of 1.7 x 10−4. Moreover, when including all

combinations of URA, CYT, ADE GUA and PUR scales, a significance level of 8.3 x 10−11 is

reached. Here, it should also be noted that there exist other suboptimal scales, which correlate

better with the knowledge-based scales than do the optimal scales. For example, in the case of

the E.coli PUR scale vs. the knowledge-based GUA scale, the highest correlation achieved

between the two is R = 0.94, which is obtained for a suboptimal scale that itself results in an

average proteome-wide correlation of<R> = -0.79. A complete analysis of suboptimal scales

and their relationships with knowledge-based scales is presented in S2 Table. In general, the

fact that our optimization scheme produces scales that are similar to the physically realistic

nucleobase/amino-acid binding affinity scales shows that our sampling is thorough and, more

importantly, suggests that compositional matching of mRNA and protein sequence profiles

may indeed be related to binding between them.

In addition, a total of 544 different one-dimensional scales [27,28], capturing different

physicochemical properties of amino acids including size, hydrophobicity or interaction pro-

pensities, have been compared with the scales derived in this work by calculating the Pearson

R between them. The result is visualized in Fig 5 in the case of the E. coli PUR scale. Here, it

should be noted that the sign of correlation in this comparison depends only on the definition

of a given scale and does not carry additional significance: for example, a hydrophilicity scale

may be defined as a hydrophobicity scale and result in the same absolute result, but with an

inverted sign. In general, the majority of the scales do not correlate closely with the MC-

derived scales, but most of those that do are indeed in some way related to RNA/protein inter-

actions or, interestingly, protein structural disorder. For example, the strongest correlation

(R = 0.85) is obtained for the knowledge-based GUA-affinity scale [6], while the Woese pyri-

dine affinity scale [29] ranks among the top 3% of all scales and exhibits an R = -0.63 with the

MC-derived PUR-based scale. Parenthetically, a potential explanation for the observed lower

density of Pearson Rs around 0 (Fig 5) may be that approximately 1/3 of all physical scales

examined are related to amino-acid hydrophobicity [4]. Since our optimized PUR scale in gen-

eral correlates negatively with hydrophobicity scales i.e. positively with hydrophilicity scales,

this could create a somewhat lower density of Pearson Rs around 0.
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Discussion

In the present work, we have sampled the space of amino-acid scales using as a fitness function

the proteome-average matching between the mRNA nucleobase density profiles and the scale-

weighted sequence profiles of cognate proteins. Importantly, our framework disregards all

available biological information except the sequences of the two biopolymers and approaches

the amino-acid scales from an abstract perspective as arrays of 20 numerical weights that can

be chosen arbitrarily. This provides the benefit that the physicochemical interpretation of the

scales does not need to be given a priori. Rather, the features of the fitness landscape of scales

provide the constraints that any physical scales need to fulfill in order to be consistent with

cognate mRNA/protein sequence complementarity. At the same time, effects like codon-usage

bias are included by default. Utilizing this method, we have shown that it is possible to identify

scales, which are highly optimized to lead to pronounced complementarity, and that our

method is highly efficient at doing so.

Notably, it was not a priori clear that a simple MC search would result in unique optimal

solutions for the matching problem. A remarkable result that virtually one single scale is the

sole result of numerous independent simulations suggests that the intrinsic features of the

underlying fitness landscape guide the development of these affinity scales towards a narrow

range of values. Against our expectations, especially considering the vast combinatorial space

the scales reside in, evolution of highly optimized scales could be performed in less than 200

MC moves (S1 Fig). This result on its own provides some pertinent information about the

space the scales reside in. Namely, such a rapid and reproducible convergence can only be

explained by a landscape that is shaped like a funnel. In this picture, the continuous downhill

slope guides the search reproducibly towards the final optimized scale. Although simulated

annealing was included in the MC approach, this would not suffice to reach the exact same

minimum in every MC run: if there existed another local minimum separated by a significant

barrier, we would also have sampled it. A potential criticism of this interpretation could be

Fig 5. Comparison with other amino-acid properties. Distribution of Pearson Rs between all the AAindex

[27,28] scales and the optimal scale derived from matching the mRNA PUR-density profiles in E. coli, with all

scales showing a correlation |R|>0.60 explicitly marked: GUA-affinity scale by Polyansky et al. [6]; WOE1, a

pyridine affinity scale derived by Woese et al. [29]; GEO5, a scale capturing the properties of linker regions in

proteins [41]; ISO2, a flexibility scale characterizing bends in proteins [40]; MAX2, a predictor for protein

backbone topology [39]; PAR2, a scale related to X-ray B-factor values of residues [38]; VIN1 & VIN4: scales

assessing the correct flexibility prediction in proteins [37]; MEI3, a scale describing the effect of protein size on

residue hydrophobicity [42]; FUK1, FUK2 & FUK4, scales capturing the protein surface composition of several

bacterial proteins [43].

https://doi.org/10.1371/journal.pcbi.1005648.g005
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that we start all our MC runs from the same scale (all weights equal to 0), which in principle

could bias the final outcome. However, the MC runs initiated with different random number

seeds decorrelate rapidly from each other in a few steps (as seen in the standard deviations in

Fig 2B), only to converge again at the end of the runs. This, in effect, suggests that regardless of

the starting point on the landscape, the MC searches reproducibly end up in the same

minimum.

Our MC procedure has also resulted in a large number of suboptimal scales at all values of

the average Pearson R between ~0.3 and -1. We have applied a hierarchical clustering algo-

rithm to this data set and identified clusters of mutually similar scales. As reported in Fig 3, the

development of the number of clusters as a function of the degree of matching exhibits a fun-

nel-like shape. The important point to make is that the funnel is shallow and wide even up to

the<R> values of -0.7 or higher. This means that there exist many rather different scales,

which could lead to suboptimal, yet still relatively high levels of proteome-average complemen-

tary matching. This carries significant implications for our previous investigations of the com-

plementarity hypothesis. As a case in point, our first report on the hypothesis involved a

computationally derived scale of amino-acid affinity for PYR mimetics, which had led to a

value of<R> of -0.74 across the human proteome [4]. This was interpreted as a strong signal

of putative complementary interactions between mRNAs and their cognate proteins. On the

other hand, our present analysis shows that there exist over 200 clusters of scales, whereby

members of different clusters exhibit a correlation of at most 0.8 or less, all leading to a prote-

ome-average correlation better than -0.74. In other words, the PYR-mimetic affinity scale used

in our original study is by no means unique in its ability to lead to relatively high matching.

While these findings do call for caution, it should be emphasized that they in no way contradict

our previous interpretations. Namely, our present study only enumerates the list of possible

scales that could lead to high complementarity. What is more, this list represents only a minor

fraction of the space of all possible scales as indicated by our present and previous randomiza-

tion studies [4,6,14]. The matching, in other words, is not a consequence of just any scale, but

rather it can be achieved by only a select few, however mutually different from each other they

may be.

The centerpiece of the present study is the comparison of the computationally-derived optimal

scales with the published knowledge-based scales derived from structural data [6]. On the one

hand, the computational scales are derived from a singular requirement that, when protein

sequences are weighted by them, they yield profiles that resemble the cognate mRNA nucleo-

base-density profiles. Conversely, the knowledge-based scales are derived from the contact statis-

tics of nucleobases and amino-acid side chains at the RNA-protein interfaces. They, therefore,

report on the intrinsic binding preferences of the two sets of monomers. It is remarkable that

Pearson correlation coefficients of up to 0.85 with highly significant p-values can be achieved

between the two (Fig 4). The same can be said for the high overall p-values resulting from com-

bining multiple scales. In other words, we start here from a simple computational exercise in

which we search for scales that when applied to protein sequences yield profiles that match their

cognate mRNA’s nucleobase density profiles. The fact that the scales obtained in this way resem-

ble the nucleobase/amino-acid binding affinity scales strongly suggests that profile matching and

binding indeed may be related, as put forth by the complementarity hypothesis. However, the

rather weak correlation with some other affinity scales shall not be ignored. A question remains

as to why protein affinity profiles for GUA strongly match the mRNA PUR-density profiles, but

not as well the mRNA GUA-density profiles. In line with this, why are the protein ADE-affinity

profiles inversely related to the mRNA PUR-density profiles? It has been suggested that the ADE

and URA nucleobases may be newer additions to biological systems, while the GUA and CYT

may have been the very first nucleobases adopted [5]. If both the matching behavior as postulated

mRNA/protein complementarity and affinity scales
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by the stereochemical hypothesis and the assumed timeline of RNA evolution hold true, this

would suggest that the usage of ADE as an anti-matching base could have served a biologically

important purpose. Namely, the presence of ADE has the potential to negatively regulate the level

of complementarity and, therefore, the strength of binding between cognate partners, as previ-

ously suggested [5].

The present work accounts only for sequence data on both the mRNA and the protein side,

with no secondary or higher-order structure elements being considered. This, of course, does

not rule out structured mRNAs and proteins as interaction partners, but certainly limits the

generality of the current work. It should, however, be noted that the binding between unstruc-

tured RNAs and intrinsically disordered proteins belongs to an important, large class of RNA-

protein interactions and, moreover, provides a relevant context in which to look for cognate

interactions [30–36]. In this regard, it may be potentially informative that some of the closest

physically realistic scales to the optimal MC scales derived herein are linked with protein disor-

der (Fig 5) [37–43]. Finally, our results suggest that the degree of cognate mRNA-protein com-

plementarity is heavily determined by the intrinsic binding affinities of just a handful of

nucleobase/amino-acid pairs. For example, the opposite behavior of Phe and Glu/Lys define a

large fraction of the PUR-density/PUR-affinity matching. At the same time, the nucleobase-

binding preferences of other amino acids are much more ambiguous and diverse, even at rela-

tively high levels of matching. The main biological implication of this is that it defines con-

straints on the mechanism by which genetic encoding could have evolved from binding, as

proposed by the stereochemical hypothesis and our generalization of it. Specifically, the estab-

lishment of a coding relationship between codons and amino acids, which would be a conse-

quence of complementary binding between cognate mRNA/protein pairs, is possible only for a

narrow set of nucleobase-affinity values for several key residues, as defined by our study.

Future research should provide information about this and other related open questions.

Supporting information

S1 Fig. Development of <R> as a function of the number of MC steps in the case of PUR-

based scales.

(TIF)

S2 Fig. Scale value distributions for all scales and organisms investigated. Distributions of

scale values for the most optimized scale of each individual MC simulation. The ordering of

amino-acid symbols corresponds to the ordering of the means of the respective distributions.

Results for ADE, CYT, GUA, URA and PUR are shown for each of the three organisms investi-

gated–E. coli, M. jannaschii and S. cervisiae. The average level of matching over all scales con-

tributing to a distribution is given in the plot.

(PDF)

S1 Table. Comparison between the MC-optimized scales and the codon-based scales. Sim-

ple scales obtained from the average nucleobase-content of the codons of individual amino

acids as weighted by their codon usage bias. Pearson correlation coefficients R between the

scales are given on the right. Correlations of scales obtained for different organisms are

reported at the end.

(PDF)

S2 Table. Comparison of suboptimal scales which best match the knowledge-based scales.

For each type of scale, a specific MC scale was selected that resembles the corresponding

knowledge-based scale most closely. For these scales, the Pearson correlation coefficients R

with the knowledge-based scales and the average, proteome-wide correlation coefficients that
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result by their application, are reported.

(PDF)

S1 Dataset. Datasets employed in this study. Each of the original whole proteome mRNA/

protein sequence datasets of E. coli, M. jannaschii and S. cervisiae used in this study in a space-

separated text format.

(ZIP)
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26. Jakubec Dávid, Hostaš Jiřı́, Laskowski Roman A, Hobza Pavel, Vondrášek Jiřı́. Large-Scale Quantita-
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