
rstb.royalsocietypublishing.org
Review
Cite this article: Blankley S, Berry MPR,

Graham CM, Bloom CI, Lipman M, O’Garra A.

2014 The application of transcriptional blood

signatures to enhance our understanding of

the host response to infection: the example of

tuberculosis. Phil. Trans. R. Soc. B 369:

20130427.

http://dx.doi.org/10.1098/rstb.2013.0427

One contribution of 12 to a Theme Issue ‘After

2015: infectious diseases in a new era of

health and development’.

Subject Areas:
immunology, systems biology

Keywords:
immune response, infection, tuberculosis

Author for correspondence:
Anne O’Garra

e-mail: aogarra@nimr.mrc.ac.uk
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
The application of transcriptional blood
signatures to enhance our understanding
of the host response to infection:
the example of tuberculosis

Simon Blankley1, Matthew Paul Reddoch Berry1,2,3, Christine M. Graham1,
Chloe I. Bloom1, Marc Lipman4,5 and Anne O’Garra1,3

1Division of Immunoregulation, MRC National Institute for Medical Research, London NW7 1AA, UK
2Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, St Mary’s Hospital,
London W2 1NY, UK
3NHLI, Faculty of Medicine, Imperial College London, London, UK
4Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, London, UK
5Division of Medicine, University College London, London, UK

Despite advances in antimicrobials, vaccination and public health measures,

infectious diseases remain a leading cause of morbidity and mortality world-

wide. With the increase in antimicrobial resistance and the emergence of

new pathogens, there remains a need for new and more accurate diagnostics,

the ability to monitor adequate treatment response as well as the ability to

predict prognosis for an individual. Transcriptional approaches using

blood signatures have enabled a better understanding of the host response

to diseases, leading not only to new avenues of basic research, but also to

the identification of potential biomarkers for use in diagnosis, prognosis

and treatment monitoring.
1. Introduction
Since the 1990s, whole genome expression mRNA microarray technology has been

available as a tool to researchers. It involves profiling the expression levels of thou-

sands of genes simultaneously and is increasingly being used to advance our

understanding of the complex transcriptional response that occurs as aconsequence

of a disease process [1–3]. Modern microarray platforms are capable of reliably and

reproducibly measuring the expression of over 40 000 mRNA transcripts, which can

encompass all of the known functional human genome. By comparing between

cohorts of individuals, or by sequentially sampling over a time course, it is possible

to delineate a comparative transcriptional response to a given perturbation.

Depending on the scale of the response, many hundreds or thousands of signifi-

cantly differentially regulated genes may be identified. To comprehend the

biological relevance of these complex data, bioinformatics tools have been devel-

oped that use known relationships between genes and their biological functions.

With these tools, it is possible to determine the most biologically significant

groups of differentially regulated genes as well as key transcriptional regulatory

pathways/networks perturbed upon a given stimulus/disease [4–7].
2. Gene expression profiling using peripheral blood
The early gene expression studies involving human peripheral blood focused

on cancer and autoimmune conditions [2,8]. The use of peripheral blood for

whole genome expression studies in disease has a number of advantages.

Peripheral blood is easily accessible, whereas the site of primary infection in cer-

tain diseases may not be easy to access, and it is possible to obtain reproducible
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blood transcriptional profiles from volumes as small as that

obtained from a finger prick [9–11]. Blood represents a reser-

voir where there is a dynamic exchange of chemokines,

cytokines and cells trafficking to and from sites of active

disease and the lymphatic system. These cells include neutro-

phils, basophils, eosinophils, T cells and B cells; however, the

cellular composition of the blood can vary depending on the

ethnic background [12] of the patient as well as the scale and

specificity of the host response to a disease. Different immune

cells may have different baseline levels of gene expression as

well as different transcriptional amplification programmes

[13,14]. The interpretation of blood-derived transcriptional

signatures therefore has to be made in the context of the cel-

lular composition of the blood being sampled. Analysis of a

subset of cells such as peripheral blood mononuclear cells

(PBMCs) has been used as an attempt to control for this vari-

able, although this excludes from analysis granulocytes such

as neutrophils, which make up the greatest proportion of the

immune cells found within blood and are important innate

immune system effector cells. Furthermore, neutrophils

have been seen to be important drivers of the blood transcrip-

tional signature in certain diseases [15,16]. The superiority or

suitability of PBMCs or whole blood leucocytes (globin RNA

reduced) for transcriptional signatures in disease has yet to

be rigorously compared. In addition, expression analysis

of the subsets of blood leucocytes has also been an informa-

tive approach [14–17]. In some cases, this approach may be

necessary to reveal signatures expressed in a discrete cell

population that is present only in low numbers in the periph-

eral blood [18], or where the sensitivity of specific gene

expression profiles may be masked if a unique profile is pre-

sent in the cells found in low frequency in human blood

[19]. An alternative approach is to apply computational de-

convolution methods; this generates data for both the

heterogeneous sample (whole blood, PBMCs) and its specific

cell subsets [20].

During inflammatory, autoimmune diseases, cancers or

infectious diseases the changes observed in a transcriptional

blood signature can represent changes in cell numbers, which

may be reduced as a consequence of apoptosis or migration

of cells from the blood to other tissues. Conversely, increased

cell numbers may result from proliferation of cells or migration

of cells from the tissues or bone marrow into the blood. Alter-

natively, the transcriptional changes may be due to discrete

changes in transcription within a specific cellular population

as a consequence of perturbations resulting from the disease

state. As an example, early in the host response to a pathogen,

pattern recognition receptors, which are expressed on a wide

variety of cell types including cells of the innate immune

system, recognize the highly conserved microbial products of

pathogens [21]. Binding of these receptors results in activation

of signalling pathways and via transcriptional regulators the

induction of transcriptional programmes [22]. Different pat-

tern recognition receptors can recognize different microbial

products and activate specific transcriptional programmes,

enabling a transcriptional response appropriate to the patho-

gen. These directly activated immune cells can traffic from

the site of infection and enter the blood stream either directly

or via the lymphatic system. Overall, therefore, the transcrip-

tional signatures observed in the blood in response to a

disease may be as a consequence of changes in absolute cell

numbers, changes in the proportions of cell types as well as

changes in transcription within cell populations.
The specificity of a transcriptional signature for a particu-

lar disease may lie in the combination of activated pathways

and transcription programmes rather than in uniquely acti-

vated disease-specific genes. Tools have been designed to

characterize this transcriptional response, such as gene set

enrichment analysis, transcriptional networks and modular

approaches that can identify combinations of transcriptional

programmes associated with diseases [23]. Algorithmic

approaches such as the molecular distance to health or vari-

ations on this principle have used gene expression data to

assess severity of disease or quantify disease response to

treatment [15,24,25].
3. Infectious diseases
Gene expression studies in infectious diseases have been used to

identify transcriptional signatures that differentiate between

bacterial and viral infections [14,26,27], bacterial meningitis

[28], acute febrile [29] and viral illnesses [30,31], as well as

specific disease pathogens such as Burkholderia pseudomallei
[24,32], dengue virus [33–35], human immunodeficiency virus

[36,37], Mycobacterium leprae [38], Staphylococcus aureus [39],

Streptococcus pneumoniae [40], Salmonella enterica [41] and

Mycobacterium tuberculosis [15–17,25,42–49].

One of the challenges in infectious diseases is to identify

the causative agent early in the disease, so that appropriate

therapy can be initiated early or inappropriate therapy

avoided. The traditional approach involves identification of

the pathogen itself either by direct visualization, culture,

nucleic acid amplification of pathogen-specific DNA or by

measuring a specific antibody-mediated response. These

approaches are not feasible for all infectious diseases,

owing to either the inaccessibility of the tissue or difficulty in

culturing the pathogen, or because the generation of an

antibody-specific response is too slow to guide initial therapy.

An ability to identify a transcriptional signature specific for an

infectious disease based on the early host response would,

therefore, be advantageous for use in diagnosis as well as

revealing information about the early host response. Studies

have shown that host blood transcriptional signatures can

differentiate between different infectious diseases [14,27,29].

These signatures reveal that the broad response to viral infec-

tions includes well recognized, upregulated viral response

elements including interferon-inducible genes [14,27], and

can discriminate not only between bacterial and viral infection

[27] but also between different viral infections [14,30].

Gene transcription profiling during early infectious

disease has been used to identify biomarkers that can potentially

be used to predict outcome as well as give a better understanding

of the potential deficiencies or exaggerated transcrip-

tional responses that correlate with poor outcome. In HIV,

pathways involved in apoptosis, development, cell cycle and

DNA damage were found to be differentially regulated

in patients with rapid disease progression compared with

those with slow disease progression [36]. In dengue infec-

tion, transcriptional signatures have enabled identification of

differences in children with dengue virus fever from those who

developed the more serious dengue haemorrhagic fever (DHF)

[33,34]. Transcriptional differences could be seen in patients

who subsequently developed DHF, prior to the develop-

ment of the clinical features, including reduced expression of

interferon response genes and differences in complement
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expression [33,34]. These studies have enabled the generation of

hypotheses for further experiments to investigate the previously

poorly understood aetiology of DHF, and in addition have

identified potential early prognostic biomarkers [34].

Blood-derived gene expression signatures have also been

seen to correlate with effective vaccination as measured by

the quantity of neutralizing antibodies in yellow fever, influ-

enza and pneumococcal vaccines [9,19,50]. These studies

have not only identified putative biomarkers for predicting

successful vaccination, but also enabled the description of

the temporal kinetics of the transcriptional response to vacci-

nation. Furthermore, they have identified the difference in

transcriptional response between the influenza and pneumo-

coccal vaccines. The influenza vaccine induced a greater

anti-viral response as seen by the induction of interferon

genes, compared with the pneumococcal vaccine, which

induced more of an inflammatory response [9].

Transcriptional signatures and systems biology approaches

in infectious diseases can therefore feed into many different

aspects of research, including translational clinical studies as

well as basic immunological work (figure 1).
4. Tuberculosis: background of some of the
current difficulties

Mycobacterium tuberculosis, the causative organism of tubercu-

losis, is estimated to have infected one-third of the world’s

population. In 2011, it was responsible for approximately 8.6

million cases of active tuberculosis and 1.4 million deaths

[52]. M. tuberculosis is mainly spread via the aerosol route,

and the outcome from inhalation of M. tuberculosis depends

on a variety of factors: environmental and sociological

factors, virulence of the M. tuberculosis strain and the capability

of the host immune response [51]. The World Health
Organization STOP TB strategy to halve the prevalence of

tuberculosis by 2015 recognizes the need for new diagnostics,

drugs and vaccines [53]. Development of these, however, is

hampered by our incomplete understanding of the immune

response to M. tuberculosis [51]. CD4þ T cells and the cytokines

tumour necrosis factor, interleukin-12 and interferon (IFN)-g

have been shown to be critical in the control of M. tuberculosis,
perturbations in these factors in animal models and humans

being detrimental to the host [51]. These factors alone are

not sufficient for an adequate host response however, and

while numerous other factors have been identified, it remains

unclear which combination of factors constitute a protective

host immune response and what factors determine whether

an individual goes on to develop tuberculosis [51].

Approximately 5–10% of those infected will develop

active tuberculosis disease within the first year. The remain-

ing 90% have clinically asymptomatic latent tuberculosis

that carries an approximate 10% lifetime risk of progressing

to active tuberculosis. Latent tuberculosis is defined as evi-

dence of immunological exposure to M. tuberculosis with no

symptoms of active clinical disease [54]. The host immune

response is critical in maintaining this clinically latent state;

perturbations in the immune system, either iatrogenic by

immune modulating drugs or through diseases that compro-

mise the immune system such as HIV infection, can lead to

progression from latent to active tuberculosis [55,56].

In the non-HIV-infected individual, it is not possible cur-

rently to predict the outcome from M. tuberculosis infection. If

it were, treatment of latent tuberculosis infection could be

better targeted to those at the highest risk. Additionally,

improved diagnostic tests for active tuberculosis would assist

greatly in clinical management, enabling earlier diagnosis and

hence prompt treatment initiation (which would also reduce

the risk of onward transmission to others), as well as avoiding

misdiagnosis of active tuberculosis and thus minimizing



Table 1. Summary of blood transcriptional profiling studies in tuberculosis. HC, healthy controls; LTB, latent tuberculosis; OD, other diseases; PBMC, peripheral
blood mononuclear cells; TB, tuberculosis; TLR, Toll-like receptors. Modified from Berry et al. [67].

geographical
region year sample study design key pathways reference

South Africa,

Malawi

2013 whole blood TB versus OD

TB versus LTB

(HIV positive and negative)

— [49]

UK 2013 whole blood TB versus OD

TB treatment

interferon signalling, role of pattern recognition

receptors, antigen presentation

[16]

South Africa 2013 whole blood TB treatment complement; B-cell markers; CD64 [48]

Germany 2012 whole blood TB versus OD interferon signalling; complement; TLR

signalling; Fcg-receptor-mediated

phagocytosis

[47]

South Africa 2012 whole blood TB treatment — [25]

Indonesia 2012 PBMC TB versus HC

TB treatment

interferon signalling [17]

The Gambia 2011 whole blood TB versus LTB JAK – STAT pathway; interferon signalling; TLR [46]

USA and Brazil 2011 whole blood TB versus LTB versus HC interferon signalling [45]

South Africa 2011 whole blood TB versus LTB versus HC — [44]

UK and South

Africa

2010 whole blood TB versus LTB versus HC

TB versus OD

TB treatment

interferon signalling [15]

South Africa 2007 whole blood TB versus LTB — [43]

Germany 2007 PBMC TB versus LTB — [42]
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adverse events owing to unnecessary anti-tuberculosis treat-

ment, which are common with current regimens [57].

Currently, there is only one licensed preventive vaccine

against M. tuberculosis, the bacillus Calmette–Guérin (BCG)

vaccine [58]. Its efficacy is not optimal and it has been shown

to offer variable protection against the most common form of

the disease—adult pulmonary tuberculosis [59–61]. A new,

more effective vaccine is therefore required. Twelve vaccines

are currently in phase 1 or phase 2 trials, although vaccine

development is hampered by our poor understanding of

what constitutes a protective immune response. The immuno-

logical readouts in current use do not provide correlates of a

protective host response [62,63]. This may in part explain the

inability of one of the most promising vaccine candidates to

provide any addition protection above BCG vaccination in a

phase 2 trial, despite demonstrating improved protection in

animal models and induction of antigen-specific TH1 and

TH17 cells in infants [64–66].
5. Tuberculosis peripheral blood gene
expression studies

There has been a number of transcriptomic studies

investigating the host response to M. tuberculosis infection;

predominantly these have focused on the most common

form of the disease—adult pulmonary tuberculosis (table 1).

Several studies have been designed to attempt to identify

a transcriptional signature that can differentiate active
pulmonary disease from latent infection and/or healthy con-

trols. Differentiating active tuberculosis disease from latently

infected and healthy controls has enabled the identification of

many immunological pathways that may be relevant to the

pathogenesis of active tuberculosis such as type 1 and type

2 interferon signalling, Toll-like receptor signalling and also

T- and B-cell function gene expression [15,17,25,42,43,45–48].

Early studies have identified interferon-inducible, in-

flammatory and chemokine genes as being differentially

expressed between active pulmonary tuberculosis patients

and controls. However, these studies involved small numbers

of patients and had no independent test or validation sets

[42,43]. In 2010, work involving patients from both the UK

and South Africa identified a neutrophil-driven interferon sig-

nature present in active disease that was absent in the majority

of healthy and latently infected individuals, and which corre-

lated with the extent of radiographic lung disease and was

diminished with anti-tuberculosis therapy (figure 2a). This

transcriptional signature was validated with independent test

and validation sets [15] and has subsequently been confirmed

in studies involving patients from different countries (South

Africa, USA, China, The Gambia, Germany and Indonesia)

by other groups, using different microarray platforms and

different microarray analytical approaches [17,45–47,68].

Type I interferon signalling had been previously largely under-

appreciated [69,70] and is now the focus of further work to

determine the importance of this type I interferon signalling

and how it influences the outcome following M. tuberculosis
infection [51]. Approximately 10% of the latently infected
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individuals in the Berry et al. study [15] had a signature of

active tuberculosis. It is unclear, at the present time, whether

these individuals represent subclinical disease, incipient con-

version from latent to active disease or another process.

Further work is required to identify transcriptional signatures

of latent M. tuberculosis infection that can predict those at risk

of progression, and this will require longitudinal follow-up.

A meta-analysis of eight publicly available tuberculosis

microarray datasets undertaken by Joosten et al. [71] found

that after integration of the data from these separate studies

interferon signalling was no longer a dominant pathway as

had been described in many of the studies when the data

had been analysed in isolation. Instead, there was enrichment

for genes associated with myeloid cell inflammation, and

TREM1 signalling was now found to be the most significant

pathway [71].

To develop a diagnostic test based on gene expression

levels, a transcriptional signature that can distinguish

between active tuberculosis and other diseases is needed.

An 86 transcript signature was able to differentiate between

pulmonary tuberculosis and selected other diseases [15].

Using a modular approach, it was possible to identify distinct
modular patterns for the different inflammatory diseases

(group A Streptococcus, Staphylococcus, adult and paediatric

systemic lupus erythematosus and Still’s disease) and that

tuberculosis had over-representation of interferon, inflamma-

tory and myeloid lineage modules (figure 2b) [15]. However,

further studies comparing tuberculosis with sarcoidosis as

well as melioidosis revealed an overlap with the interferon-

dominated pulmonary tuberculosis transcriptional signature

[32,47,72]. These signatures have shown that diseases with

similar pathophysiology may share similar transcriptional

profiles—sarcoidosis, melioidosis and tuberculosis are

all granulomatous diseases that can affect the lungs. How-

ever, when studies were designed that directly compared

sarcoidosis and tuberculosis, blood transcriptional signatu-

res could differentiate sarcoidosis from tuberculosis, and

revealed an increased interferon-inducible response in tuber-

culosis in terms of the number of genes upregulated as well

as in the magnitude of the response. Conversely, increased

eukaryotic initiation factor 2 signalling was detected in

patients with sarcoidosis [16]. One study revealed increased

metabolic activity and antimicrobial defence response in

tuberculosis when compared with sarcoidosis [47]. These
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studies demonstrate not only that diseases with similar

pathological findings affecting the same organ can be distin-

guished using blood transcriptional signatures, but also that

we can gain novel immunological insights from these blood

transcriptional studies.

The specificity of any future diagnostic test based on tran-

scriptional signatures will depend on its ability to accurately

discriminate tuberculosis from a large number of different

diseases. Importantly, it will be necessary to distinguish

patients who are co-infected with HIV or not, as well as with

comorbidities such as diabetes. Bloom et al. [16] set out to

derive transcriptional signatures that could differentiate

between active tuberculosis and other diseases (figure 2c).

They included diseases that could clinically mimic tuber-

culosis, and by use of a modular approach to characterize

the different diseases they again revealed the strong interferon

response found in patients with active sarcoidosis and tuber-

culosis, but, in contrast, revealed an inflammatory nature

of the blood transcriptome of patients with lung cancer or

pneumonia (figure 2d) [16]. Previous studies had excluded

HIV-infected participants in order to first define tuberculosis

in the absence of any co-infection or co-morbidities. Addition-

ally, there was concern that the reduced CD4þ T cells, as well

an HIV transcriptional signature itself, would confound any

potential analysis. More recently, Kaforou et al. [49] have pub-

lished a large case–control study involving both HIV-infected

and HIV-uninfected individuals. This study, by prospectively

recruiting patients presenting with symptoms of TB who on

further investigation were diagnosed with another disease,

generated a large clinically relevant and diverse ‘other dis-

eases’ cohort to act as a comparison group. In both their own

datasets and an independent validation dataset, the derived

transcriptional signatures were able to differentiate with a

high degree of sensitivity and specificity between tuberculosis

and healthy controls as well as tuberculosis and other diseases

in both HIV-infected and HIV-uninfected individuals [49]. A

transcriptional signature for use as a diagnostic will need to

be able to diagnose TB from these real-world alternative diag-

noses, and in addition the derivation of a signature that can

distinguish patients in the context of HIV co-infection is of

great importance as in several parts of the world a large

number of tuberculosis cases are co-infected with HIV. This

study is the first one to identify a transcriptional signature

that is able to differentiate those that are M. tuberculosis infected

from those non-infected despite HIV co-infection.

A transcriptional signature that reflects response to effective

treatment has implications for the development of a clinical

test that can determine a successful treatment response.

Currently, sputum smear and culture testing after two months

of therapy is the best predictor of relapse following treatment

completion, but this is limited as sputum is not always accessi-

ble. A test that could identify treatment failure or success

earlier would have implications for trials of novel drugs and

regimens as well as aiding clinical practice by assisting in the

identification of drug resistance or non-compliance earlier than

is currently possible. Berry et al. [15] first demonstrated that

significant transcriptional changes could be detected after two

months following initiation of successful therapy. Two recently

published studies following patients recruited from South

Africa longitudinally showed that a transcriptional signature

of active pulmonary tuberculosis quickly diminished with suc-

cessful treatment [25,48]. Transcripts (1261) were seen to

significantly fall in expression by one week. Among them
were complement genes (C1q, C2 and derpin G1), which the

authors hypothesized was related to the rapid reduction in

mycobacterial load that was driving complement production

[48]. A separate longitudinal study derived a 664 transcript sig-

nature that significantly changed over the course of treatment as

well as by two weeks—this 664 transcript list was enriched for

genes involved in interferon signalling [25].
6. Future
Gene expression microarray studies have advanced the

immunological knowledge of the host response to infectious

diseases, opening up avenues for further research as well as

identification of potential biomarkers for use in diagnostic

and prognostic tests as well as evaluations of response to

treatment or vaccination.

RNA-Seq (also referred to as whole transcriptome shot-

gun sequencing) is an exciting developing new technology

[1,73,74] that is starting to become available as a diagnostic

approach to infectious and other diseases. RNA-Seq is a tag-

based, high-throughput approach in which sequences are

mapped against a reference genome thereby eliminating

background signals and the need for statistical normaliza-

tion. The technology has an advantage over microarray in

that it additionally allows the detection of novel transcripts

rather than reliance on known probe-based sequences. To

date, the use of RNA-Seq for diagnosis in tuberculosis has

been mostly restricted to looking at small sample numbers

(in bovine tuberculosis [75]), and to the best of our knowl-

edge, no reports are available for human tuberculosis.

Currently, the cost, challenges of statistical data analysis

and the logistics of large data storage currently make micro-

array a more practical option for analysis approaches that

involve large samples/patient numbers. However, ongoing

developments in next-generation sequencing, such as the

recent United States Food and Drug Administration

approval of the Illumina MiSeqD system for clinical use

[76], make this a very exciting area for the future diagnosis

of human disease.

Integration of the data from the complex host tran-

scriptional signatures, host clinical phenotypes as well as

pathogen genotype/gene expression using systems biology

tools that continue to be developed and refined will

enable researchers to better synthesize and understand the

large volume of complex data being generated. This inte-

grated analysis together with work in experimental models

will provide a better understanding of the immunological

response to infectious disease (figure 1). Gene expression

data benefit from being widely available as an open

resource for researchers. Many studies have already taken

advantage of publicly available datasets to reanalyse data

and integrate it to advance immunological knowledge

[71,77] as well as to test or derive transcriptional signatures

[16,30,32,47].

The identification of specific transcriptional responses for a

disease will further our understanding of the host immune

response and also aid in the development of specific tests

that can be used in clinical practice. Further studies need to

be undertaken to broaden the number of infectious diseases

profiled, including co-infection studies, so that the tran-

scriptional signatures may be better defined and be more

applicable to ‘real-world’ situations. Furthermore, these
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transcriptional signatures will then need to be tested in

large-scale prospective clinical trials to assess their ability to

perform in large diverse populations. The ultimate use of tran-

scriptionally derived signatures in the clinical management

of infectious disease may not be as a standalone diagnostic,

but rather used to support and aid in clinical diagnosis/
management alongside other tools. For example, in active

tuberculosis, a blood signature could support the current

smear test, M. tuberculosis culture, clinical symptoms and ima-

ging such as chest radiographs or cross-sectional imaging. For

treatment response, it could be used alongside monitoring of

clearance of M. tuberculosis from the sputum.
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