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Abstract: Loss-of-function long QT (LQT) mutations inducing LQT1 and LQT2 syndromes have been
successfully translated to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)
used as disease-specific models. However, their in vitro investigation mainly relies on experiments
using small numbers of cells. This is especially critical when working with cells as heterogeneous
as hiPSC-CMs. We aim (i) to investigate in silico the ionic mechanisms underlying LQT1 and
LQT2 hiPSC-CM phenotypic variability, and (ii) to enable massive in silico drug tests on mutant
hiPSC-CMs. We combined (i) data of control and mutant slow and rapid delayed rectifying K*
currents, Ix; and Ixg respectively, (ii) a recent in silico hiPSC-CM model, and (iii) the population of
models paradigm to generate control and mutant populations for LQT1 and LQT2 cardiomyocytes.
Our four populations contain from 1008 to 3584 models. In line with the experimental in vitro
data, mutant in silico hiPSC-CMs showed prolonged action potential (AP) duration (LQT1: +14%,
LQT2: +39%) and large electrophysiological variability. Finally, the mutant populations were
split into normal-like hiPSC-CMs (with action potential duration similar to control) and at risk
hiPSC-CMs (with clearly prolonged action potential duration). At risk mutant hiPSC-CMs carried
higher expression of L-type Ca?*, lower expression of I, and increased sensitivity to quinidine as
compared to mutant normal-like hiPSC-CMs, resulting in AP abnormalities. In conclusion, we were
able to reproduce the two most common LQT syndromes with large-scale simulations, which enable
investigating biophysical mechanisms difficult to assess in vitro, e.g., how variations of ion current
expressions in a physiological range can impact on AP properties of mutant hiPSC-CMs.

Keywords: action potential; disease model; induced pluripotent stem cell-derived cardiomyocyte;
in silico drug tests; in silico model; long QT; population of models

1. Introduction

The development of induced pluripotent stem cell (iPSC) technology provides the opportunity for
generating and culturing iPSC-derived cardiomyocytes obtained from human material (hiPSC-CMs).
An important application of hiPSC-CMs is the assessment of drug cardiotoxicity [1]. In recent
years, their use in the field of safety pharmacology has been supported by comprehensive in vitro
proarrhythmia assay (CiPA), which aims to combine the in vitro drug assays on hiPSC-CMs with
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in silico simulations [2]. Furthermore, hiPSC-CMs have been able to recapitulate the phenotype of
several inherited cardiac arrhythmia syndromes such as LQT1 [3], LQT2 [4,5], LQT3 [6], LQT14 [7],
catecholaminergic polymorphic ventricular tachycardia [8], hypertrophic cardiomyopathy [9] and
Brugada Syndrome [10].

In 2013, we published the first in silico hiPSC-CMs model [11], based on our previous model
of cardiomyocyte derived from human embryonic stem cells [12] and on the experimental data by
Ma et al. [13]. As recently acknowledged by the FDA [14] and the pharmaceutical industry, in vitro
tests on cardiac cells, in particular hiPSC-CMs, certainly benefits from the use of such in silico models
of the cardiac cellular electrophysiology [15]. This is true for the screening of new compounds to be
tested for cardiac safety, as well as for the study of the ion channel biophysical properties underlying
the electrophysiology of control and diseased cells. The main advantage of integrating reliable in
silico models in the standard in vitro laboratory practice is the possibility of running huge amount
of simulations in shorter time than in vitro experiments. Moreover, in silico models are white boxes,
therefore all the internal mechanisms representing the cellular biophysics can be observed without
altering the system behavior and be tuned or modified in an easier way than a real biological system.
Specifically for hiPSC-CMs, the use of advanced in silico modeling techniques are extremely important
to manage one of the main hiPSC-CM challenges, i.e., their electrophysiological variability observed
in vitro [16]. The population of in silico models [17,18] approach enables the development of a huge
ensemble of in silico models which, after experimental calibration, mimics the behavior of the in vitro
population of cells, with all the aforementioned advantages of model usage. In this case, the added
value consists of having an in silico cell population that is way larger than whatever population
could be obtained or analyzed in vitro. As a matter of fact, the literature presents electrophysiological
investigations on hiPSC-CMs performed on samples containing only a few cells, while an in silico
population contains at least hundreds of models. We recently used this modeling technique to
investigate the LQT3 syndrome effect on in silico hiPSC-CMs and to predict the effects of two drugs,
commonly used in this syndrome treatment, also elucidating possible mechanisms for the development
of adverse drug effects [18]. The same approach was used also by Passini et al. [19] for a comprehensive
in silico drug trial on 62 compounds, on in silico populations of adult ventricular cardiomyocytes,
which obtained higher accuracy than studies involving animal models.

The aim of this work consist of exploiting a recently published model of the electrophysiology
of hiPSC-CMs (Paci2018) [20] and the population of in silico models approach to replicate the behavior
of the two most common LQT forms: LQT1 and LQT2. Both forms of LQT can result in a dangerous
prolongation of the duration of the cardiomyocyte action potential (AP), which makes the cells prone
to develop arrhythmias. At the whole organ level, this reflects in a prolongation of the QT segment
in the electrocardiogram, which is associated with dramatic outcomes, such as syncope, and sudden
cardiac death due to ventricular tachyarrhythmias [21]. LQT1 is associated with loss-of-function
mutations in the KCNQ1 gene, which encodes for the a-subunit of the channel conducting the slowly
activating delayed rectifier potassium current (Igs), while LQT?2 arises from loss-of-function mutations
in KCNH2 (also known as hERG), encoding the rapidly activating delayed rectifier potassium current
(Ixr). In this work, we focused our in silico analysis on the KCNQ1 R190Q mutation associated with
LQT1 and the KCNH2 N996I mutation associated with LQT?2, both already in vitro characterized in
hiPSC-CMs [3,4]. Together with our previous work on LQT3 [18], this work covers the spectrum of
the most common forms of LQT syndromes and their in silico simulations based on populations of
hiPSC-CMs, remarking the importance of the synergy of in vitro and in silico experiments for disease
modeling using hiPSCs.

2. Results

In this work, we produced four populations of in silico hiPSC-CM models showing spontaneous
electrical activity, as detailed in Sections 4.4 and 4.5 of Materials and Methods. In particular,
the LQT1_CTRL and LQT1_MUT populations were based on the Paci2018 model [20], where the
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original Ixs was replaced with the control and mutant Ixg from Moretti et al. [3]. Likewise, in the
LQT2_CTRL and LQT2_MUT populations, Ik, was replaced with the control and mutant Ik, described
in Bellin et al. [4]. To facilitate the comparison with the in vitro experiments, LQT2_CTRL and
LQT2_MUT were also paced at 60 bpm. To generate the LQT1_CTRL and the LQT2_CTRL populations,
we sampled thirteen parameters in the baseline model. The sampled parameters are the maximum
conductances/ currents of fast and late Na* currents (In,, INar), funny current (If), L-type Ca?* current
(Icar), Iks, Ikr, inward rectifying K* current (Ix;), transient outward K* current (Iy,), Na*/Ca?*
exchanger (Incx), Na* /K* pump (Inak), sarcolemmal Ca?* pump (Ipca), SERCA pump (Isgrca) and
RyR-sensitive Ca* release from sarcoplasmic reticulum (Iryr)- Each parameter was sampled in the
range [0.5; 2] of its nominal value from [20], thus obtaining two random populations. Each random
population was then calibrated using AP biomarker values experimentally recorded on spontaneous
hiPSC-CM APs, thus obtaining the populations LQT1_CTRL and LQT2_CTRL. A more detailed
description of this method is reported in Section 4 and a summary of this approach is reported in
Figure S1. The number of models included in each population is reported in Table 1.

Table 1. Summary of the main AP biomarkers (mean =+ SD) for the in silico hiPSC-CM populations.
APA: AP amplitude. APDsy: AP duration at 50% of repolarization. APDgg: AP duration at 90% of
repolarization. dV/dtmax: maximum upstroke velocity. MDP: maximum diastolic potential. Peak:
peak voltage. Rate: rate of the spontaneous APs.

. Rate MDP Peak APA dV/dtmax APDs APDg
Population (# Models) (bpm) (mV) (mV) (mV) (V/s) (ms) (ms)
LQT1_CTRL (3584) 46+15 —-77+3 38+7 114 +9 37+21 274 + 63 344 £ 74
LQT1_MUT (3238) 44+14 -77+3 38+7 114 £9 36 +21 317 £94 389 £102

LQT2_CTRL spontaneous (1226) 45+14 -76+3 35%5 111+7 40 +£21 209 + 55 254 + 63
LQT2_MUT spontaneous (1008) 40+12 —77+3 40+4 116 £ 6 41+ 21 292 + 58 340 1 64
LQT2_CTRL paced (979) 600 763 375 114 £7 55+ 24 233 + 60 288 + 72
LQT2_MUT paced (650) 600 763 42+4 118 £5 52 +23 322 + 62 380 + 70

2.1. The Control and the Mutant LQT1 Populations

Out of the initial 10,000 parameter sets (i.e., 10,000 putative/candidate cell models) obtained by
Latin Hypercube sampling, only 3584 produced models which satisfied the experimental calibration
represented by the filtering conditions listed in Section 4.4. APs from the 3584 hiPSC-CM models
included in the LQT1_CTRL population are shown in Figure 1a and Figure S2a. After “switching on”
the mutation in the 3584 models, we obtained the LQT1_MUT population, which contains 3238 models.
346 models were not included in the LQT1_MUT population for one or more of the reasons listed
in Section 4.5. The APs produced by the LQT1_MUT population are shown in Figures 1b and S2b,
from which an overall AP prolongation can be appreciated. Figure 2 compares the AP biomarkers
computed on the spontaneous APs included in LQT1_CTRL (cyan) and LQT1_MUT (magenta). Clearly,
the mutant population shows considerably prolonged APs. In Figure 3, we report the scatter plots of
the AP biomarkers in LQT1_CTRL vs. the AP biomarkers in LQT1_MUT. The grey rectangles were built
using the AP biomarkers reported in Table 2, to show how our populations cover the biomarker space
from the Moretti 2010 dataset (see Table 2) [3]. For each AP biomarker, the lower bound is computed as
mean—25SD and the upper bound as mean + 2SD. Of note, such boundaries were not used to calibrate
the LQT1_MUT population (since we turned on the mutation on all the 3584 models of LQT1_CTRL),
but they are here reported for comparison. The AP biomarkers which are mainly affected by the
LQT1 mutation are the AP duration at 50% of repolarization (APDsg) and the AP duration at 90% of
repolarization (APDygg). In particular, the longer is the AP in control conditions, the longer is the AP
prolongation induced by the mutation, as shown by the clouds of APD5y and APDyj points that detach
from the identity lines for long control APD values. An alternative representation of the AP biomarker
distributions in LQT1_CTRL and LQT1_MUT is reported in Figure S3. Finally, Figure 4 reports the
distribution of the APDyy changes expressed as percent of the control APDgy (AAPDgy%). The average
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simulated AAPDgy% is +14%, while the experimental one is +95%. To compare LQT1_MUT with
LQT1_CTRL, we included in this analysis only the control and mutant versions of the 3238 models
included in LQT1_MUT.

LQT1_CTRL population LQT1_MUT population
(@) 6o, (b) 60
40 40
20 20
0r 0
s 5
E 20t £ 20
> >
40 -40
-60 | -60
-80 -80
-100 -100
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Figure 1. Action potentials included in the two populations built using the Ixs experiments by
Moretti et al. [3]: (a) LQT1_CTRL; (b) LQT1_MUT. A magnified version of this figure is reported
as Figure S2 in the Supplementary Material.
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Figure 2. Comparison of the AP mean biomarkers of LQT1_CTRL (cyan) and LQT1_MUT (magenta).
Error bars represent the standard deviation. Significant differences in the AP biomarkers are marked
with a black star * (Mann-Whitney U-test, p-value < 0.01).
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Figure 3. AP biomarker distributions in the populations LQT1_CTRL vs. LQT1_MUT (blue circles).
The black lines represent the identity lines, i.e., when the AP biomarkers are equals in LQT1_CTRL
and LQT1_MUT. The grey rectangles represents the boundaries built on the experimental data from
the Moretti 2010 [3] control and mutant datasets, obtained in spontaneously beating hiPSC-CMs
(see Table 2): lower bound (mean — 25D) and upper bound (mean + 2SD) for each AP biomarker.
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Figure 4. Distribution of the APDgj changes due to LQT1 in spontaneous APs, expressed as percent of
the APDyg control value. The average AAPDgy% is +14%.
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Table 2. AP biomarkers experimentally recorded in spontaneously beating control and mutant
hiPSC-CMs in [3]. AP biomarkers are expressed as mean + SD. APA: AP amplitude. APDsy and
APDgg: AP duration at 50% and 90% of repolarization. dV/dtmax: maximum upstroke velocity. MDP:
maximum diastolic potential. Peak: peak voltage. Rate: rate of the spontaneous APs.

AP Biomarkers Moretti 2010 [3] Control (n =21) Moretti 2010 [3] Mutant (n = 14)

Rate (bpm) 68 + 12 60 + 8
MDP (mV) —64 +£10 —65 £+ 10
Peak (mV) 44 47 46 + 8
APA (mV) 108 + 10 110 £ 10
dV/dtmax (V/s) 9+1 8+1
APDygj (ms) 323 £ 139 654 + 328
APDy; (ms) 381 £+ 162 745 + 342

2.2. The Control and the Mutant LQT?2 Populations

As in the previous section, only a limited number of parameter sets out of the initial 10,000 were
included in the LQT2_CTRL population: 1226. In Figure 5a and Figure S4a, we show the spontaneous
APs of the LQT2_CTRL population. After switching on the LOT2 mutation in these 1226 models,
a subset of 1008 models was included in the LQT2_MUT population, shown in Figure 5b and Figure S4b.
The comparison of the AP biomarkers is reported in Figure 6, showing also in this case a substantial
prolongation of the APD in the mutant population. Since the data reported in Bellin et al. [4] (see Table 3)
refer to APs measured in hiPSC-CMs stimulated at 60 bpm, we also stimulated LQT2_CTRL and
LQT2_MUT, obtaining 979 and 650 models respectively. This discrepancy between the spontaneous and
stimulated LQT2_CTRL and LQT2_MUT populations is due to the fact that subsets of models (247 and
358 models, respectively) were not able to synchronize their spontaneous APs with the external pacing.
This lack of synchronization led to scenarios where a spontaneous AP was triggered before the external
stimulus, which eventually occurred in the middle of the spontaneous AP, consequently making
computing the AP biomarkers meaningless. Figure 7 reports the scatter plots of the AP biomarkers in
LQT2_CTRL vs. the AP biomarkers in LQT2_MUT, in non-paced (blue circles) and paced (red circles)
conditions. The grey rectangles represent the experimental AP biomarkers boundaries built on the
data from paced hiPSC-CMs reported in Table 3, as for Figure 3 in the previous Section 2.1. The AP
biomarkers affected the most by the LQT2 mutation are APDsy and APDgg, which are prolonged by
almost the same extent, independently of the APD in control conditions. An alternative representation
of the AP biomarker distributions in LQT2_CTRL and LQT2_MUT is reported in Figure S5. Figure 8
shows the distribution of AAPDgy% in case of spontaneous APs (Figure 8a) or paced APs (Figure 8b).
The average simulated AAPDgy% is +39% when computed on the spontaneous APs, while it is +41%
when computed on the paced APs, respectively. The experimental AAPDgy% reported by Bellin et al. [4]
is +41% in conditions of external pacing.

Table 3. AP biomarkers measured in control and mutant hiPSC-CMs paced at 60 bpm by Bellin et al. [4].
AP biomarkers are expressed as mean + SD. APA: AP amplitude. APDs5y and APDgg: AP duration at
50% and 90% of repolarization, respectively. dV/dtmax: maximum upstroke velocity. MDP: maximum
diastolic potential. Peak: peak voltage. Rate: stimulation frequency.

AP biomarkers Bellin 2013 [4] Control (n = 10) Bellin 2013 [4] Mutant (n = 14)

Rate (bpm) 60+ 0 60+ 0
MDP (mV) -75+6 -75+6
APA (mV) 116 + 10 120+ 9
dV/dtmax (V/s) 71+ 39 66 + 42
APDyg; (ms) 164 + 78 227 + 66

APDy (ms) 207 + 92 292 + 81
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Figure 5. Action potentials included in the two populations built using the Iy, experiments by
Bellin et al. [4]: (a) LOQT2_CTRL; (b) LQT2_MUT. A magnified version of this figure is reported
as Figure S4 in the Supplementary Material.
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Figure 6. Comparison of the AP mean biomarkers computed on spontaneous APs in LQT2_CTRL
(cyan) and LQT2_MUT (magenta). Error bars represent the standard deviation. Significant differences
in the AP biomarkers are marked with a black star * (Mann-Whitney U-test, p-value < 0.01).
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Figure 7. AP biomarker distributions in the populations LQT2_CTRL vs. LQT2_MUT in the non-paced
(blue circles) and paced (red circles) cases. The black lines represent the identity lines, i.e., when the AP
biomarkers are equals in LQT2_CTRL and LQT2_MUT. The grey rectangles represents the boundaries
built on the experimental AP biomarkers from the Bellin 2013 control and mutant datasets [4] recorded
in paced hiPSC-CMs and reported in Table 3: lower bound (mean — 2SD) and upper bound (mean +
2SD) for each AP biomarker except for the Rate biomarker (pacing rate set to 60 bpm).
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Figure 8. Distribution of the APDg changes due to the LQT2 mutation, expressed as percent of the
APDyg control value. The average AAPDgy% is +39% and +41% for the in silico spontaneous (a) and
externally paced (b) hiPSC-CMs, respectively.



Int. . Mol. Sci. 2018, 19, 3583 9 of 24

2.3. At Risk vs. Normal-Like Mutant hiPSC-CMs

The mutant populations LQT1_MUT and LQT2_MUT were split into two groups by means of
k-means clustering, exploiting APDs and Rate biomarkers, as detailed in Section 4.5. Provided that
the KCNQ1 R190Q and the KCNH2 N9961 mutations affect all cells in LQT1_MUT and LQT2_MUT,
respectively, we named as normal-like those models with APDs similar to control hiPSC-CMs, and at
risk those models with prolonged APDs. Figure 9 shows the different distributions of the maximum
conductances/currents for the normal-like and at risk models of populations LQT1_MUT (Figure 9a)
and LQT2_MUT (Figure 9Db), respectively. For each of these mutant populations, we considered a
median difference of at least 10% to identify the main ionic mechanisms that differ between the at
risk and normal-like groups. At risk models in LQT1_MUT exhibited (i) smaller Ix, (outward current,
—25%) and (ii) larger Ic,y, (inward current, +41%). In LQT2_MUT, again the at risk group showed
reduced Ik, (—32%) with the addition of a reduced I,c, (outward current, —11%). Notably, in contrast
to the LQT1_MUT at risk models, at risk models in LQT2_MUT showed only a moderately larger
Icar (+6%). These differences in ionic current expressions are emblematic of a reduced repolarization
reserve in the at risk groups. With the term repolarization reserve, we refer “fo the idea is that the
complexity of repolarization includes some redundancy. As a consequence, loss of one component (such as I, or
Ixs) ordinarily will not lead to failure of repolarization (i.e., marked QT prolongation); as a corollary, individuals
with subclinical lesions in other components of the system, say Igs or calcium current, may display no QT change
until I, block is superimposed” (definition adapted from [22,23]).
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Figure 9. Cont.



Int. . Mol. Sci. 2018, 19, 3583

(b

)

II.QTZ_MUT Normal-lilke vs At risk parameteTs

10 of 24

Na f CalL to Ks
2 ¥ 2 2 2 1| 2[ T 2 B
15 15 15 i {151 15
05 L los L lost = [ 051 L Jos 1

Normal-like At risk

Normal-like At risk

Normal-like At risk

Normal-like At risk

I NaK

Normal-like At risk

5 Kr K1 NCX pCa
2 = 2 = ‘ o : 2 F
|
15 + |15 bols ligze 15
T |
1 1 ' 1 ! | 1
— | |
05 05t L los - 05 L

Normal-like At risk

Normal-like At risk

Normal-like At risk

NaL SERCA RYR
2 T 2 T 2 T
15 15 ' 15
1 1 1
I
0.5 L Jos L los 1

Figure 9.

Normal-like At risk

Normal-like At risk

Normal-like At risk

Normal-like At risk

Normal-like At risk

Distribution of the sampling coefficients of the maximum conductances/currents

(see Section 4.4) for the main ionic currents in the at risk and normal-like groups into which LQT1_MUT
and LQT2_MUT were split. For each population, we considered a median difference of at least 10% to
identify the main ionic mechanisms that differ between the two groups. (a) LQT1_MUT: at risk models
exhibited smaller I, (—25%) and larger Ic,y, (+41%). (b) LQT2_MUT: at risk models exhibited smaller
Ik (—=32%) and L,ca (—11%). Outliers are represented as red crosses.

We also run an additional Mann-Whitney U-test to identify if other ionic currents could have
shown significant differences (p-value < 0.01) among the at risk and normal-like groups. No additional
differences in currents were identified in the LQT2 at risk group as compared to the normal-like.
Conversely, in LQT1_MUT, the at risk group showed significantly larger Incx, INax and Inar and
smaller I,c, (median difference compared to normal-like +3%, +7%, +7% and —7% respectively).
Figure 10 shows how APDsy and APDyj of the normal-like groups are way closer to control values
than to the computed APDs5y and APDyg of the at risk groups. Furthermore, we evaluated in the
control populations LQT1_CTRL and LQT2_CTRL whether the control models corresponding to at risk
vs. normal-like mutant models displayed differences in AP biomarker (quantified as median values).
Control models leading to at risk LQT1 models displayed increased Peak voltage (+18%) and prolonged
APDsy and APDyj (+42% and +36%, respectively) compared to those leading to normal-like LQT1
models after switching on the Ixg mutation. Similarly, control models leading to at risk LQT2 models
were characterized by decreased dV/dtmax (—21%), increased Peak voltage (+14%) and prolonged
APDs5g and APDg (+55% and +47%, respectively) compared to control models leading to normal-like
LQT2 models after switching on the Ix, mutation.
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Figure 10. Distribution of APDs (green) and APDg (black) among the at risk and normal-like groups
for the LQT1_MUT (upper row) and LQT2_MUT (lower row). The AP biomarker distribution in the
corresponding control population is reported in blue. Outliers are represented as red crosses.

2.4. Quinidine Effect on hiPSC-CMs

Quinidine, a pro-arrhythmic drug causing AP prolongation, induced a remarkable prolongation of
APDyj in all four in silico populations. Figure 11 shows quinidine effect on APDy, for those models for
which computing the AP biomarkers was still possible after drug administration. Moreover, quinidine
administration triggered many arrhythmic events, especially at the highest dose (Table 4). Among the
models developing abnormalities, we observed many different arrhythmogenic patterns, including
early afterdepolarization (EADs), repolarization failure and delayed afterdepolarization (DADs)-like
abnormalities (which could also degenerate in anticipated beats), as shown in Figure 12. Finally,
Table 4 also reports the percent of at risk and normal-like models in the populations LQT1_MUT and
LQT2_MUT that produced abnormalities after quinidine administration (in brackets), showing that at
risk models are more prone to abnormalities than the normal-like ones, except for the highest dose,
when the amount of abnormalities becomes comparable.
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Figure 11. APDy; quinidine-induced prolongation in the four in silico populations. APDgj values
were computed only for the models that did not develop abnormalities in response to quinidine
administration. Error bars represent the standard deviation.
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Figure 12. Abnormalities induced by quinidine. (a) Single and multiple EADs and repolarization failure.
(b) Single and multiple EADs and repolarization failure. (c) Single EADs and repolarization failure.
(d) Anticipated APs, EADs and DAD-like abnormalities. (e) Multiple EADs and repolarization failure.
(f) Repolarization failure. (g) Single EADs. (h) Anticipated APs, EADs and DAD-like abnormalities.
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Table 4. Percent of models in each population showing abnormalities in response to increasing doses
of quinidine. The values in brackets in the LQT1_MUT and LQT2_MUT columns represent the
percent of models producing abnormalities in the at risk and normal-like groups in the respective
mutant population.

LQT1_MUT LQT2 MUT
Dose (uM)  LQT1_CTRL (at Risk vs. Normal-Like) LQT2_CTRL (at Risk vs. Normal-Like)
0 0% 0% (00/0 Vs. 00/0) 0% 0% (00/0 VS. 00/0)
1.5 5% 11% (160/0 Vs. 70/0) 1% 1% (20/0 Vs. 00/0)
3 11% 23% (29% vs. 18%) 4% 6% (10% vs. 4%)
9 35% 54% (55% vs. 53%) 46% 46% (50% vs. 44%)

3. Discussion

The potential of hiPSC-CMs as disease-specific in vitro models has been clear for a decade. In this
work, we showed a synergistic approach between experimental data from cells with two specific ion
channel mutations (namely the KCNQ1 R190Q mutation associated with LQT1 and the KCNH2 N996l
associated with LQT2) and a recent in silico modeling technique, i.e., the populations of models. Starting
from our recent Paci2018 hiPSC-CM in silico model [20], we were able to integrate patch clamp data of
control and mutant Igg [3] and control and mutant Ik, [4], to produce four in silico populations of control
and mutant hiPSC-CMs (LQT1_CTRL, LQT1_MUT, LQT2_CTRL and LQT2_MUT). The hiPSC-CM
models included in the aforementioned populations represents single isolated cells; therefore, we did
not consider any coupling (e.g., via gap junctions) between the cells of each population.

Firstly, we were able to replicate in silico the main AP feature at cellular level of both the LQT
types we investigated, i.e., the prolongation of the AP duration (Figures 2 and 6). In [3], a very large
APDgg prolongation (+95%) due to LQT1 was observed. In our populations, we did not observe such
extreme prolongation, with only few models prolonging APDgy over 50% (Figure 4). We ascribe such
differences in the effect of the mutation to a quite small sensitivity of the original Paci2018 model [20]
to Ixs, which reflected the low sensitivity of hiPSC-CMs to Ixs block experimentally recorded by
Ma et al. [13], which is actually similar to those of adult myocytes. In fact, in [20], we showed only very
small changes in APDgg by blocking Ixs up to 90% (AAPDgy = 18 ms when paced at 1 Hz and AAPDgg
= 13 ms considering spontaneous APs). The replacement of the Moretti et al. control Ixg [3] in the
Paci2018 model [20], which is actually greater than the original Ixs, as shown in Figure 13a, was indeed
sufficient to make the model more sensitive to Ixs block (AAPDgg = 42 ms, +12%, when blocking 90%
Ixs) and to Igg loss-of-function.

The Igs contribution to repolarization of cardiac membrane potential is highly debated.
In Lemoine et al. [24], it was recently shown that a strong Ixs block obtained by 1 uM HMR-1556
did not induce prolongation nor in human left ventricle tissue nor in engineered heart tissue (EHT)
samples obtained from hiPSC-CMs, unless the samples were pretreated with Iy, blocker E4031 and
in conditions of 3-adrenergic stimulation. Even though the results of Lemoine et al. [24] focus on Ik
block and not Ik loss-of-function due to specific mutations, they seem in contrast with the huge APD
prolongation observed by Moretti et al. [3] as consequence of the KCNQ1 R190Q mutation. A more
moderate APDg prolongation (about +28%), associated with more positive APA and elevated plateau
phase, was observed by Zhang et al. [25] in hiPSC-CMs carrying the KCNQ1 ¢.1781G>A mutation.
However, Christ et al. [26] criticized these results and the idea that “repolarization reserve in hiPSC-CM is
profoundly different from native human ventricular cardiomyocytes, with a much larger impact of unstimulated
Ixs compared with other potassium currents” (Quoted from [26]). Conversely, Christ et al. [26] pointed out
that the higher APA and elevated plateau phase reported by Zhang et al. [25] could only be explained by
the suppression of a very rapidly activated repolarizing current, which is in contrast with the slow I
activation kinetics observed in native cardiomyocytes. The different APD prolongations reported upon
reduction of Ixs could be ascribed to different maturity degrees of the analyzed hiPSC-CMs. Indeed,
hiPSC-CMs in the EHT format are rather mature compared with the two-dimensional differentiation
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from which single cells were measured in Moretti et al. [3] and in Zhang et al. [25]. It is likely that
in immature cells, Ixs plays a major role in AP repolarization, even without adrenergic stimulation,
while in native cardiomyocytes as well in more mature hiPSC-CMs (where not only all the other cardiac
ion currents are more similar to native myocytes, but also the myocyte structure and the calcium
handling properties are improved), the role of Ik, is minimal under baseline conditions. Moreover,
it should also be considered that in in vitro studies, the choice of control influences very much the
changes that can be measured. In fact, in Moretti et al. [3], an unrelated control hiPSC line was
used as reference. However, when the LQT1 mutation was corrected and an isogenic hiPSC control
line created [27], a smaller APD prolongation was measured in the LQT1 mutant cardiomyocytes
compared to the LQT1 corrected cardiomyocytes (+30%). It is worth noting that the approach we
used in the present study to simulate the effect of mutation (hence only by substitution of the Ik
formulation) is definitely more similar to the isogenic situation than to that reported in the original
Moretti et al. [3] study. Our in silico analysis predicts a more moderate LQT1 effect than Moretti et al. [3],
Zhang et al. [25] and Chen et al. [27], i.e., an average APDqg, prolongation equal to +14%. However,
a subset of cells in our LQT1_MUT population showed strong APDgy prolongation. In Figure S6 we
reported the parameter distribution of the LQT1_MUT models with APDgy, prolongation over 50%.
It is clear that these models are characterized by (i) overexpression of inward currents (Ina, INar and
Icar), (i) strong underexpression of Ix,, and (iii) strong overexpression of Ixs. Our in silico predictions
considered such a configuration of ionic current expressions compatible with higher sensitivity to
Iks loss-of-function/Igg block in hiPSC-CMs. It is an open question whether this higher sensitivity
also corresponds to a lower degree of maturity in hiPSC-CMs. Of course such results would need
a solid experimental confirmation. In fact, due to the complexity of this dispute, we can only hope
for more detailed characterization of Ixg (but also of the other ionic currents) on control and mutant
hiPSC-CMs, taking into account the high hiPSC-CM electrophysiological variability, and therefore the
performing of measurements on a high number of cells obtained from different commercial lines and
different patients.

There is more consensus about the role of Ik, in the AP repolarization and the effects of Ik,
loss-of-function. Bellin et al. [4] reports an APDgyj prolongation equal to +41% due to LQT2 in
paced hiPSC-CMs [4]. We observed an APDg increment equal to +39% and +41% in LQT2_MUT
as compared to LQT2_CTRL, respectively, for spontaneous and paced APs, in full agreement with
the experiments. In a previous article, we showed the strong effect that Ix, block has on the original
Paci2018 model [20]. The direct replacement of the Bellin et al. control Ik, [4] (clearly larger than the
original Ix;, reported in dashed in Figure 14) in the original Paci2018 model [20] dramatically shortened
APDy (~140 ms) and created an AP shape that was not included in the LQT2_CTRL population and,
in cascade, in the LQT2_MUT population. Here, the power of running simulations with populations
of in silico models is already clear. In the LQT1 example, starting from a baseline model showing
only +11% APDyg prolongation, we obtained a population including models with prolongation over
50%. Conversely, in the LQT2 case, starting from a baseline model which was not even included in the
control population, we obtained more than 1000 models whose mean AAPDyy was in agreement with
the in vitro experiments [4].

Figure 3, Figure 7, Figure S3 and Figure S5 show how well our populations were able to cover
the control and mutant AP biomarkers from the Moretti2010 [3] and Bellin2013 [4] datasets. Notably,
from the Moretti2010 dataset, only control AP biomarkers (and not mutant ones) were used for
the calibration of the control populations (together with the other five datasets listed in Section 4.4,
Table 5). In fact, our approach consisted of (i) calibrating the two control populations using AP
biomarker ranges from the six experimental datasets of AP biomarkers computed on spontaneous
hiPSC-CM APs joined together, and (ii) switching on the mutations in all the models we included
in the control populations. This approach, already used in [18,28], has the advantage of producing
more control phenotypes, compared to calibrating the control population only with a single dataset,
e.g., Moretti2010 [3]. Secondly, switching on the mutations only in the models included in the control
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populations, allows a direct comparison between each mutant and control cell, e.g., to assess APDy
prolongation for each cell. Notably, we could not use the data from Bellin et al. [4] for calibration, since
they were recorded in paced hiPSC-CMs, while we calibrated our control populations on spontaneous
AP data. The APDy scatter plots in Figures 3 and 7 highlight that the two mutations affect APD
with completely different patterns. While in LQT2_MUT APDyy is always prolonged by almost the
same extent (Figure 7), independently of the APD in control conditions, in LQT1_MUT there is a
marked sensitivity and the longer APD is in control, the larger its prolongation due to the mutation
will be (Figure 3). This is not surprising; given the slow activation kinetic of Iks, its contribution
(and the impact of its reduction) to repolarization is expected to increase with APD. This is less true
for Iy, whose action is mainly mediated by rapid recovering from inactivation during phase 3 of
the AP. Moreover, from the last scatter plot in Figure 3, it is evident that, for long APD, LQT1_MUT
is characterized by very large intersubject variability, with very different mutant APDgg values in
correspondence of the same control APDg. This points to the fact that in LQT1_MUT (much more than
LQT2_MUT) the effect of the mutation could be compensated or exacerbated by over/under-expression
of the other ionic currents.

We used a technique previously described [18] to discriminate between at risk and normal-like
mutant hiPSC-CMs by means of an unsupervised classifier. Figure 10 shows how the normal-like group
in both LQT1_MUT and LQT2_MUT exhibits AP duration closer to that observed in control, despite
the mutation. We identified a subset of ionic currents whose overexpression or underexpression could
act as protective mechanisms against the LQT mutations investigated in this paper. In both LQT1_MUT
and LQT2_MUT, the main protective mechanisms were the overexpression of Ix; and underexpression
of IcaL (to a lesser extent in LQT2_MUT) and [pc,. It is interesting to note that in LQT1_MUT, the at
risk group showed also significant overexpression of Incx and Inak, as compared to LQT1_CTRL.
This is actually in agreement with the work of Krogh-Madsen et al. [29], where the authors used two
different genetic optimizations to create two models (Multi-variable and APDy gr), able to summarize
the three most common forms of LQT, i.e., types 1, 2 and 3. In both the Multi-variable and APD; g
models, the parameter optimization resulted in an overexpression of Incx (3.05x and 1.75x) and INax
(1.91x and 7.4 ). Therefore, our simulations suggest that underexpression of I,k and Incx could act
as well as protective mechanisms against the mutation effects.

Finally, we also provided a simple but powerful application of our in silico populations, i.e.,
an illustrative drug test. We chose quinidine, known to prolong APD [30] and to be a high-risk
drug for Torsades de Pointes (a malignant type of arrhythmia, associated with sudden cardiac death)
generation [19,31]. Such an aggressive drug is expected to trigger many arrhythmogenic events, both in
the mutant and in the control populations. It is interesting to observe that the differences in APD
prolongation between LQT2_CTRL and LQT2_MUT, tend to disappear by increasing the quinidine
dose (Figure 11). This is due to the fact that LQT2_CTRL and LQT2_MUT differ only for the Ik,
formulation, which is the most affected current by quinidine (Table S1). In principle, the full Iy,
block should lead to the same APDyj in both LQT2_CTRL and LQT2_MUT, as shown in Figure 11
in corrispondence of the higher dose of quinidine. The same does not happen for LQT1_CTRL
and LQT1_MUT. In fact, these two populations differ for their Ixs formulation, which is affected by
quinidine to a smaller extent (Table S1). Nevertheless, in LQT1_MUT the compromised repolarization
reserve amplifies the effect of the Ix, block due to quinidine (Figure 11). This is visible also from the
increasing difference in the amount of AP abnormalities occurring in LQT1_MUT as compared to
LQT1_CTRL at increasing drug doses. Such differences do not emerge in LQT2_CTRL and LQT2_MUT
(Table 4), due to the presence of high Ik, intensity in both populations (Figure 14a). In fact, APs are
surely prolonged in LQT2_CTRL and LQT2_MUT as a consequence of drug administration; however,
they are less prone to develop abnormalities as compared to LQT1_CTRL and LQT1_MUT.

The onset of afterdepolarizations or beating arrest as a response to high doses of quinidine
was experimentally demonstrated by Kuusela et al. [30] on hiPSC-CM aggregates, whose field
potentials were recorded by means of multielectrode arrays. Quinidine was administrated to hiPSC-CM
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clusters derived from two wild-type lines and three LQT lines (namely LQT1a, LQT1b and LQT?2).
All hiPSC-CM clusters showed afterdepolarizations and beating arrest. When we consider only
the models that did not react to quinidine with arrhythmic events, the APDgyy prolongation was
quite extreme for all the four in silico populations: at the highest doses APDgg was more than
doubled (Figure 11). A more moderate field potential duration prolongation (+14-16%, at 9 uM)
was observed in control and mutant clusters in [30]. We ascribe this difference in prolongation to
the following factors. Firstly, the number of cell clusters used in Kuusela et al. [30] is limited (min
6, max 16). Secondly, we performed our simulations on single in silico cells and not on cell clusters;
therefore, we do not consider any interaction between hiPSC-CMs or between hiPSC-CMs and cells
that are not cardiomyocytes but that could still be present in aggregates, potentially affecting the AP
depolarization and repolarization phases and mitigating the drug effect [32]. Coupling in multicellular
systems (e.g., cardiomyocyte-cardiomyocyte or cardiomyocyte-fibroblast coupling) affects the cell
electrophysiology, as we also reported in Paci et al. [12], and some averaging of the population of
responses is expected. However, a quantitative evaluation of the effects of coupling is beyond the
aim of this study. Finally, quinidine was simulated with the simple single-pore block model, which is
effective in showing the main effects of the drug (including the onset of arrhythmic events), but which
does not describe more complex effects, e.g., due to state dependent interactions between the drug and
the ion channels.

Finally, in this study, we chose to develop two control models to be used as stems to generate the
LQT1_CTRL and the LQT2_CTRL populations, instead of a single control model containing both the
Moretti et al. [3] control Ixg and the Bellin et al. [4] control Ik,. This choice is justified by the fact that
both Ixs from Moretti et al. [3] and Ik, from Bellin et al. [4] are extremely stronger than the original Ik
and Ik, in the Paci2018 model [20]. Therefore, a single control model obtained by replacing both the
control Ixg and Ik, reported in Figures 13 and 14, would have generated a baseline with an extremely
short APD (~105 ms), making it very hard to generate a control population covering both the two
experimental datasets, that show dramatically different APD values. This would have been particularly
problematic when switching on the LQT1 mutation, since the AP prolongation induced by the I
loss-of-function would have been hidden by the very strong Bellin et al. control Ik, [4].

4. Materials and Methods

4.1. General Approach and Study Design

This study was organized in the following steps. Firstly, we fit the experimental voltage clamp data
for the control and the mutant Igs [3] and Ik, [4]. Secondly, for each of the aforementioned K* currents,
we inserted its control formulation into the recently published Paci2018 model of hiPSC-CM [20],
thus obtaining two baseline models, the former with an updated control Ixg, the latter with an updated
control Ix;. Each of these models was subsequently used to generate a control population of in
silico hiPSC-CMs as in [18,33]. Then we switched on the respective LQT mutation in each of the
control population, thus obtaining two mutant populations, expressing LQT1 and LQT2 mutations,
respectively. A summary of this approach is reported in Figure S1. Finally, we ran specific analyses on
the control and mutant populations to compare them to each other and to the experimental data from
the literature.

4.2. Control and Mutant Slow Delayed Rectifying Current Iy,

We rewrote the Ix; formulation based on the experimental data from [3], where the authors
investigated the KCNQ1 R190Q mutation in hiPSC-CMs. Mutant hiPSC-CMs were produced from
father and son, both affected by LQT1, while control cells were produced from two healthy control
subjects. In detail, the available data for control and mutant Ixg were: (i) the deactivation time constant,
(if) the steady-state activation curve, (iii) Ix; step current and iv) the Ik tail current. We modified our
original Ixs formulation [20] to fit all this pool of experiments and we simulated the same activation
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experimental protocol reported in [3]. We kept the same Ik structure, with only one activation gate,
as in Paci et al. [20] and TenTusscher et al. [34]. Such a formulation allowed us to obtain a very good
fitting of the current kinetics (Figure 13¢,d). However, with only one activation gate, we were not able
to perfectly fit both the experimental peak and tail currents (Figure 13a,b). Therefore, we aimed at an
acceptable compromise in the fitting of the two features of the current. The resulting mathematical
formulations of the control and mutant Ixg are reported in the Supplementary Material, Section 1,
while the fitting results are reported in Figure 13.
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Figure 13. Fitting of the Ixy experimental data from Moretti et al. [3]. The black stars and curve
represent the Moretti et al. control data [3] and fitting, respectively. The grey stars and curve represent
the Moretti et al. mutant data [3] and fitting, respectively. The diamonds and the dashed curve
represent the Ixs measurements from Ma et al. [13] and the Ixs simulated by the Paci2018 model [20].
(a) Ixs peak current (a zoom on the Paci2018 Ik peak current is reported in Figure S7). (b) Ik tail
current. (c) Voltage dependence of Ixs deactivation kinetics. (d) Voltage dependence of Ikg activation.

4.3. Control and Mutant Rapid Delayed Rectifying Current Ik,

As in the previous section, we also wrote a formulation of the control and mutant current for Iy,
based on the experimental data from [4], in which the authors studied the N9961 mutation in the KCNH2
gene. In contrast to Ixs data, in this case, the control hiPSC-CMs were not produced from healthy
subjects, but obtained from the mutant cells by targeted gene correction. The available voltage-clamp
data are: (i) Ik, step current, (ii) Ik, tail current and (iii) I, activation time constant (Figure 14). As in
the previous section, our Ik, formulation [20] was adapted to this pool of experimental data to obtain
the control and mutant formulations reported in the Supplementary Material, Section 2.
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Figure 14. Fitting of the Ik, experimental data from Bellin et al. [4]. The black stars and curve represent
the Bellin et al. control data [4] and fitting, respectively. The grey stars and curve represent the
Bellin et al. mutant data [4] and fitting, respectively. The diamonds and the dashed curve represent the
Ixr measurements from Ma et al. [13] and the Ik, simulated by the Paci2018 model [20]. (a) Ik, step
current. (b) Ik, tail current. (c) I, activation time constant.

4.4. Control Populations (LQT1_CTRL and LQT2_CTRL) of In Silico hiPSC-CMs

We generated two control hiPSC-CM populations: the former using as a baseline model the
Paci2018 [20] after control Ixs replacement; the latter after control I, replacement. In both cases,
we proceeded as in [18,33]. We first generated a random population of in silico hiPSC-CMs
by sampling thirteen parameters in the baseline model by means of latin hypercube sampling.
The sampled parameters are the maximum conductances/currents of fast and late Na* currents
(INa, InaL), funny current (Ig), L-type Ca?* current (Icar), Ixs, Ikr, inward rectifying K* current (Ixq),
transient outward K* current (I,), Na* /Ca?* exchanger (Incx), Na* /K* pump (Inak), sarcolemmal
CaZ* pump (Ipca), SERCA pump (Isgrca) and RyR-sensitive Ca?* release from sarcoplasmic reticulum
(Iryr)- Each parameter was sampled in the range [0.5; 2] of its nominal value from [20]. Globally,
10,000 parameter sets (i.e., individual models) were simulated for 800 s to allow the models to reach
their steady state; these models represent the random population. The next step consisted of calibrating
the random population, i.e., discarding all those models whose AP biomarkers are not in agreement
with the experimental data, thus obtaining a subset of models that we called the calibrated population.
As in [18], we considered as experimental variability intervals of the AP biomarkers those intervals
obtained by merging together six AP biomarkers datasets computed on the spontaneous hiPSC-CM
APs: Ma2011 [13], Moretti2010 [3], Ma2013 [6], Fatima2013 [35], Lahti2012 [5] and Kujala2012 [8].
We did not consider the AP biomarkers computed on the control APs in [4] since they were obtained
in paced conditions. For each AP biomarker, we considered the union of the ranges mean — 25D
and mean + 25D from each dataset to get the lower (LB) and upper (UB) bounds of the ranges to
which the AP biomarkers computed on the APs of the random population must belong to (Table 5).
In case of meaningless bounding values, e.g., negative APD, the respective LB was set to zero. The AP
biomarkers considered for the calibration were: (i) rate of spontaneous AP (Rate), (ii) maximum
diastolic potential (MDP), (iii) peak potential (Peak), (iv) AP amplitude (APA), (v) maximum upstroke
velocity (dV/dtmax) and (vi) AP duration at different repolarization percentages (APDyy). Additionally,
models from the random populations were discarded also for the following two reasons: (i) if they did
not produce spontaneous APs or (ii) if their cytosolic Na* or sarcoplasmic Ca?* concentrations did
not belong to the intervals [5; 15] and [0; 5] mM, respectively. For simplicity, we called the population
based on the control Ixg from [3] LQT1_CTRL and the population based on the control Ik, from [4]
LQT2_CTRL.
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Table 5. Datasets used for calibrating the random populations. Lower (LB) and upper (UB) bounds for each AP biomarker are reported in columns two and three.
Missing data are marked as —. This table has been reproduced from the Supplementary Material of [18].

Dataset (# Cells) Ma2011[13] (32) Moretti2010 [3] (21) Ma2013 [6] (12)  Fatima2013 [35] (6)  Lahti2012 [5] (13)  Kujala2012 [8] (16)

AP biomarkers LB UB Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Rate (bpm) >0 209 35 12 68 12 69 39 118 45 72 22 41 24
MDP (mV) -89 —44 -76 7 —64 10 —61 5 —64 6 —63 5 —68 7
Peak (mV) 17 58 28 6 44 7 — — 39 3 — — — —
APA (mV) 76 139 104 6 108 10 86 5 102 5 113 9 118 10

dV/dtmax (V/s) >0 82 28 27 9 1 13 16 24 12 27 23 — —
APDjg (ms) 20 128 74 27 — — — — — — — — — —
APDj (ms) >0 290 — — — — 138 76 — — — — — —
APDj3; (ms) 59 301 180 61 — — — — — — — — — —
APDsj (ms) >0 601 — — 323 139 338 115 175 106 265 54 204 81
APDyy (ms) 146 631 — — — — 388 121 — — — — — —
APDyj (ms) 1 705 415 123 381 162 434 108 298 148 314 63 330 90
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4.5. Mutant LQT1 and LQT2 (LQT1_MUT and LQT2_MUT) In Silico Populations

After developing the LQT1_CTRL and the LQT2_CTRL populations, we switched on the
respective mutation in each of the hiPSC-CM models, i.e., we replaced the control Ixs and Ik,
formulations with their mutant equivalent, obtaining two new mutant populations: LQT1_MUT
and LQT2_MUT. In this case, no experimental calibration was performed. However, models were
again excluded in cases where (i) the mutation made them stop generating spontaneous APs, or (ii)
their cytosolic Na* or sarcoplasmic Ca?* were out of range. Due to the lack of an accepted criterion to
separate mutant APs showing pseudo-physiological APD from APs clearly showing the effect of the
mutation, as in [18], we divided the LQT1_MUT and the LQT2_MUT populations into two groups
using only the AP shapes. Provided that the KCNQ1 R190Q and the KCNH2 N996I mutations affect all
cells in LQT1_MUT and LQT2_MUT, respectively, we named normal-like the group with APDs more
similar to control hiPSC-CMs, and at risk the group with longer APDs. Instead of setting one arbitrary
threshold on only one AP biomarker, e.g., APDqgj, we chose to use k-means clustering [36] applied to
Rate and to all the APDs. AP biomarkers were standardized with mean = 0 and standard deviation = 1
and k-means was repeated 200 times to stabilize the centroids in the AP biomarker space.

4.6. In Silico Drug Tests

Quinidine is a class Ia antiarrhythmic drug, hence blocking Iy, but also dramatically affecting
other currents, e.g., Ix; and Ic,1. The effect of three doses of quinidine (1.5, 3, and 9 tM) was tested on
all the in silico populations. Drug administration was performed using the single pore block model,
as in [18]. The couples (ICsg in uM, Hill’s coefficients) for the quinidine effect on I, and Ic,;, were
taken from [37]: In, (14.6, 1.22) and Ic,1, (6.4, 0.68). The couples for Ixy, Ixs and Iy, were taken from [38]:
Ixr (0.343, 1), Ixs (4.899, 1.4) and I, (3.487, 1.3). Quinidine was administered from steady state for 250 s
to all the models in each population. AP biomarkers were computed on the last 10 APs if arrhythmic
events, e.g., EADs, DADs or repolarization failure, did not happen. In this test, we did not exclude
any model based on the absence of spontaneous APs or because of out-of-boundaries Na* and Ca?*
concentrations, since we aimed to appreciate all the abnormalities induced by quinidine.

5. Conclusions

In conclusion, in this work we were able to reproduce the two most common loss-of-function LQT
syndromes by means of large-scale simulations, which also enabled the investigation of biophysical
mechanisms not easy to assess in vitro, e.g., how the expression of ionic currents can impact on the
mutation. Moreover, we provided a tool to assess adverse effects of drugs on the electrophysiology of
control and mutant cells, in the perspective of in silico drug tests, not only on adult cells [19], but also
on hiPSC-CMs as required in the Comprehensive In vitro Proarrhythmia Assay framework [39].
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Abbreviations

AP Action potential

APDy Action potential duration at xx%
hiPSC Human induced pluripotent stem cell
APA Action potential amplitude

DAD Delayed afterdepolarization

dV /dtmax Maximum upstroke velocity

EAD Early afterdepolarization

EHT Engineered heart tissue

FDA Food and drug administration
hiPSC-CM  Human induced pluripotent stem cell-derived cardiomyocyte
Icar L-type Ca?* current

I¢ Funny current

Ixr Rapid delayed rectifying K* current
Ixs Slow delayed rectifying K* current
Ix1 Inward rectifying K* current

INa Fast Na* current

INak Na*/K* pump

INaL Late Na* current

Incx Na*/Ca?* exchanger

Loca Sarcolemmal Ca?* pump

IryR RyR-sensitive Ca?* release

Isgrca SERCA pump

Lo Transient outward K* current

LB Lower bound

LQT1_CTRL hiPSC-CM population with control Ixg from
LQT1_MUT hiPSC-CM population with mutant Ixg from
LQT2_CTRL hiPSC-CM population with control I, from

—

3]
3]
]

—_ —_—

4]

LQT2_MUT hiPSC-CM population with mutant Ix, from [4
MDP Maximum diastolic potential

mean Mean value

Paci2018 hiPSC-CM model from [20]

Peak Peak potential

Rate Spontaneous action potential rate

SD Standard deviation

UB Upper bound

AAPDg% Percent APDy variation
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