organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Bromophenyl)-3-(4-hydroxyphenyl)-1,3-thiazolidin-4-one

Jasmine P. Vennila,^a D. John Thiruvadigal,^b Helen P. Kavitha,^c G. Chakkaravarthi^d* and V. Manivannan^e

^aDepartment of Physics, Panimalar Institute of Technology, Chennai 602 103, India, ^bDepartment of Physics, SRM University, Kattankulathur Campus, Chennai, India, ^cDepartment of Chemistry, SRM University, Ramapuram Campus, Chennai 600 089, India, ^dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and ^eDepartment of Research and Development, PRIST University, Vallam, Thaniavur 613 403, Tamil Nadu, India

Correspondence e-mail: chakkaravarthi_2005@yahoo.com

Received 25 June 2011; accepted 27 June 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.087; data-to-parameter ratio = 20.0.

In the title compound, $C_{15}H_{12}BrNO_2S$, the dihedral angle between the two aromatic rings is 87.81 (8)°. The fivemembered thiazolidine ring has an envelope conformation, with the S atom displaced by 0.4545 (7) Å from the mean plane of the other four ring atoms. The crystal structure exhibits O-H···O, C-H···O, C-H···Br and C-H··· π interactions.

Related literature

For the biolgical activity of thiazolidine derivatives, see: Chen et al. (2000); Jacop & Kutty (2004); Kalia et al. (2007); Vicentini et al. (1998); Vigorita et al. (1992). For bond-length data see: Allen et al. (1987). For related structures, see: Akkurt et al. (2010, 2011).

 $M_r = 350.23$

Experimental

Crystal data C15H12BrNO2S Orthorhombic, Pbca a = 13.3367 (6) Å b = 12.6292 (5) Å c = 17.1230 (6) Å V = 2884.1 (2) Å³

Data collection

F

Bruker Kappa APEXII	18957 measured reflections
diffractometer	3617 independent reflections
Absorption correction: multi-scan	2317 reflections with $I > 2\sigma($
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.031$
$T_{\min} = 0.467, \ T_{\max} = 0.586$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	181 parameters
$wR(F^2) = 0.087$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
3617 reflections	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 8

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.20$ mm

with $I > 2\sigma(I)$

 $\mu = 3.00 \text{ mm}^{-1}$

T = 295 K

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C4–C9 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O1^{i}$	0.82	1.94	2.758 (2)	175
$C5 - H5 \cdots O2^{n}$	0.93	2.53	3.361 (3)	149
C12−H12···Br1 ⁱⁱⁱ	0.93	2.84	3.463 (2)	125
$C15 - H15 \cdots Cg2^{iv}$	0.93	2.94	3.775 (2)	150

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $-x + \frac{1}{2}, -y, z - \frac{1}{2}$; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}.$

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5562).

References

- Akkurt, M., Çelik, Í., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2010). Acta Cryst. E66, 01691-01692.
- Akkurt, M., Çelik, Í., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011). Acta Cryst. E67, 0914-0915.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312-5315. Jacop, J. & Kutty, G. N. (2004). Indian Drugs, 41, 76-79.

Kalia, R., Rao, C. M. & Kutty, N. G. (2007). Arzneim. Forsch. (Drug Res.), 57, 616-622.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29-36.

Vigorita, M. G., Basile, M., Zappala, C., Gabbrielli, G. & Pizzimenti, F. (1992). Farmaco, 47, 893-906.

supplementary materials

Acta Cryst. (2011). E67, o1902 [doi:10.1107/S1600536811025281]

2-(4-Bromophenyl)-3-(4-hydroxyphenyl)-1,3-thiazolidin-4-one

J. P. Vennila, D. J. Thiruvadigal, H. P. Kavitha, G. Chakkaravarthi and V. Manivannan

Comment

Thiazolidine derivatives exhibit herbicidal (Chen *et al.*, 2000; Vicentini *et al.*, 1998), antineoplastic (Vigorita *et al.*, 1992), hypolipidemic (Jacop & Kutty, 2004) and anti-inflammatory (Kalia *et al.*, 2007) activities. We report here the crystal structure of the titled compound (I) (Fig. 1).

In the title compound (I), the bond lengths in the molecule are normal (Allen *et al.*, 1987) and in a good agreement with those reported previously (Akkurt *et al.*, 2010,2011). The dihedral angle between the benzene rings (C4—C9) and (C10—C15) is 87.81 (8)°. The five-membered thiazolidine ring (N1/C2/C1/S1/C3) has an envelope conformation, with the S atom displaced by 0.4545 (7) Å from the mean plane of the four other ring atoms. In the molecule, the absolute configuration at atom C3 is *R* configuration. The crystal structure exhibit weak O—H…O, C—H…O, C—H…Br and C—H… π (Fig. 2 and Table 1) interactions. Cg2 is the centroid of C4-C9 ring.

Experimental

About 5 mmol of 4-[(4-Bromobenzylidene)-amino]-phenol was taken in a round bottomed flask. To this 25 ml of dry benzene and 10 ml of mercapto acetic acid was added. The content of the flask were refluxed on the water bath for 12 hrs, cooled and poured into water. The upper organic layer was washed successively with aqueous sodium bicarbonate and water and dried with anhydrous sodium sulfate. The solvent was removed by distillation under reduced pressure. The residue on recrystallization from ethanol several times, yielded diffraction quality crystals.Yield: 62%.

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2Ueq(C)$ and O—H = 0.82 Å and $U_{iso}(H) = 1.2Ueq(O)$ for OH.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of (I), viewed down the *a* axis. H-bonds are shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted.

2-(4-Bromophenyl)-3-(4-hydroxyphenyl)-1,3-thiazolidin-4-one

Crystal	data
---------	------

C ₁₅ H ₁₂ BrNO ₂ S	F(000) = 1408
$M_r = 350.23$	$D_{\rm x} = 1.613 {\rm Mg m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 4654 reflections
a = 13.3367 (6) Å	$\theta = 2.4 - 23.8^{\circ}$
b = 12.6292 (5) Å	$\mu = 3.00 \text{ mm}^{-1}$
c = 17.1230 (6) Å	T = 295 K
V = 2884.1 (2) Å ³	Block, colourless
Z = 8	$0.30 \times 0.20 \times 0.20 \text{ mm}$

Data collection

3617 independent reflections
2317 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$
$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
$h = -17 \rightarrow 16$
$k = -16 \rightarrow 16$
$l = -16 \rightarrow 22$

Refinement

v	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.087$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_0^2) + (0.0332P)^2 + 1.5996P]$ where $P = (F_0^2 + 2F_c^2)/3$
3617 reflections	$(\Delta/\sigma)_{max} < 0.001$

supplementary materials

181 parameters	$\Delta\rho_{max} = 0.45~e~\text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.47 \ e \ {\rm \AA}^{-3}$

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.63473 (19)	0.1392 (2)	0.12609 (17)	0.0510(7)
H1A	0.6916	0.1565	0.0932	0.061*
H1B	0.6280	0.0628	0.1279	0.061*
C2	0.54086 (16)	0.18813 (18)	0.09361 (15)	0.0344 (5)
C3	0.52231 (15)	0.23237 (19)	0.22967 (13)	0.0328 (5)
Н3	0.5202	0.3035	0.2525	0.039*
C4	0.46182 (16)	0.15917 (18)	0.28031 (13)	0.0316 (5)
C5	0.41708 (17)	0.06902 (18)	0.25054 (14)	0.0342 (5)
Н5	0.4201	0.0555	0.1972	0.041*
C6	0.36796 (18)	-0.00109 (19)	0.29911 (15)	0.0387 (6)
Н6	0.3372	-0.0612	0.2788	0.046*
C7	0.36517 (19)	0.0191 (2)	0.37752 (15)	0.0427 (6)
C8	0.4075 (2)	0.1078 (2)	0.40845 (16)	0.0515 (7)
H8	0.4044	0.1204	0.4619	0.062*
C9	0.4548 (2)	0.1784 (2)	0.35973 (15)	0.0459 (7)
Н9	0.4825	0.2399	0.3804	0.055*
C10	0.39180 (15)	0.28732 (16)	0.13260 (12)	0.0262 (5)
C11	0.31686 (16)	0.23068 (17)	0.09663 (13)	0.0305 (5)
H11	0.3274	0.1603	0.0830	0.037*
C12	0.22563 (16)	0.27854 (18)	0.08068 (13)	0.0324 (5)
H12	0.1745	0.2400	0.0571	0.039*
C13	0.21067 (15)	0.38358 (18)	0.09987 (13)	0.0313 (5)
C14	0.28555 (17)	0.43972 (18)	0.13648 (15)	0.0373 (6)
H14	0.2751	0.5101	0.1502	0.045*
C15	0.37581 (17)	0.39194 (18)	0.15282 (14)	0.0351 (5)
H15	0.4263	0.4301	0.1776	0.042*
N1	0.48688 (12)	0.23846 (14)	0.14893 (10)	0.0290 (4)
01	0.51648 (12)	0.18202 (13)	0.02472 (10)	0.0432 (4)
02	0.12206 (12)	0.43423 (13)	0.08407 (11)	0.0472 (5)
H2	0.0887	0.3982	0.0539	0.057*
S1	0.65353 (5)	0.19057 (6)	0.22246 (4)	0.04894 (19)
Br1	0.29816 (3)	-0.07918 (3)	0.44309 (2)	0.07795 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0342 (14)	0.0612 (17)	0.0575 (18)	0.0169 (13)	0.0023 (12)	0.0021 (14)
C2	0.0277 (12)	0.0379 (12)	0.0376 (16)	0.0002 (10)	0.0076 (11)	0.0026 (11)
C3	0.0271 (11)	0.0393 (12)	0.0320 (14)	0.0020 (10)	-0.0051 (10)	-0.0013 (10)
C4	0.0285 (11)	0.0418 (13)	0.0244 (13)	0.0066 (10)	-0.0036 (9)	-0.0008 (10)
C5	0.0393 (13)	0.0402 (12)	0.0229 (12)	0.0040 (11)	-0.0011 (10)	0.0000 (11)
C6	0.0402 (14)	0.0346 (13)	0.0413 (16)	0.0070 (11)	0.0006 (11)	0.0037 (11)

supplementary materials

C7	0.0436 (14)	0.0497 (15)	0.0349 (16)	0.0170 (12)	0.0104 (12)	0.0136 (13)
C8	0.0581 (18)	0.0711 (19)	0.0254 (14)	0.0138 (15)	0.0042 (13)	-0.0003 (14)
С9	0.0483 (15)	0.0560 (16)	0.0335 (16)	0.0013 (13)	-0.0020 (12)	-0.0098 (13)
C10	0.0226 (10)	0.0330 (11)	0.0230 (12)	0.0013 (9)	0.0013 (9)	0.0011 (9)
C11	0.0320 (12)	0.0290 (11)	0.0305 (13)	0.0008 (10)	0.0002 (10)	-0.0040 (10)
C12	0.0258 (11)	0.0405 (13)	0.0310 (13)	-0.0017 (10)	-0.0041 (9)	-0.0098 (10)
C13	0.0253 (11)	0.0421 (12)	0.0265 (13)	0.0064 (10)	-0.0012 (9)	-0.0062 (10)
C14	0.0344 (13)	0.0331 (12)	0.0442 (15)	0.0038 (10)	-0.0071 (11)	-0.0118 (11)
C15	0.0264 (11)	0.0388 (13)	0.0400 (15)	-0.0039 (10)	-0.0059 (10)	-0.0062 (11)
N1	0.0234 (9)	0.0362 (10)	0.0273 (11)	0.0037 (8)	-0.0009 (8)	0.0024 (8)
O1	0.0371 (9)	0.0622 (11)	0.0304 (11)	0.0067 (8)	0.0078 (8)	-0.0037 (8)
O2	0.0324 (9)	0.0557 (11)	0.0534 (11)	0.0145 (8)	-0.0157 (8)	-0.0223 (9)
S 1	0.0268 (3)	0.0699 (5)	0.0501 (5)	0.0060 (3)	-0.0060 (3)	0.0099 (4)
Br1	0.1055 (3)	0.0617 (2)	0.0667 (3)	0.02192 (19)	0.0415 (2)	0.03136 (17)

Geometric parameters (Å, °)

C1—C2	1.503 (3)	C7—Br1	1.897 (2)
C1—S1	1.791 (3)	C8—C9	1.375 (4)
C1—H1A	0.9700	С8—Н8	0.9300
C1—H1B	0.9700	С9—Н9	0.9300
C2—O1	1.226 (3)	C10-C11	1.375 (3)
C2—N1	1.349 (3)	C10-C15	1.382 (3)
C3—N1	1.463 (3)	C10—N1	1.438 (3)
C3—C4	1.502 (3)	C11—C12	1.386 (3)
C3—S1	1.832 (2)	C11—H11	0.9300
С3—Н3	0.9800	C12—C13	1.381 (3)
C4—C5	1.383 (3)	C12—H12	0.9300
C4—C9	1.385 (3)	C13—O2	1.371 (3)
C5—C6	1.380 (3)	C13—C14	1.376 (3)
С5—Н5	0.9300	C14—C15	1.375 (3)
C6—C7	1.367 (3)	C14—H14	0.9300
С6—Н6	0.9300	C15—H15	0.9300
С7—С8	1.361 (4)	O2—H2	0.8200
C2—C1—S1	107.98 (18)	С7—С8—Н8	120.4
C2—C1—H1A	110.1	С9—С8—Н8	120.4
S1—C1—H1A	110.1	C8—C9—C4	120.9 (2)
C2—C1—H1B	110.1	С8—С9—Н9	119.6
S1—C1—H1B	110.1	С4—С9—Н9	119.6
H1A—C1—H1B	108.4	C11—C10—C15	119.83 (19)
O1—C2—N1	124.3 (2)	C11—C10—N1	120.33 (19)
O1—C2—C1	123.5 (2)	C15—C10—N1	119.84 (19)
N1—C2—C1	112.2 (2)	C10-C11-C12	120.0 (2)
N1—C3—C4	113.86 (18)	С10—С11—Н11	120.0
N1—C3—S1	105.06 (14)	C12—C11—H11	120.0
C4—C3—S1	111.99 (15)	C13—C12—C11	119.9 (2)
N1—C3—H3	108.6	C13—C12—H12	120.0
С4—С3—Н3	108.6	C11—C12—H12	120.0
S1—C3—H3	108.6	O2—C13—C14	118.4 (2)

C5—C4—C9	118.5 (2)	O2—C13—C12	121.7 (2)
C5—C4—C3	121.7 (2)	C14—C13—C12	119.9 (2)
C9—C4—C3	119.7 (2)	C15—C14—C13	120.1 (2)
C6—C5—C4	120.7 (2)	C15—C14—H14	119.9
С6—С5—Н5	119.6	C13—C14—H14	119.9
С4—С5—Н5	119.6	C14—C15—C10	120.2 (2)
C7—C6—C5	119.0 (2)	C14—C15—H15	119.9
С7—С6—Н6	120.5	C10-C15-H15	119.9
С5—С6—Н6	120.5	C2-N1-C10	122.44 (18)
C8—C7—C6	121.6 (2)	C2—N1—C3	117.80 (18)
C8—C7—Br1	120.2 (2)	C10—N1—C3	119.42 (17)
C6—C7—Br1	118.2 (2)	С13—О2—Н2	109.5
С7—С8—С9	119.2 (2)	C1—S1—C3	91.88 (11)
S1—C1—C2—O1	168.02 (19)	O2—C13—C14—C15	-179.5 (2)
S1—C1—C2—N1	-12.4 (3)	C12-C13-C14-C15	1.1 (4)
N1—C3—C4—C5	32.4 (3)	C13-C14-C15-C10	0.0 (4)
S1—C3—C4—C5	-86.6 (2)	C11-C10-C15-C14	-0.6 (3)
N1—C3—C4—C9	-151.3 (2)	N1-C10-C15-C14	179.1 (2)
S1—C3—C4—C9	89.7 (2)	O1-C2-N1-C10	2.4 (3)
C9—C4—C5—C6	-1.1 (3)	C1—C2—N1—C10	-177.1 (2)
C3—C4—C5—C6	175.3 (2)	O1—C2—N1—C3	175.7 (2)
C4—C5—C6—C7	-0.8 (3)	C1—C2—N1—C3	-3.9 (3)
C5—C6—C7—C8	1.6 (4)	C11—C10—N1—C2	52.6 (3)
C5—C6—C7—Br1	-179.47 (17)	C15-C10-N1-C2	-127.1 (2)
C6—C7—C8—C9	-0.5 (4)	C11-C10-N1-C3	-120.6 (2)
Br1—C7—C8—C9	-179.4 (2)	C15—C10—N1—C3	59.7 (3)
C7—C8—C9—C4	-1.5 (4)	C4—C3—N1—C2	-105.3 (2)
C5—C4—C9—C8	2.2 (4)	S1—C3—N1—C2	17.6 (2)
C3—C4—C9—C8	-174.2 (2)	C4—C3—N1—C10	68.2 (3)
C15-C10-C11-C12	0.1 (3)	S1—C3—N1—C10	-168.91 (15)
N1-C10-C11-C12	-179.6 (2)	C2—C1—S1—C3	18.91 (19)
C10-C11-C12-C13	1.0 (3)	N1—C3—S1—C1	-20.26 (17)
C11—C12—C13—O2	179.1 (2)	C4—C3—S1—C1	103.83 (18)
C11—C12—C13—C14	-1.6 (4)		

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4–C9 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2···O1 ⁱ	0.82	1.94	2.758 (2)	175
C5—H5…O2 ⁱⁱ	0.93	2.53	3.361 (3)	149
C12—H12···Br1 ⁱⁱⁱ	0.93	2.84	3.463 (2)	125
C15—H15····Cg2 ^{iv}	0.93	2.94	3.775 (2)	150
Symmetry codes: (i) $r = 1/2 = v + 1/2 = -\tau$; (ii)	$-r+1/2$ $\nu-1/2$ τ : (iii) -	$r+1/2 = v_{\tau} - 1/2 \cdot (iv_{\tau})$	$-r+1$ $\nu+1/2$ $-r+1/2$	

Symmetry codes: (i) x-1/2, -y+1/2, -z; (ii) -x+1/2, y-1/2, z; (iii) -x+1/2, -y, z-1/2; (iv) -x+1, y+1/2, -z+1/2.

Fig. 2

