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Abstract: Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-
viral vectors are widely developed and applied in clinical practice due to their low immunogenicity,
good biocompatibility, easy synthesis and modification, and low cost of production. This review
summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanopar-
ticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical
characteristics, synthesis methods, functional modifications, and research applications. Notably,
non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve ther-
apeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of
novel synthesis techniques for vector materials. We also elaborated on the problems and future
research directions in the development of non-viral vectors, which provided a theoretical basis for
their broad applications.

Keywords: non-viral vectors; polymers; liposomes; gold nanoparticles; mesoporous silica nanoparti-
cles; carbon nanotubes

1. Introduction

With the development of biotechnology, drug delivery and gene therapy play an
important role in the treatment of many diseases such as hereditary diseases, malignant
tumors, cardiovascular diseases, infectious diseases, and neurodegenerative diseases [1–6].
However, there are some drawbacks containing rapid degradation [7–9], nontargeted
delivery [10,11], unsatisfactory efficacy [12], multiple side effects [13,14] after nucleic acids,
proteins, peptides, and other substances entering the body circulation. Therefore, suitable
vectors, effective transport route, or chemical modification are necessary to improve the
pharmacokinetic properties [15–18]. A growing number of vectors for gene therapy or
vaccines and carriers for drug delivery have been extensively researched owing to their
facile use, targeting ability, high bioavailability, and good biocompatibility [19–21].

Viruses, such as adenovirus, vesicular stomatitis virus, cytomegalovirus, lentivirus,
and retrovirus, are commonly used vectors because of highly infectious, effective delivery,
and efficient expression [22–25]. However, viral vectors have several limitations including
toxicity, immunogenicity, carcinogenicity, high cost, and difficulty of large-scale production
in clinical practice [26–28]. Consequently, more and more scientists have turned their
attention to the development of non-viral vectors and carriers [29–31]. Recent studies
have shown that non-viral vectors have the following advantages: low immunogenicity,
biodegradability, easy synthesis, low cost of production, and no restriction on the size of the
molecules to be introduced [32–36]. The most extensively researched non-viral vectors are
mainly polymers, liposomes, and nanoparticles [37–42]. This review introduces several non-
viral vectors that have been extensively studied in the past few decades and summarizes
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their biomedical applications, providing a theoretical basis for the development of new
non-viral vectors in the future (Figure 1). Table 1 shows the characteristics and commonly
used preparation methods of several non-viral vectors. Table 2 shows the patent reports
related to non-viral vectors in recent years.
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Table 1. The characteristics and preparation methods of several non-viral vectors.

Vector Characteristics Preparation Methods

Polymers

Easy to synthesize
Low cost

Biodegradable
No immunogenicity

Allow to be extensively modified

Solvent evaporation
Emulsification–solvent diffusion

Solvent displacement
Monomer polymerization

Double emulsion solvent evaporation

Liposomes

Low toxicity
Good biocompatibility

Improved pharmacokinetics
Ease of synthesis

Thin film hydration
Reverse-phase evaporation

Injection
Dehydration-rehydration

Freeze-thaw
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Table 1. Cont.

Vector Characteristics Preparation Methods

Gold nanoparticles
Good stability and biocompatibility
High surface area-to-volume ratio

Easy to modify

Turkevich method
The brust method

Digestive ripening method
Green method

Mesoporous silica
nanoparticles

Substa
Ntial surface area

Large pore size
Low density

Adsorption capacity
Tunable pore size

Ease of modification
High biocompatibility

Sol–gel
Hydrothermal
Green method

Carbon nanotubes

Good adsorption ability
Excellent chemical stability

High tensile strength
Significant electrical

Thermal conductivity

Arc discharge
Chemical vapor deposition (CVD)

Laser ablation

Table 2. The patent reports related to non-viral vectors in recent years.

Vector Summary References

Polymer Gene transfer composition using a tri-block polymer electrolyte being
polyethyleneimine-polylactic-acid-polyethylene-glycol [43]

Polymer A methoxypolyethylene glycol-polylactic acid block copolymer was prepared to
improve the drug encapsulation rate [44]

Polymer The chitosan modified with a carboxymethyl group and a hexanoyl group can be
used as a material for a drug carrier [45]

Polymer Chitosan microspheres capable of precisely controlling the release of the drug [46]

Polymer Alginate extraction method [47]

Polymer Injectable hybrid alginate hydrogels [48]

Liposomes A method for preparing a Decoy nucleic acid cationic liposome carrier [49]

Liposomes An efficient, stable human lung tissues-active targeting immune nanoliposome, with
specific active lung targeting [50]

Liposomes A liposome preparation, a preparation method and an application thereof in
treatment for related diseases caused by abnormal expression of gene [51]

Gold nanoparticles A method for producing confeito-like gold nanoparticles using hydroxyl peroxide in
an aqueous alkaline condition in the presence of a biocompatible protecting agent [52]

Gold nanoparticles Method for the size controlled preparation of these monodisperse carboxylate
functionalized gold nanoparticles [53]

Silica nanoparticles Mesoporous silica nanoparticles and supported lipid bi-layer nanoparticles for
biomedical applications [54]

Silica nanoparticles Mesoporous silica nanoparticles with lipid bilayer coating for cargo delivery [55]

Carbon nanotubes Payload molecule delivery using functionalized discrete carbon nanotubes [56]

Carbon nanotubes Carbon nanotubes for imaging and drug delivery [57]

2. Polymers

Recent trends in biodegradable polymers, especially aliphatic polymers, indicate
significant developments in terms of novel design strategies and clinical biomedicine
applications [58]. Polymer as a non-viral vector has the following advantages: (1) easy



Polymers 2021, 13, 3307 4 of 28

to synthesize and low cost [59]; (2) multiple polymers are biodegradable [60]; (3) no
immunogenicity [61]; (4) allow being extensively modified [62]; (5) ability to protect the
nucleic acid drugs from various enzymes by forming polyelectrolyte complexes [63]. There
are four main types of production methods: solvent evaporation, emulsification–solvent
diffusion, solvent displacement and monomer polymerization [59]. Various polymers
such as dendrimers, polylactic acid (PLA), polyethylenimine (PEI), and chitosan (CS)
have been widely used in delivery systems [51,64–68]. Table 3 summarizes the structural
characteristics, synthesis methods and properties of several polymer materials.

Table 3. The information of several polymer materials.

Polymer Structure Synthesis Methods Characteristics Limitations

Dendrimers
Linear polymers with

dendron on each
repeating unit

Divergent approaches,
Convergent approaches

Uniform size,
High degree of

branching,
Polyvalency,

Water solubility,
Available internal cavities

-

Polyethylenimine
Cationic polymer of

ethylenediamine
monomers

- High transfection
efficiency High toxicity

Chitosan

Repeating β -(1,4)-2-
amino-D-glucose and
β-(1,4)-2-acetamido-D-

glucose
units

Chemical method,
enzymatic Good biocompatibility

Poor solubility in
water,

Low transfection
efficiency

Polylactic acid The polymerization of
lactic acid

Direct condensation
polymerization,

Azeotropic dehydration
condensation,

Lactide ring-opening
polymerization,

Double emulsion solvent
evaporation technique

Strong plasticity,
Low price,

Good versatility
Poor hydrophilicity

Amino acid derived
biopolymers

Amino acid
polymerization

Direct polycondensation,
Solution or activated

polycondensation,
Ring-opening

polymerization,
Interfacial

polymerization,
Melt polycondensation,

Chemoen-zymatic
synthesis

Wide-range of functional
groups,

Good biocompatibility

Production of
by-products in the
synthesis process

Alginate Linear copolymer

Ionic crosslinking,
Covalent crosslinking,

Phase transition,
Cell crosslinking,

Free radical
polymerization,
Click chemistry

easy availability,
hydrophilicity,

biodegradability,
versatility

Aggregation
tendency with

protein at high pHs

2.1. Dendrimers

Dendrimers are linear polymers with dendron on each repeating unit and have a
hyper-branched 3D structure [61,69]. Their size, degree of branching and functionality can
be controlled and adjusted through the synthetic procedures [70]. Meanwhile, dendrimers
contain a variety of peripheral functional groups, which can be functionally modified using
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surface engineering technology such as antibody, transferrin, biotin, folic acid, galactose,
and peptide [71–73]. A variety of dendrimers such as poly (propylene imine) (PPI) den-
drimers, polyamidoamine (PAMAM) dendrimers, and poly-L-lysine (PLL) dendrimers
were synthesized by divergent and convergent approaches [74]. Guan et al. prepared fluo-
rescent PAMAM dendrimer by conjugating PAMAM dendrimers to fluorescein. The vector
has low cytotoxicity and high siRNA binding affinity which can improve the efficiency of
Cy5-siRNA delivery in A549 cells [75]. Mastorakos et al. prepared the hydroxyl PAMAM
dendrimer-based gene vectors which had high gene transfection efficiency and the stability
of compound can be improved after polyethylene glycol treatment [76]. Liaw et al. pre-
pared targeted novel hydroxyl dendrimer to deliver CSF-1R inhibitor BLZ945 (D-BLZ),
these dendrimers penetrated into orthotopic brain tumors and localize specifically within
TAMs. In vivo experiments on mice showed that the dendritic polymer could improve the
therapeutic effect of D-BLZ on glioblastoma [77].

2.2. Polyethylenimine

Various molecular weights of PEI can be synthesized by linear and branched forms [78].
Because PEI has a large amount of positive charge on its surface, it can be adsorbed together
with negatively charged nucleic acid drugs through electrostatic action to protect them from
lysosomal degradation [79–83]. However, PEI cannot be degraded in vivo, and its high
toxicity limits its application development [84,85]. Various polyethylenimine derivatives
containing coordination groups have been developed to reduce toxicity [86,87]. Mattheo-
labakis et al. used polyethylenimine, hyaluronic acid, and polyethylene glycol to produce
a polymer with a good ability to deliver siRNA to A549 cells [88]. Zhou et al. prepared
a PEI derivative modified by a cyclic amine derivative. Compared with unmodified PEI,
modification with cyclic amine derivatives can significantly reduce cytotoxicity. At the
same time, the polymer has a good antagonistic effect on Chemokine receptor CXCR4, and
has a good inhibitory ability on tumor cell invasion (Figure 2) [83]. Low molecular weight
PEI has lower toxicity, but the transfection efficiency is correspondingly lower [89]. More
and more studies have been conducted to modify low molecular weight PEI to improve
transfection efficiency [90,91]. Zhang et al. modified PEI 600 Da with aromatic rings in
order to improve DNA affinity. Cell uptake experiments showed that the polymer had
higher transfection efficiency for DNA compared with PEI 25 kDa. Meanwhile, the toxicity
of the polymer has low toxicity in both 7702 and HeLa cells by CCK-8 assay [92].
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2.3. Chitosan

Chitosan (CS) is one of the most abundant biopolymers derived from natural chitin
that commonly exists in the exoskeletons of arthropods, crustacean shells, insects, and
fungal cell walls [93]. CS can be degraded by internal enzymes, which makes chitosan
have good biocompatibility [94,95]. Like other cationic polymers, chitosan is linked to
nucleic acids by electrostatic interaction [96,97]. However, the poor solubility in water
and low transfection efficiency are the main factors limiting its application [98–100]. The
presence of amino and hydroxyl groups makes chitosan easy to modify, modification of
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chitosan with other substances such as PEI, gold nanoparticles, PLGA, and PEG have
been widely reported [101]. Chen et al. incorporated hydrophobic deoxycholic acid
(DCA) onto the chitosan backbone of poly (amidoamine) dendronized chitosan derivative
(PAMAM-Cs) to obtain an amphiphilic derivative-PAMAM-Cs-DCA. Doxorubicin was
wrapped inside the particle, and pDNA was electrostatically adsorbed on the surface
of the particle. The system delivered both pDNA and drugs at the same time, and the
transfection efficiency reached 74%. These results suggested that PAMAM-Cs-DCA NPs
hold great promise to co-deliver chemotherapeutics and nucleic acid drugs [102]. Lee et al.
prepared the triphenylphosphonium-glycol chitosan derivative (GME-TPP) with 36%
substitution by Michael addition. GME-TPP microspheres successfully targeted DOX
delivery to mitochondria in cells, which indicated the microsphere possess great potential
as effective drug delivery carrier [103]. Babii et al. synthesized mannosyl chitosan with
a degree of substitution of 15%. The particle has high encapsulation efficiency for CpG
oligodeoxynucleotides (CpG ODN) and can target CpG ODN to immune cells, which
indicated the particle may be used as an efficient carrier for intracellular CpG ODN
delivery [104]. Masjedi et al. prepared targeted nanoparticles by modifying N, N, N-
trimethyl chitosan with hyaluronic acid, which had low toxicity and high transfection
efficiency for siRNA. The particle loaded with siRNA can block the proliferation of cancer
cells by inhibiting the expression of IL-6/STAT3 [105].

2.4. Polylactic Acid/Poly (Lactic-Co-Glycolic Acid)

PLA and PLGA are biodegradable functional polymer organic compounds with
good biocompatibility and encapsulation properties which can be metabolized in the
body [106,107]. The synthesis of polylactic acid by direct condensation is described in the
following four ways: (1) direct condensation polymerization; (2) azeotropic dehydration
condensation; (3) lactide ring-opening polymerization; (4) double emulsion (water/oil/
water) solvent evaporation technique [108–110]. The characteristics of strong plasticity, low
price and good versatility have enabled them to be developed for biomedical applications
such as drug delivery [111–113]. Zabihi et al. prepared poly (lactide-co-glycerol) (PLG)
particles by combining hyperbranched polyglycerol and PLA. The encapsulation efficiency
of this particle on tacrolimus is 14.5%, which was able to improve the skin penetration and
therapeutic efficiency of this therapeutic agent [114]. Ren et al. prepared a dextran modified
PLGA microsphere that delivered IL-1 receptor antagonist (IL-1RA). The microsphere
can prolong the half-life of IL-1RA, allowing it to be released continuously. The results
showed that IL-1ra-loaded dextran/PLGA microsphere might be a useful tool to combat
periodontal disease [115]. Bazylińskaet al. prepared effective nanocarriers coated with
PLGA, PLGA-PEG, or PLGA-FA by double emulsion evaporation process, which enabled
co-encapsulation of cisplatin and verteporfin. The nanocarriers successfully delivered
cargo to target cells and significantly enhanced the ability of drugs to kill cancer cells [116].

2.5. Amino Acid Derived Biopolymers

Amino acids have become promising biomaterials for their abundant source and
diverse functional groups. Various polymerization methods are used to synthesize differ-
ent types of amino acid derived biopolymers such as polyamides(PA)s, polyesters(PE)s,
poly(ester-amide)s(PEA)s, polyurethanes(PU)s, and poly (depsipeptide)s (PDP)s [117].
Commonly used synthesis pathways are as follows: Direct polycondensation [118]; so-
lution or activated polycondensation [119]; ring-opening polymerization [120]; interfa-
cial polymerization [121]; melt polycondensation [122]; chemoenzymatic synthesis [123].
Poly(α-amino acid)s have the capability of readily self-assemble into discrete, stable, struc-
tures in solution. The positive charge of poly(beta-amino ester)s can bind to nucleic acids
and be internalized into cells. At the same time, they can escape from the endolysosomal
compartment and release nucleic acids into the appropriate cell compartment for gene
delivery through a variety of targeted degradation mechanisms [68]. In addition, abundant
functional groups provide multiple modification sites for amino acid derived biopolymers.
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Various ligand-modified amino acid derived biopolymers were extensively studied in drug
delivery (Table 4).

Table 4. Various responsive Amino acid derived biopolymers are used to deliver cargos.

Type Ligands Stimulus Cargo References

ssPBAE HA PH/redox DOX/CXB [124]

LPAE - Light DNA [125]

PBAE PEG PH VP [126]

PBLG PEG PH/Temperature DOX [127]

PBAE - PH ATRA [128]

SCA-PAE HA PH siRNA [129]

2.6. Alginates

Alginate (ALG) is a linear copolymer compound which has (1, 4)-linked-β-D- man-
nuronic (M) and α-L-guluronic (G) acid units [130]. The composition and length of the
M and G units determine the molecular and physicochemical properties of ALG. ALG is
a widely used anionic biopolymer due to its easy availability, hydrophilicity, biodegrad-
ability and versatility. The hydroxyl groups and carboxyl groups of ALG can be modified
easily by oxidation, acetylation, and esterification reactions [131]. The wide particle size
distribution of ALG enables it create complexes with various other biomaterials by elec-
trostatic interactions, chemical modification, or crosslinking [132]. The most important
property of alginates is their ability to form ionic gel in the presence of polyvalent cations.
So–gel is the most commonly used form of carrier for ALG. In recent years, the methods of
producing hydrogels included ionic crosslinking, covalent crosslinking, phase transition,
cell crosslinking, free radical polymerization, and click chemistry [130]. Alginate hydrogels
have outstanding properties such as high-water content, nontoxicity, soft consistency, and
biodegradability [133]. Meanwhile, alginate hydrogels can regulate the release of the drug
according to the pH of the surrounding medium [134]. In addition, ALG can also be
developed into microspheres and nanoparticles for drug delivery. Table 5 illustrates several
alginate-based drug delivery systems.

Table 5. Various alginate-based vehicles used in drug delivery.

Carriers Type Cargo References

ALG/Keratin Hydrogels Doxorubicin [135]

ALG/HA/Folate Hydrogels OXA [136]

ALG/CS/BSA Microcapsule DOX [137]

ALG/PEG Microspheres Polystyrene [138]

ALG/CS Nanoparticles Cur [139]

ALG/Laponite Nanohybrids DOX [140]

3. Liposomes

Liposomes are spherical vesicles composed of one or more layers of phospholipids
which belong to amphiphilic molecules, hydrophilic drugs are encapsulated in a water
core, and hydrophobic drugs are embedded in the lipid bilayer of the vesicle [141–143].
Liposomes as carriers have many advantages, including low toxicity, good biocompatibility,
improved pharmacokinetics, and ease of synthesis [144–146]. The commonly used prepara-
tion methods are thin film hydration, reverse-phase evaporation, injection, dehydration-
rehydration, and freeze-thaw. Liposomes are widely used in cancer treatment, viral in-
fection, infectious disease, vaccines, and other medical research [147–150]. However,
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unmodified liposomes are unstable in structure, thus are easily eliminated in the body’s cir-
culation, making drugs unable to effectively reach target organs and target sites [151–153].
Therefore, various ligand-targeting liposomes and stimulus-responding liposomes have
been developed to improve the delivery and targeting performance of liposomes [154–159].
Table 6 shows that liposomes modified with different ligands to deliver different cargos.

Table 6. Various ligands modified liposomes to deliver different cargos.

Ligands Stimulus Cargo References

H16 peptide - Alpha-galactosidase A [160]

Ferritin receptors - Resveratrol [161]

Lactoferrin - Doxorubicin [162]

PEG and anti-EphA10 antibody - siRNA [163]

Anti-CD44 aptamer - siRNA [164]

DSPE–PEG-2000 Temperature Doxorubicin [165]

Peptide H7K(R2)2 PH dDoxorubicin [166]

Superparamagnetic magnetite Magnetic Field 5-fluorouracil [167]

Hyaluronic acid Redox Doxorubicin [168]

Enzymatically cleavable peptide
linkers GFLG enzyme pDNA [169]

3.1. Ligand-Targeting Liposomes

Peptides as ligands have the advantages of small size, easy production, and high
stability [170]. Peptides can be combined with liposomes through various covalent and
non-covalent bonds, and are mainly divided into cell-penetrating peptides (CPP) and
cell-targeting peptides (CTP) [171–173]. RGD sequences are the most widely used class of
liposomal binding peptides, especially in tumor therapy [174]. Kang et al. developed a
cyclic peptide c(RGDyC) modified liposomal delivery system to deliver the integrins αvβ3,
which had a higher cellular uptake compared with liposomes without c(RGDyC) [175].
Belhadj et al. designed a Y-shaped multifunctional targeting material c(RGDyK)-pHA-PEG-
DSPE to deliver DOX, which prolonged the survival time of mice [176]. The encapsulation
rate of RGD-DXRL-PEG liposomes prepared by Chen et al. for doxorubicin was more
than 98%, and the cellular doxorubicin uptake for RGD-DXRL-PEG was about 2.5-fold
higher than that for DXRL-PEG (Figure 3) [177]. CPP typically contains 5 to 35 amino acid
residues and is widely used in cancer treatment [178]. Ding et al. constructed CPP-modified
pH-sensitive PEGylated liposomes (CPPL) which had high cell-penetrating and endosomal
escape abilities [179]. Hayashi et al. developed H16 peptide-modified liposomes (H16-Lipo)
which effectively delivered alpha-galactosidase A (GLA) to intracellular lysosomes and
improved proliferation of GLA knockdown cells [160]. Some other types of peptides have
also been used to modify liposomes. Chen et al. used peptide-20 modified liposome as a
carrier for DOX delivery, and U87 cells had a high uptake rate of this liposome [177]. Jhaveri
et al. used ferritin receptors modified liposomes to deliver resveratrol, which has a good
effect on inhibiting tumor growth and improving the survival rate of mice [161]. Wei et al.
developed a lactoferrin modified, polyethylene glycolated liposomes for doxorubicin
delivery. The results of experiments in mice indicated that the liposome-loaded DOX has
the potential to treat hepatocellular carcinoma [162].

Various immune liposomes can be obtained by attaching antibodies to the surface of
liposomes using surface engineering techniques [180–182]. Gao et al. developed a liposome
system modified with anti-EGFR Fab to deliver DOX and ribonucleotide reductase M2
siRNA, in vivo and in vitro experimental results showed that the vector system can im-
prove the efficiency of gene therapy and had a certain therapeutic effect on hepatocellular
carcinoma [183]. Saeed et al. prepared the immunoliposomes coupled to anti-MAGE A1
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TCR-like single-chain antibody which can be specifically bound to and be internalized by
positive melanoma cells [184]. Zang et al. prepared liposomes modified by PEG and anti-
EphA10 antibody, the immunoliposome significantly improved the transfection efficiency
of siRNA in MCF-7/ADR cells [163].
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An aptamer is a short synthetic single stranded DNA or RNA that can specifically
bind to the target through hydrogen bonds, Van der Waals forces and electrostatic in-
teractions [185,186]. Using aptamers as ligands has the characteristics of small volume,
simple synthesis process, low toxicity, good stability, high affinity, and good targeting
selectivity [187]. Alshaer et al. used anti-CD44 aptamer (APT1) modified liposome as
a carrier system for siRNA delivery and achieved a good gene silencing effect in tumor
cells [164]. Powell et al. used Aptamer A6modified liposome as a vector to deliver siRNA
to breast cancer cells which enhanced cytotoxicity and antitumor efficacy [188]. Li et al.
combined Aptamer AS1411 with PEGylated liposome surface to prepare a targeted carrier
for siRNA delivery. Cell uptake experiment results showed that the accumulation of siRNA
in tumor cells was greater than that in normal cells. Meanwhile, the carrier system showed
significant silencing activity in tumor xenograft mice and inhibited the melanoma growth
which indicated that the targeted delivery system of liposomes may have potential in the
treatment of melanoma [189].

Molecules such as folate and sugars also serve as ligands for liposomes [190–192].
There are also studies devoted to the development of liposome carriers modified with vari-
ous ligands, multivalent ligands have multiple binding groups and enhance the therapeutic
efficacy of drugs [193]. Kang et al. prepared a dual ligand liposome drug delivery system
modified with Pep-1 peptide and folate which showed higher cellular uptake and cytotox-
icity in HeLa cells as compared to chimeric-ligand oriented liposomes [194]. Zong et al.
prepared a dual ligand liposome drug delivery system modified with cell-penetrating
peptide (TAT) and transferrin, which effectively delivered drugs to targeted tumor cells,
the results of in vivo experiments also demonstrated that this drug delivery system could
improve the survival time of brain tumor-bearing animals [195].

Abbreviations: HSPC, hydrogenated soybean phosphatidylcholine; CHOL, choles-
terol; MBPE, maleimidobenzoylphosphatidylethanolamine; DSPE-PEG2000, N-(carbonyl-
methoxypolyethylene glycol 2000)-1, 2-distearoyl-sn-glycero-3- phosphoethanolamine
sodium salt; DRUG, doxorubicin; DXRL-PEG, DXR-loaded PEGylated liposomes; RGD-
DXRL-PEG, cRGD-modified DXRL-PEG.

3.2. Stimulus-Responding Liposomes

Internal physiological conditions and external stimuli were used to promote the release
of drug delivery systems in specific locations and environments to alter pharmacokinetic
characteristics [196,197]. Depending on the stimulus, scientists developed various lipo-
some drug carrying systems such as temperature-responsive liposomes, pH-responsive
liposomes, ultrasound responsive liposomes, magnetic-field responsive liposomes, redox-
responsive liposomes, light-responsive liposomes, and enzyme-responsive liposomes.
Needham et al. prepared a kind of temperature sensitive liposome using dipalmitoylphos-
phatidylcholine (DPPC), monopalmitoylphosphatidylcholine (MSPC), and distearoylphos-
phatidylethanolamine (DSPE)-PEG2000. The liposome is relatively stable at 37 ◦C. When
the temperature reaches 41.5 ◦C, 31% of the drug can be released within one to two seconds
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which was much higher than the unmodified liposome group [165]. Zhao et al. prepared a
pH-responsive liposome drug delivery system using tumor-specific pH-responsive peptide
H7K(R2)2 as a ligand. In vitro experiments proved that the drug delivery system effec-
tively released drugs under acidic conditions, and in vivo experiments showed that the
system had a good anti-tumor ability in C6 tumor-bearing mice [166]. Clares et al. used
a reproducible thin film hiatus technique to prepare magnetic liposomes coated with 5-
fluorouracil. Magnetic field caused the release of the drug and a good inhibition effect was
observed in human colon cancer cells [167]. Sine et al. prepared a light-responsive liposome
encapsulated with 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-A and calcein, laser
irradiation (660 nm, 90 mW) can promote drug release which showed enhanced antitumor
efficacy (Figure 4) [198]. Chi et al. prepared redox-responsive liposomes using hyaluronic
acid as a compound. The drug can be effectively released when the liposome is exposed to
reduced conditions. All animals treated with liposomal formulations survived in contrast
to those animals treated with free-DOX, indicating the liposomal formulation have an
effective tumor suppressive effect [168]. Song et al. synthesized enzymatic-responsive
liposomes using the enzymatically cleavable peptide linkers GFLG (Gly-Phe-Leu-Gly) as
the ligand system. After GFLG was degraded by endo-lysosomal enzyme, the encapsulated
pDNA was released and the transfection efficiency was 100 times higher than that of the
control group without GFPG modification [169].
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Abbreviations: DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DC8,9PC, 1,2
bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine; DSPE-PEG2000, 1,2-distearoyl -sn-
Glycero-3-Phosphoethanolamine-N-[Methoxy(Polyethylene glycol)-2000].

4. Gold Nanoparticles

Gold nanoparticles (AuNPs) have good stability and biocompatibility [199]. Quantum
size effect and high surface area-to-volume ratio make AuNPs have high drug loading [200].
Meanwhile, gold nanoparticles are easy to modify and can improve the pharmacokinetics
of many drugs which makes gold nanoparticles widely used in immune analysis, drug de-
livery, and detection of cancer cells and microorganisms [201–203]. For example, Ruan et al.
synthesized the Angiopep-2-PEG modified AuNPs which could specifically deliver and
release DOX in glioma and significantly expand the median survival time of glioma-bearing
mice (Figure 5) [204]. The synthesis methods of gold nanoparticles include chemical synthe-
sis and biological synthesis. The commonly used chemical methods include the turkevich
method, the brust method, and digestive ripening method [205–207]. The chemosynthesis
method has some limitations including low yield, difficulty in controlling particle shape,
strict preparation conditions, and poor biocompatibility [208–211]. Therefore, more and
more scientists are using friendly biosynthesis methods to synthesize gold nanoparticles.

Bacteria are important biological sources for the synthesis of AuNPs. The extracellular
enzymes work as a reducing agent in the reduction of metals during the synthesis of
microbial NPs and NADH-dependent reductase can carry out electron transfer from
NADH, leading to reduction of metal ions [212,213]. Parastoo et al. prepared the gold
nanoparticles with spherical, hexagonal, and octagonal shapes by reducing HAuCl4 in
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supernatant microbial of bacillus cereus culture [214]. Sharma et al. screened a marine
bacterium from different sea cost in India to produce gold nanoparticles. The prepared
gold nanoparticles were mostly spherical with a particle size of 10 nm [215]. Fungi also
can be used to synthesize gold nanoparticles. Sanghi et al. synthesized intracellular gold
nanoparticles with Phanerochaete chrysosporium and demonstrated that ligninase played
an important role [216]. Molnár et al. synthesized gold nanoparticles of different sizes
(between 6 nm and 40 nm) under controlled experimental conditions [217].
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As a cheap biological material, plants were used to synthesize gold nanoparticles
in recent years. Different plant species, different parts of the same plant species such
as leaves, roots, stems, and fruits can be used as raw materials for the synthesis of gold
nanoparticles [218]. Gopinath et al. synthesized spherical gold nanoparticles with particle
size of 20 nm to 50 nm by aqueous leaf extract of terminalia arjuna [219]. Yu et al. used
Citrus Maxima (C. Maxima) fruit extract to synthesize gold nanoparticles with an average
particle size of 25.7 nm [220]. In addition, some studies have shown that gold nanoparticles
can be synthesized from seaweed [221,222]. Table 7 shows the various biomaterials that
can be used to synthesize gold nanoparticles.

Table 7. Characteristics of gold nanoparticles synthesized from different raw materials.

Name of Organism Size (nm) Shape References

Bacteria

Bacillus cereus 20–50 Spherical, hexagonal,
octagonal [214]

Brevibacterium casei 10–50 Spherical [223]

Vibrio alginolyticus 50–100 Irregular [224]

Paracoccus haeundaensis BC74171(T) 20.93 ± 3.46 Spherical [225]

Fungi

Macrophomina phaseolina 14–16 Spherical [226]

Morchella esculenta 16.51 Spherical and hexagonal [227]

endophytic Cladosporium species 5–10 Spherical [228]

Ttichoderma sp. WL-Go 1–24 Spherical and
pseudo-spherical [229]

Plants

Annona muricata 25.5 Spherical [230]

Benincasa hispida 22.18 ± 2 Spherical [231]

Capsicum annuum 19.97 Spherical [232]

Turnera diffusa 24 Spherical [233]
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Table 7. Cont.

Name of Organism Size (nm) Shape References

Algae

Sargassum serratifolium 5.22 slightly spherical, triangles,
pentagons, and narrow square [234]

marine red algaAcanthophora spiciferaby <20 Spherical [235]

marine brown algae S. ilicifolium 20–25 Near-spherical [236]

Chlorella sorokiniana Shihira & R.W 5–15 Spherical [237]

The size and shape of gold nanoparticles can be tuned by controlling the synthesize
conditions such as temperature, type of surfactant, and concentration of metal matrix in
both chemical and biosynthetic methods [238]. The size and shape of gold nanoparticles
strongly influence their toxicity, drug loading, and penetration properties, and then affect
their biomedical applications. A study showed that 5 nm AuNPs in a concentration of
more than 50 µM were associated with cytotoxic effects, while 15 nm AuNPs presented
good biocompatibility [239]. Karol et al. studied the relationship between toxicity and
shape of gold nanoparticles (rods, stars, and spheres). The results showed that star shape
gold nanoparticles has the highest anticancer potential but has the slowest cellular uptake
due to their big size, while the sphere shape gold nanoparticles exhibited the most safety,
the fastest cellular uptake and weak anticancer potential [240]. A study about the size
dependence of the antiviral activity of AuNPs demonstrated that small particles (2 nm)
had no inhibitory effect for influenza virus, while medium-sized AuNPs (14 nm) inhibited
the virus binding and infection [241].

5. Mesoporous Silica Nanoparticles

In 1992, the first ordered mesoporous silica (MCM type) was synthesized by the
Mobile Research and Development Corporation [242,243]. Subsequently, many other types
of mesoporous silica nanomaterials (MSNs) such as BSA type, HMM type, KIT type, KCC
type, FSM type, and TUD type were synthesized using a variety of improved methods.
Table 8 shows the specific example of the synthesis of various MSNs. Various distinctive
properties of MSNs including substantial surface area, large pore size, low density, good
adsorption and encapsulation capacity, controllable superficial charge, ease of modification,
and high biocompatibility showed great potential in drug delivery applications [244–249].
The synthesis techniques of MSNs can be classified into sol–gel, as well as hydrothermal
and green method (Table 9) [250].

Table 8. Synthesis of different series of MSNs.

Type Silica Sources Surfactant References

MCM
Sodium silicate,

Tetramethylammonium silicate,
Tetraethyl orthosilicate

Quaternary
ammonium surfactant [242]

BSA Sodium silicate C18TMACl [251]

HMM 1,2-bis(trimethoxysilyl)ethane C18H37N(CH3)3Cl [252]

KIT Tetraethyl orthosilicate,
Carboxyethylsilanetriol sodium salt Pluronic F127 [253]

KCC Tetraethyl orthosilicate Cetylpyridinium bromide [254]

FSM Layered polysilicate kanemite Quaternary ammonium
surfactant [255]

TUD Tetraethyl orthosilicate Tetraethyl ammonium
hydroxide [256]
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Table 9. Three different synthesis methods of MSNs.

Method Silica Sources Surfactant Catalyst References

Sol–gel
Sodium silicate Polyethylene glycol Acetic acid [257]

Tetrethylorthosilicate Cetyltrimethylammonium chloride Triethanolamine [258]

Hydrothermal
Tetrethylorthosilicate Cetyltrimethylammonium bromide Ammonia [259]

Tetrethylorthosilicate Pluronic F-127 Chloride acid [260]

Green
Banana Peel Cetyltrimethylammonium bromide NaOH [261]

Tetraethyl orthosilicate C16-L-histidine, C16-L-poline and
C16-L-tryptophan HCl [262]

Regardless of the synthesis method, studies have shown that selection of surfactant
molecule, silica precursors, solvents, reaction temperature, stir speed, and pH of the
media affect the shape, size, surface area, and pore size of MSNs [263,264], and these
physical properties further affect the drug loading, toxicity, and uptake efficiency of the
carriers [265–267]. Cho et al. found that compared with MSNs with a particle size of 100 nm
or 200 nm, MSNs with a particle size of 50 nm had the fastest clearance rate in urine and
bile [268]. Lu et al. prepared a series of MSNs with particle sizes of 30 nm, 50 nm, 110 nm,
170 nm, and 280 nm, the cellular uptake amount of 50 nm nanoparticles was much higher
than other groups [269]. In addition, studies showed that rod-shaped MSNs internalize
faster and higher on tumor cells than spherical MSNs [270]. Meanwhile, the pores of MSNS
have a large surface area, and for different drugs, the release of drugs can be controlled by
regulating the size of the pores [271]. Mellaerts et al. prepared four SBA-15 MSNs with
pore size varying from 4.5 to 9.0 nm, and they found that the increase of the pore size from
4.5 to 6.4 nm significantly improved the release of itraconazole, while a further increase to
7.9 and 9.0 nm revealed a slight improvement in the release profile [272].

However, two challenges of MSNs may limit its broader application. The open
pores of MSNs are ideal reservoirs for drugs, which adversely trigger a premature release
of drugs before reach the target [266]. A simple way to minimize the leakage is the
attachment of the drugs through a cleavable bond onto the inner surface of the particle [273].
Wong et al. connected doxorubicin (DOX) and zinc(II) phthalocyanine (ZnPc) to form a
DOX-ZnPC complex using an acid cleavable hydrazone linker, and the resulted delivery
system achieved drug release under acidic conditions [274]. Another method involved
loading one drug inside the pores and attaching another drug at the outlet of the pores [273].
Willner et al. loaded the anticancer drug mitoxantrone into boric acid modified MSNs, the
pores were capped with gossypol, then the capping units unlocked the pores and the drug
is released under mild acidic conditions [275]. Another challenge is that unmodified MSNs
lack the active targeting and slow-release ability; therefore, various responsive delivery
systems were prepared through surface modification. Various ligands such as polyethylene
glycol, folic acid, polyethylenimine, hyaluronic acid, phenyl, thiol, and sulfonate have
been reported to modify MSNs [276–280]. After ligand modification, MSNs can realize
the function of drug release under specific environment including pH, redox, enzyme,
temperature, magnetic field, and light stimulation. Liu et al. designed and fabricated a
biocompatible, enzyme-responsive drug delivery system based on MSNs for targeted drug
delivery in vitro and in vivo. The system demonstrated sensitivity to MMP-2 for drug
delivery, leading to cell apoptosis which displayed a good curative effect on the inhibition
of tumor growth with minimal toxic side effects (Figure 6) [281]. Table 10 shows various
stimulus-responsive-MSNs for controlled release.
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Table 10. Various responsive MSNs are used to deliver cargos.

Ligands Stimulus Cargo References

FA-PEG-COOH Redox Doxorubicin and Bcl-2 [282]

Disulfide bonds modifiedpolyethylene glycol Redox Rhodamine B [283]

Galactose-modified trimethyl chitosan-cysteine PH Doxorubicin and vascular
endothelial growth factor siRNA [284]

Succinylated ε-polylysine PH Prednisolone [285]

Peptide LVPRGSGGLVPRGSGGLVPRGSK-pentanoic acid (P) Enzyme Anticoagulant drug [286]

Phenylboronic acid-human serum albumin Enzyme Doxorubicin [281]

Superparamagnetic magnetite nanocrystal clusters Magnetic Field Small interfering RNA [287]

PEI-Iron oxide Magnetic Field siRNA-PLK1 [288]

PEO-b-poly (N-isopropylacrylamide) based copolymeric
micelles Temperature Ibuprofen [289]

Poly(N-isopropylacrylamide)-co-(1-butyl-3-vinyl
imidazolium bromide) (p-NIBIm) Temperature Cytochrome C [290]

1-tetradecanol Light Doxorubicin [291]

Ruthenium complex Light Safranin O [292]

6. Carbon Nanotubes

The diameter of CNTs is in the order of nano and the length is in the order of micron,
giving them a high aspect ratio and large surface area [293–296]. Due to their outstand-
ing properties such as good adsorption ability, excellent chemical stability, high tensile
strength, significant electrical, and thermal conductivity, CNTs have been used in a variety
of biomedical fields, especially drug delivery and cancer treatment [297–299]. There are
three main ways to manufacture CNTs, including arc discharge, chemical vapor deposition
(CVD), and laser ablation [300]. Toxicity is often a concern in clinic applications. Several
physical and chemical factors including purity of the material, morphology, and adminis-
tration route are crucial for the toxicity of CNTs [301]. It has been reported that residual
transition metal catalysts such as iron, cobalt or nickel contained in the pristine CNTs can
catalyze the intracellular formation of free radicals and oxidative stress leading to cytotoxic
effects [302]. Therefore, the purification of CNTs by exposing them to high temperatures or
bathing sonication assisted acid oxidation reduced the remains of catalytic metals used in
their synthesis, increasing their biocompatibility and decreasing the toxicity levels [303]. In
addition, the modification of CNTs is also an effective method to reduce their toxicity [304].

CNTs tend to agglomerate uncontrollably due to Van der Waals forces among bundles
and high surface energy, which hinders their dispersion in almost all organic and inorganic
solvents [298]. Meanwhile, the morphology and chemical properties of CNTs are the main
factors affecting their entry into target cells [305]. Chemical functionalization can modify
CNTs’ electronic properties, reduce agglomeration, and improve their solubility in different
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solvents [306]. The main approaches for CNTs’ functionalization can be divided into two
main groups including covalent functionalization and non-covalent functionalization. The
covalent functionalization mainly relies on covalent bond to connect carbon nanotubes
to molecules. The non-covalent modification mainly relies on Van der Waals forces and
electrostatic interaction to connect carbon nanotubes to molecules [307]. Antibodies, pep-
tides, hyaluronic acid, oligonucleotides, polyethylene glycol, and other substances are
often used to modify CNTs [308,309]. Mo et al. prepared a pH-responsive drug delivery
system with SWCNTs as the core and CHI and HA as ligands (Figure 7) [310]. Table 11
provides detailed cases of various functionalized CNTs delivered to different cargoes.
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Table 11. Various ligand-modified SWNTs and WWNTs are used to deliver cargos.

Type Ligands Cargo Stimulus References

SWCNTs

Polysaccharide chitosan-hyaluronic acid Doxorubicin pH [310]

Oligonucleotides DNA/RNA - [311]

Chitosan Curcumin pH [312]

Polyethylenimine with betaine Survivin siRNA,
Doxorubicin pH [313]

MWCNTs

Folic acid Doxorubicin Magnetic Field [314]

1-octadecanethiol-f-GNPs Cisplatin - [315]

Chitosan Methotrexate pH [316]

Distearyl phosphatidyl
ethanolamine-PEG - Light [317]

7. Conclusions and Perspectives

Viral vectors are the earliest and most widely used type of vectors. However, toxicity,
immunogenicity, carcinogenicity, high cost, and other issues limit their broader application.
The investigation of non-viral vectors such as f liposomes, polymer, gold nanoparticles,
mesoporous silica nanoparticles, and carbon nanotubes in medical research is growing
rapidly. In this contribution, the application of non-viral vectors in drug delivery and
gene therapy is summarized. Non-viral vectors can prevent the premature degradation
of nucleic acids, proteins or drugs, prolong therapeutic effect, and reduce side effects. In
addition, ligand modifications make the vectors better connect with the cargo or with the
target site of action, increase the loading capacity and uptake rate, as well as improve the
sustained release and targeting properties of the delivery system. Polyethylene glycol, folic
acid, hyaluronic acid, peptides, oligonucleotide sequences, and other ligands have been
reported to modify various materials. Further research will be necessary to introduce new
ligands and develop novel smart delivery systems. Furthermore, biomedical applications
have high requirements for the physicochemical properties of the vectors, thus synthesizing
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and purifying vector materials with suitable particle size, uniform morphology, and good
biocompatibility are essential. Meanwhile, the residual toxic effects of catalysts, solvents,
and other substances in a synthesis process cannot be ignored. Consequently, non-viral
vector materials are constantly improving new synthetic methods especially green synthesis
methods, which is also a key direction of future research.

Although many studies have pointed out that non-viral vectors are biocompatible,
most of the results focus on the short-term toxicity in vivo, and the protocols used in
some toxicity tests are not standardized, posing an important safety concern in clinical
application. Therefore, standardizing the toxicological tests and determining the safe
exposure limits are crucial. Despite these challenges, with the development of novel
materials and new synthetic strategies, non-viral vectors are expected to be widely applied
to enhance the performance of drug delivery and gene therapy in the near future.
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