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Mesporous 3C-SiC Hollow Fibers
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In the present work, for the first time, we reported the exploration of mesoporous 3C-SiC hollow 
fibers via single-spinneret electrospinning of polyureasilazane (PSN) and polyvinylpyrrolidone (PVP) 
solution followed by high-temperature pyrolysis treatment. The resultant products were characterized 
by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution 
transmission electron microscopy (HRTEM) and N2 adsorption. The as-prepared hollow fibers with 
totally mesoporous walls were uniformly sized in diameter and high purity in morphology. They were 
composed of single-crystalline 3C-SiC nanoparticles with a surface area of 21.75 m2/g and average pore 
diameter of ~34 nm. The PSN concentration played a determined role on the formation of hollow fibers 
rather than the conventional solid counterparts, enabling their growth in a tunable manner. A possible 
mechanism was proposed for the formation of mesoporous SiC hollow fiber.

Porous silicon carbide (SiC) has attracted wide attention in many fields of energy production and environmental 
protection such as photocatalysts, catalystsupports, water purification, and thermal insulators, due to its superior 
mechanical properties, high thermal conductivity, low thermal-expansion coefficient, and good thermal-shock 
resistance, as well as its robust chemical stability and low electron affinity1–5. Up to date, many efforts have been 
put into the production of porous SiC nanostructures through different strategies6–14.

Electrospinning is a promising, low cost, and facile technique that has gained numerous and continuous inter-
est, because of its capability and feasibility for mass production of organic/inorganic fibers with high qualities 
from polymer with diameters ranged from tens of nanometers to several micrometers15–21, offering considerable 
interest for many applications, such as catalysts, nanoparticle carriers in controlled release, nanofibrous mem-
branes or filters, and electronic sensors22–27. By virtue of the simplicity and versatility of this technique assisted 
by subsequent carbothermal reduction, SiC dense/solid fibers/wires have been successfully generated28–31. Most 
recently, there are growing interest for fabrication of nanoporous SiC hollow fibers32–34, to enhance their proper-
ties and applications by increasing the surface areas and porosities. However, to the best of our knowledge, there 
are scarce works reported on the growth of hollow SiC fibers with high purity via single-spinneret electrospinning.

Herein, we report the exploration of mesoporous SiC hollow fibers via single-spinneret electrospinning of pol-
yureasilazane (PSN) and polyvinylpyrrolidone (PVP), followed by high-temperature pyrolysis. We mainly focus 
on two points in current work: i) to realize the preparation of hollow SiC fibers with totally mesoporous walls; ii) 
to make the growth of the hollow fibers with uniform size in diameter and high purity in morphology in a tunable 
manner. It is promising that this work would inspire the study of mesoporous SiC hollow fibers with high surface 
area, which could have some potential applications to be utilized as catalyst supports and photocatalysts.

Experimental Procedure
Raw materials.  Polyureasilazane (PSN, Ceraset, Kion Corporation, USA), Polyvinylpyrrolidone (PVP, 
MW ≈ 30000, Qurchem, Sinopharm Chemical Reagent Co., Ltd, ShangHai, China), absolute ethyl alcohol, hydro-
fluoric acid (HF) and hydrochloric acid (HCl) were commercially available, which were directly used as received 
without further treatment.

Preparation of mesoporous SiC hollow fibers.  In a typical experimental procedure, the raw materials 
of 1.2 g PVP and 1.6 g PSN were firstly dissolved in 3.5 g absolute ethyl alcohol with stirring vigorously for 6 h. The 
resultant precursor microemulsions were transferred into a plastic syringe with a stainless steel nozzle (anode, diam-
eter: 0.2 mm). The tip of the stainless steel nozzle was placed in front of a metal cathode (collector) with a fixed dis-
tance of 20 cm between the nozzle and the collector. An electrical potential of 16 kV was applied for electrospinning 
precursor fibers. The as-spun polymer fibers were located in a petri dish, which were dried in an oven at 80 °C for 
4 h. Then the as-spun PVP/PSN fibers were cured at 200 °C for 2 h in air with a heating rate of 10 °C/min from room 
temperature (RT) to 100 °C, and then up to the desired temperature of 200 °C at 1 °C/min. Subsequently, the PVP/
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PSN fibers were located in an Al2O3 crucible to be pyrolyzed in a graphite-heater furnace under flowing Ar (100 
sccm, 99.9%, 0.1 MPa). The pyrolysis procedure was heated up to the desired temperature of 1400 °C with a heating 
rate of 10 °C/min, and maintained there for 1 h, After the furnace was cooled down to RT, the as-prepared product 
was collected. The raw product was purified by air calcination at 700 °C for 4 h to eliminate the redundant carbons. 
Finally, the SiO2 layer existed around the surface of SiC fibers were removed by treatment with the mixed acid for 
12 h, which are composed by 10 vol% HF + 10 vol% HCl + 80 vol% H2O. The sample was then leached with distilled 
water until the pH maintained to ~7. For comparison, five solutions were prepared with different PSN contents, as 
shown in Table 1. The obtained products were referred to Sample A–E, respectively.

Sample PVP (g) PSN (g) Alcohol (g) PSN (wt.%) SBET (m2/g)

A 1.2 0.8 3.5 14.5 16.57

B 1.2 1.0 3.5 17.5 20.42

C 1.2 1.2 3.5 20.3 15.45

D 1.2 1.4 3.5 23 20.34

E 1.2 1.6 3.5 25.4 21.75

Table 1.  Compositions of five solutions used for electrospinning polymer precursor fibers and corresponding 
BET specific surface areas of pyrolyzed products.

Figure 1.  (a and b) Typical SEM images of the as-spun PVP/PSN fibers of Sample E. (c and d) Typical SEM 
images of the pyrolyzed products under different magnifications. (e) Representative SEM images of the surface 
structures of the as-fabricated mesoporous SiC hollow fibers. (f) A representative SEM image showing the 
fracture surface of the mesoporous hollow fibers.
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Figure 2.  Representative XRD pattern recorded from Sample E after pyrolyzation at 1400 °C for 1 h.

Figure 3.  (a and b) Typical TEM images of a single follow SiC fiber from Sample E under different 
magnifications. (c) A typical SAED pattern recorded from the marked area of A in part a. (d) Typical HRTEM 
image obtained from a single nanoparticle recorded from the marked area of B in part b. (e) An enlarged 
HRTEM image recorded from the marked area of C in part d.



www.nature.com/scientificreports/

4Scientific Reports | 7: 1893  | DOI:10.1038/s41598-017-02147-8

Structural characterization.  The obtained products were characterized with X-ray powder diffraction 
(XRD, D8 Advance, Bruker, Germany) with Cu Kα radiation (λ = 1.5406 Å), field emission scanning electron 
microscopy (FESEM, S-4800, Hitachi, Japan), and high-resolution transmission electron microscopy (HRTEM, 
JEM-2010F, JEOL, Japan) equipped with energy dispersive X-ray spectroscopy (EDX, Quantax-STEM, Bruker, 
Germany). The porous properties of the as-prepared mesoporous fibers were characterized using N2 adsorption 
at −195.8 °C on a specific surface area and porosity analyzer (ASAP 2020HD88, Micromeritics, USA).

Results and Discussion
SEM was firstly employed to study the morphology and microstructure of the precursor fibers of Sample E. The 
resultant precursor fibers (Fig. 1(a,b)) are continuous with the diameters in the range of 2~4.5 μm with a smooth 
surface and typical length up to several hundred of millimeters. Figure 1(c–f) are the typical SEM images of the 
corresponding pyrolyzed products under different magnifications and views. It seems that the long continuous 
precursor fibers have been converted into hollow structures with the diameters reduced to 1~2 μm. The resultant 
fibers are uniform in diameter with a high purity in morphology. Figure 1(e,f) show the interior and external 
surface of the hollow fibers under different magnifications, respectively, which disclose that numerous pores 
exist on the surface and walls, representing that the as-prepared fibers are totally mesoporous. The formation of 
hollow and mesoporous structures is mainly attributed to the decomposition and removing of organics within 
the as-spun polymeric fibers.

Figure 2 presents the typical XRD pattern of the resultant hollow fibers of Sample E. The peak sets well match 
the phase of 3C-SiC (JCPDS, No. 29–1129), which can be attributed to the fact that SiC is more stable than Si3N4, 
according to the Si–C–N ternary diagram at 1400 °C under an Ar atmosphere35 (PSN and PVP composed mainly 
of Si, C, N, and H elements). The strong and sharp diffraction peaks indicate that the products are highly crys-
talline. A small peak (2θ = 33.8°) marked with S.F. can be ascribed to the stacking faults within the 3C-SiC struc-
ture36. The stacking faults might reassemble the structures of other polytype phases of SiC such as α-SiC within 
the 3C-SiC matrix37, 38. Accordingly, the minor peak (2θ = 38.2°) might be assigned to the diffraction of the (103) 
crystal plane of α-SiC.

TEM was further used to investigate the morphology and structural details of the hollow fiber, as shown in 
Fig. 3(a). In agreement with the SEM observations, the inner tunnel is clearly observed by the sharp contrast 
between SiC mesoporous wall and the hollow interior. The closer observation (Fig. 3b) presents that the fibers 
typically consist of irregular plate-like nanoparticles. The chemical compositions are identified by EDX under 
TEM recorded from a single fiber, suggesting that they mainly consist of Si and C, with a little amount of Al and 
O elements (the Cu signals are from the TEM copper grids) (Figure S1 in Supporting Information). The atomic 

Figure 4.  (a) Nitrogen adsorption-desorption isotherm curve of Sample E. (b) Pore size distribution curve of 
Sample E.
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ratio of Si to C, within the experimental limit, is close to 1:1, suggesting the fibers are SiC. The detected Al and O 
elements should be attributed to the introduced impurities from the used Al2O3 crucible for the high-temperature 
pyrolysis treatment and the absorbed oxygen when the fibers were exposed in air, respectively. Figure 3c pre-
sents a typical selective area electron diffraction (SAED) pattern recorded from the whole fiber body (marked 
area of A in Fig. 3a), suggesting its polycrystalline nature with a high crystallinity. The diffraction spot rings 
could be sequentially indexed to be the (111), (220), and (222) crystal planes of 3C-SiC (JCPDS, No. 29–1129), 
further confirming that the resultant hollow fibers are of pure -SiC. Figure 3d and e present the representative 
HRTEM images recorded from a single particle, which are obtained from the marked area of B in Fig. 3b and c, 

Figure 5.  Typical SEM images of pyrolyzed products of Sample A (a1–a2), Sample B (b1–b2), Sample C (c1–
c2), and Sample D (d1–d2) under different magnifications.
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respectively, disclosing the single-crystalline nature of the nanoparticles. That is to say, the as-fabricated hollow 
SiC fibers are composed of single-crystalline nanoparticles.

The nitrogen adsorption measurements as shown in Fig. 4(a) reveal that the as-fabricated products exhibit the 
type IV isotherm behavior with H3 hysteresis, implying that the obtained hollow fibers are mesoporous with a 
BET surface area of 21.75 m2/g. According to the Barrett–Joyner–Halenda (BJH) pore size distribution analysis 
determined from the adsorption branches (Fig. 4(b)), the average BJH pore diameter is ~34 nm.

To disclose the growth of hollow SiC fibers, another four comparative experiments are carried out by adjust-
ing the PSN contents and keeping the PVP and alcohol constant (Table 1). The experimental results suggest that 
all the pyrolyzed products of Sample A–E are of 3C-SiC phase (Fig. 2, Figure S2 in Supporting Information), 
implying that the change of the PSN contents has little influence on the phase formation of the final products. The 
BET specific areas of the hollow samples show a little change with the variation of the introduced PSN contents 
(Table 1, Figure S3 in Supporting Information). With a low concentration of PSN introduced in the raw materials 
(i.e., Sample A and B), the conventional solid fibers would be formed (Fig. 5(a1,a2 and b1,b2)). Once the PSN 
contents is up to ~20 wt.% (i.e., Sample C), the fibers with hollow interior seem to be formed. The growth of the 
hollow fibers could be accomplished with more and more PSN introduced into the raw materials (i.e., Sample D 
and E, Figure 5c1,c1 and d1,d2). The diameters of the as-prepared fibers are increased with the more PSN concen-
trations, which could be mainly attributed to various viscosities and dielectric constant, since a larger diameter 
of the polymer fibers would be spun by increasing the viscosity of the solution (Table 1, Figure S4 in Supporting 
Information). It suggests that the PSN concentration plays a determined role on the formation of the hollow SiC 
fibers, enabling their growth in a controlled manner. In our case, the PSN concentration high up to 20 wt.% is 
necessary for the formation of hollow SiC nanofibers.

Based on the experimental results as mentioned above, the growth of mesoporous SiC hollow fibers is pro-
posed as: i) The formation of the hollow interior. In regard to the Sample A-E, the only difference is the various 
PSN contents introduced within the raw materials. As compared to the initial diameter of the as-spun polymeric 
fibers, those of the pyrolyzed counterparts are often obviously shrunk, due to the elimination of the organics such 
as PVP within the polymeric fibers caused by the high-temperature treatment. As shown in Figs 1 and 5, with 
more PSN introduced, the diameter of the resultant SiC fibers is larger. This implies that the outlayer of inorganic 
SiC for the pyrolyzed fibers could be prior formed with a high enough PSN introduced to the raw materials (i.e., 
with high enough Si contents from the PSN for the formation of SiC). The formed SiC outlayer might hinder 
the shrinkage of the fibers. Subsequently, the further elimination of the organics from the interior part of the 
polymeric fiber causes the formation of the hollowed interior; ii) The formation of the thoroughly mesoporous 
walls. It is mainly attributed to the selective evaporation/calcination mechanism23, 30, due to the two distinctively 
different thermal properties between PSN and PVP. It is known that the PSN mainly contains of Si, C, and N 
elements with a small amount of O (Figure S5 in Supporting Information), which would be converted into amor-
phous SiCN solids and can be thermally stable up to 1000 °C39, 40. However, the PVP is mainly composed of C, N, 
H, and O elements (Figure S5 in Supporting Information), which would be completely decomposed into vapor 
phases such as NH3, CH4, and CO2 when heated up to ~500 °C41, 42. This is verified by the analysis of the thermal 
behaviors of as-spun PSN/PVP fibers from Sample E (Figure S6 in Supporting Information). Once subjected to be 
calcinated at high temperature, the PSN would be converted into inorganic SiC for constructing the walls of the 
hollow fibers, and the PVP would be completely decomposed into gas phases, making the creation of mesopores 
throughout the body of the fiber walls.

Conclusions
In summary, we have demonstrated the exploration of mesoporous SiC hollow fibers via single-spinneret elec-
trospinning technique with the subsequent high-temperature pyrolysis treatment. The hollow SiC fibers with 
totally mesoporous walls are uniformly sized in diameter and high purity in morphology. They are composed of 
single-crystalline 3C-SiC nanoparticles with a surface area of 21.75 m2/g and average pore diameter of ~34 nm. It 
is found that the PSN concentration within the raw materials played a determined role on the formation of hollow 
fibers, making their growth in a tunable manner. The growth of the mesoporous SiC hollow fibers could be mainly 
attributed to the selective evaporation/calcination of PSN and PVP. The as-prepared mesoporous hollow fibers 
could have some potential applications in photocatalysts, catalyst supports and supercapacitor, owing to their 
light weight, high surface area as well as their hollow and mesoporous characteristics.
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