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Feature is important for many applications in biomedical signal analysis and living system analysis. A fast discriminative stochastic
neighbor embedding analysis (FDSNE) method for feature extraction is proposed in this paper by improving the existing DSNE
method.The proposed algorithm adopts an alternative probability distributionmodel constructed based on itsK-nearest neighbors
from the interclass and intraclass samples. Furthermore, FDSNE is extended to nonlinear scenarios using the kernel trick and
then kernel-based methods, that is, KFDSNE1 and KFDSNE2. FDSNE, KFDSNE1, and KFDSNE2 are evaluated in three aspects:
visualization, recognition, and elapsed time. Experimental results on several datasets show that, compared with DSNE and MSNP,
the proposed algorithm not only significantly enhances the computational efficiency but also obtains higher classification accuracy.

1. Introduction

In recent years, dimensional reduction which can reduce the
curse of dimensionality [1] and remove irrelevant attributes in
high-dimensional space plays an increasingly important role
in many areas. It promotes the classification, visualization,
and compression of the high dimensional data. In machine
learning, dimension reduction is used to reduce the dimen-
sion by mapping the samples from the high-dimensional
space to the low-dimensional space.There aremany purposes
of studying it: firstly, to reduce the amount of storage, sec-
ondly, to remove the influence of noise, thirdly, to understand
data distribution easily, and last but not least, to achieve good
results in classification or clustering.

Currently, many dimensional reduction methods have
been proposed, and they can be classified variously from dif-
ferent perspectives. Based on the nature of the input data,
they are broadly categorized into two classes: linear subspace
methods which try to find a linear subspace as feature space
so as to preserve certain kind of characteristics of observed
data, and nonlinear approaches such as kernel-based tech-
niques and geometry-based techniques; from the class labels’
perspective, they are divided into supervised learning and
unsupervised learning; furthermore, the purpose of the for-
mer is tomaximize the recognition rate between classes while
the latter is for making the minimum of information loss. In
addition, judging whether samples utilize local information

or global information, we divide them into local method and
global method.

We briefly introduce several existing dimensional reduc-
tion techniques. In the main linear techniques, principal
component analysis (PCA) [2] aims at maximizing the vari-
ance of the samples in the low-dimensional representation
with a linear mapping matrix. It is global and unsupervised.
Different from PCA, linear discriminant analysis (LDA) [3]
learns a linear projection with the assistance of class labels.
It computes the linear transformation by maximizing the
amount of interclass variance relative to the amount of intra-
class variance. Based on LDA,marginal fisher analysis (MFA)
[4], local fisher discriminant analysis (LFDA) [5], and max-
min distance analysis (MMDA) [6] are proposed. All of the
three are linear supervised dimensional reduction methods.
MFA utilizes the intrinsic graph to characterize the intraclass
compactness and uses meanwhile the penalty graph to char-
acterize interclass separability. LFDA introduces the locality
to the LFD algorithm and is particularly useful for samples
consisting of intraclass separate clusters. MMDA considers
maximizing the minimum pairwise samples of interclass.

To deal with nonlinear structural data, which can often be
found in biomedical applications [7–10], a number of nonlin-
ear approaches have been developed for dimensional reduc-
tion. Among these kernel-based techniques and geometry-
based techniques are two hot issues. Kernel-based techniques
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attempt to obtain the linear structure of nonlinearly dis-
tributed data bymapping the original inputs to a high-dimen-
sional feature space. For instance, kernel principal compo-
nent analysis (kernel PCA) [11] is the extension of PCA using
kernel tricks. Geometry-based techniques, in general, are
known as manifold learning techniques such as isometric
mapping (ISOMAP) [12], locally linear embedding (LLE)
[13], Laplacian eigenmap (LE) [14], Hessian LLE (HLLE) [15],
and local tangent space alignment (LTSA) [16]. ISOMAP
is used for manifold learning by computing the pairwise
geodesic distances for input samples and extending multi-
dimensional scaling. LLE exploits the linear reconstructions
to discover nonlinear structure in high-dimensional space.
LE first constructs an undirected weighted graph, and then
recovers the structure of manifold by graph manipulation.
HLLE is based on sparse matrix techniques. As for LTSA,
it begins by computing the tangent space at every point and
then optimizes to find an embedding that aligns the tangent
spaces.

Recently, stochastic neighbor embedding (SNE) [17] and
extensions thereof have become popular for feature extrac-
tion.The basic principle of SNE is to convert pairwise Euclid-
ean distances into probabilities of selecting neighbors to
model pairwise similarities. As extension of SNE, 𝑡-SNE [18]
uses Student’s 𝑡-distribution tomodel pairwise dissimilarities
in low-dimensional space and it alleviates the optimization
problems and the crowding problem of SNE by the methods
below: (1) it uses a symmetrized version of the SNE cost func-
tion with simpler gradients that was briefly introduced by
Cook et al. [19], and (2) it employs a heavy-tailed distribution
in the low-dimensional space. Subsequently, Yang et al. [20]
systematically analyze the characteristics of the heavy-tailed
distribution and the solutions to crowding problem. More
recently, Wu et al. [21] explored how to measure similarity
on manifold more accurately and proposed a projection
approach called manifold-oriented stochastic neighbor pro-
jection (MSNP) for feature extraction based on SNE and 𝑡-
SNE. MSNP employs Cauchy distribution rather than stan-
dard Student’s 𝑡-distribution used in 𝑡-SNE. In addition, for
the purpose of learning the similarity on manifold with high
accuracy, MSNP uses geodesic distance for characterizing
data similarity.ThoughMSNP has many advantages in terms
of feature extraction, there is still a drawback in it:MSNP is an
unsupervised method and lacks the idea of class label, so it is
not suitable for pattern identification. To overcome the disad-
vantage of MSNP, we have done some preliminary work and
presented amethod called discriminative stochastic neighbor
embedding analysis (DSNE) [22]. DSNE effectively resolves
the problems above, but since it selects all the training sam-
ples as their reference points, it has high computational cost
and is thus computationally infeasible for the large-scale clas-
sification tasks with high-dimensional features [23, 24]. On
the basis of our previous research, we present amethod called
fast discriminative stochastic neighbor embedding analysis
(FDSNE) to overcome the disadvantages of DSNE in this
paper.

The rest of this paper is organized as follows: in Section 2,
we introduce in detail the proposed FDSNE and briefly
compare it with MSNP and DSNE in Section 3. Section 4

gives the nonlinear extension of FDSNE. Furthermore, exper-
iments on various databases are presented in Section 5. Final-
ly, Section 6 concludes this paper and several issues for future
works are described.

2. Fast Discriminative Stochastic Neighbor
Embedding Analysis

Consider a labeled data samples matrix as

X = {x1
1
, . . . , x1

𝑁
1

, x2
1
, . . . , x2

𝑁
2
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sample in the 𝑐th class. 𝐶 is the number of sample classes,𝑁
𝑐

is the number of samples in the 𝑐th class, and𝑁 = 𝑁
1
+𝑁
2
+

⋅ ⋅ ⋅ + 𝑁
𝐶
.

In fact, the basic principle of FDSNE is the same as 𝑡-
SNE which is to convert pairwise Euclidean distances into
probabilities of selecting neighbors to model pairwise sim-
ilarities [18]. Since the DSNE selects all the training samples
as its reference points, it has high computational cost and
is thus computationally infeasible for the large-scale classi-
fication tasks with high-dimensional features. So according
to the KNN classification rule, we propose an alternative
probability distribution function which makes the label of
target sample determined by its first 𝐾-nearest neighbors in
FDSNE. In this paper, NH

𝑙
(x
𝑖
) andNM

𝑙
(x
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) are defined.They,
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Mathematically, the joint probability 𝑝
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}, and then the denominator in formula (2) means

all of the reference points under selection from the same class
or the different classes. In particular, the joint probability 𝑝

𝑖𝑗

not only keeps symmetrical characteristics of the probability
distribution matrix but also makes the probability value of
interclass data to be 1 and the same for intraclass data.

For low-dimensional representations, FDSNE uses coun-
terparts y

𝑖
and y
𝑗
of the high-dimensional datapoints x

𝑖
and
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x
𝑗
. It is possible to compute a similar joint probability via the

following expression:
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In what follows, we introduce the transformation by a lin-
ear projection: y
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Note that all data have the intrinsic geometry distribution
and there is no exception for intraclass samples and interclass
samples. Then the same distribution is required to hold in
feature space. Since the Kullback-Leiber divergence [25] is
wildly used to quantify the proximity of two probability
distributions, we choose it to build our penalty function here.
Based on the above definition, the function can be formulated
as:
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In this work, we use the conjugate gradient method to
minimize𝐶(A). In order tomake the derivation less cluttered,
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Then differentiating𝐶(A)with respect to the transforma-
tion matrix A gives the following gradient, which we adopt
for learning:
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Let U𝐻 be the 𝑁 order matrix with element 𝑢𝐻
𝑖𝑗
, and let
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Once the gradient is calculated, our optimal problem (5)
can be solved by an iterative procedure based on the conjugate
gradientmethod.Thedescription of FDSNE algorithm can be
given by the following.

Step 1. Collect the sample matrix X with class labels, and
set 𝐾-nearest neighborhood parameter 𝐾

1
, 𝐾
2
, the variance

parameter 𝜆, and the maximum iteration times𝑀𝑡.

Step 2. Compute the pairwise Euclidian distance for X and
compute the joint probability 𝑝

𝑖𝑗
by utilizing formula (2) and

class labels.

Step 3 (set 𝑡 = 1 : 𝑀𝑡). We search for the solution in loop:
firstly, compute the joint probability 𝑞

𝑖𝑗
by utilizing formula

(4); then, compute gradient 𝑑𝐶(A)/𝑑(A) by utilizing formula
(8); finally, update A𝑡 based on A𝑡−1 by conjugate gradient
operation.

Step 4. Judge whether 𝐶𝑡 − 𝐶𝑡−1 < 𝜀 (in this paper, we take
𝜀 = 1𝑒 − 7) converges to a stable solution or 𝑡 reaches the

maximum value 𝑀𝑡. If these prerequisites are met, Step 5 is
performed; otherwise, we repeat Step 3.

Step 5. Output A = A𝑡.

Hereafter, we call the proposed method as fast discrimi-
native stochastic neighbor embedding analysis (FDSNE).

3. Comparison with MSNP and DSNE

MSNP is derived from SNE and 𝑡-SNE, and it is a linear
method and has nice properties, such as sensitivity to non-
linear manifold structure and convenience for feature extrac-
tion. Since the structure of MSNP is closer to that of FDSNE,
we briefly compare FDSNE with MSNP and DSNE in this
section.

FDSNE, MSNP, and DSNE use different probability dis-
tributions to determine the reference points. The difference
can be explained in the following aspects.

Firstly, MSNP learns the similarity relationship of the
high-dimensional samples by estimating neighborhood dis-
tribution based on geodesic distance metric, and the same
distribution is required in feature space. Then the linear pro-
jection matrix A is used to discover the underlying structure
of data manifold which is nonlinear. Finally, the Kullback-
Leibler divergence objective function is used to keep pair-
wise similarities in feature space. So the probability distribu-
tion function of MSNP and its gradient used for learning are
respectively given by

𝑝
𝑖𝑗
=

exp (−𝐷geo
𝑖𝑗
/2)

∑
𝑘 ̸= 𝑖

exp (−𝐷geo
𝑖𝑘
/2)

,

𝑞
𝑖𝑗
=

[𝛾
2
+ (x
𝑖
− x
𝑗
)
𝑇

A𝑇A (x
𝑖
− x
𝑗
)]

−1

∑
𝑘 ̸= 𝑙

[𝛾
2
+ (x
𝑘
− x
𝑙
)
𝑇A𝑇A(x

𝑘
− x
𝑙
)]

−1
,

min𝐶 (A) = ∑
𝑖,𝑗

𝑝
𝑖𝑗
log

𝑝
𝑖𝑗

𝑞
𝑖𝑗

,

(9)

where 𝐷geo
𝑖𝑗

is the geodesic distance for x
𝑖
and x
𝑗
and 𝛾 is the

freedom degree parameter of Cauchy distribution.
DSNE selects the joint probability to model the pair-

wise similarities of input samples with class labels. It also
introduces the linear projection matrix A as MSNP. The cost
function is constructed to minimize the intraclass Kullback-
Leibler divergence as well as to maximize the interclass KL
divergences. Its probability distribution function and gra-
dient are, respectively, given as by

𝑝
𝑖𝑗
=

{{{{{{{{

{{{{{{{{

{

exp (−x𝑖 − x
𝑗



2

/2𝜆
2
)

∑
𝑐
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=𝑐
𝑙

exp (−x𝑘 − x
𝑙



2

/2𝜆
2
)

if 𝑐
𝑖
= 𝑐
𝑗

exp (−x𝑖 − x
𝑗
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/2𝜆
2
)

∑
𝑐
𝑘
̸=𝑐
𝑚

exp (−x𝑘 − x
𝑚



2

/2𝜆
2
)

else
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𝑞
𝑖𝑗
=
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{{{{{{{{{{{
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𝑗
)
𝑇

A𝑇A (x
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𝑗
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𝑙
)
𝑇A𝑇A (x
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𝑙
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−1
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𝑖
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𝑗

(1 + (x
𝑖
− x
𝑗
)
𝑇

A𝑇A (x
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− x
𝑗
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−1

∑
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𝑘
̸= 𝑐
𝑚

(1 + (x
𝑘
− x
𝑚
)
𝑇A𝑇A (x

𝑘
− x
𝑚
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−1
else,

min𝐶 (A) = ∑

𝑐
𝑖
=𝑐
𝑗

𝑝
𝑖𝑗
log

𝑝
𝑖𝑗

𝑞
𝑖𝑗

+ ∑

𝑐
𝑖
̸= 𝑐
𝑘

𝑝
𝑖𝑘
log

𝑝
𝑖𝑘

𝑞
𝑖𝑘

.

(10)

Note that on the basis of the DSNE, FDSNEmakes full use of
class label which not only keeps symmetrical characteristics
of the probability distribution matrix but also makes the
probability value of interclass data and intraclass data to be
1, and it can effectively overcome large interclass confusion
degree in the projected subspace.

Secondly, it is obvious that the selection of reference point
in MSNP or DSNE is related to all training samples, while
FDSNEonly uses the first𝐾-nearest neighbors of each sample
from all classes. In other words, we propose an alternative
probability distribution function to determine whether x

𝑖

would pick x
𝑗
as its reference point or not. Actually, the

computation of gradient during the optimization process
mainly determines the computational cost of MSNP and
DSNE. So their computational complexity can be written as
𝑂(2𝑟𝑁𝑑+𝑁

2
𝑑) in each iteration. Similarly, the computational

complexity of FDSNE is 𝑂(2𝑟𝑁𝑑 + 𝐾𝑁𝑑) in each iteration,
where 𝐾 = 𝐾

1
+ 𝐾
2
. It is obvious that 𝐾 ≪ 𝑁. Therefore,

FDSNE is faster thanMSNP andDSNE during each iteration.

4. Kernel FDSNE

As a bridge from linear to nonlinear, kernel method emerged
in the early beginning of the 20th century and its applica-
tions in pattern recognition can be traced back to 1964. In
recent years, kernel method has attracted wide attention and
numerous researchers have proposed various theories and
approaches based on it.

The principle of kernel method is a mapping of the data
from the input space𝑅𝑑 to a high-dimensional space𝐹, which
we will refer to as the feature space, by nonlinear function.
Data processing is then performed in the feature space, and
this can be expressed solely in terms of inner product in
the feature space. Hence, the nonlinear mapping need not
be explicitly constructed but can be specified by defining
the form of the inner product in terms of a Mercer kernel
function 𝜅.

Obviously, FDSNE is a linear feature dimensionality re-
duction algorithm. So the remainder of this section is devoted
to extend FDSNE to a nonlinear scenario using techniques of
kernel methods. Let

𝜅 (x
𝑖
, x
𝑗
) = ⟨𝜑 (x

𝑖
) , 𝜑 (x

𝑗
)⟩ (11)

which allows us to compute the value of the inner product in
𝐹 without having to carry out the map.

It should be noted that we use 𝜑
𝑖
to denote 𝜑(x

𝑖
) for

brevity in the following. Next, we express the transformation
A with

A = [

𝑁

∑

𝑖=1

𝑏
(1)

𝑖
𝜑
𝑖
, . . . ,

𝑁
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𝑏
(𝑟)

𝑖
𝜑
𝑖
]

𝑇

. (12)

We define B = [𝑏
(1)
, . . . , 𝑏

(𝑟)
]
𝑇

and Φ = [𝜑
1
, . . . , 𝜑

𝑁
]
𝑇,

and then A = BΦ. Based on above definition, the Euclidian
distance between x

𝑖
and x
𝑗
in the 𝐹 space is

𝑑
𝐹

𝑖𝑗
(A) = A (𝜑
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𝑗
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(13)

where 𝐾
𝑖
= [𝜅(x

1
, x
𝑖
), . . . , 𝜅(x

𝑁
, x
𝑖
)]
𝑇 is a column vector. It

is clear that the distance in the kernel embedding space is
related to the kernel function and the matrix B.

In this section, we propose two methods to construct the
objective function. The first strategy makes B parameterize
the objective function. Firstly, we replace 𝑑

𝑖𝑗
(A) with 𝑑𝐹

𝑖𝑗
(A)

in formula (3) so that 𝑝1
𝑖𝑗
, 𝑞1
𝑖𝑗
which are defined to be applied

in the high dimensional space 𝐹 can be written as
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0 otherwise.
(14)

Then, we denote 𝐶(B) by modifying 𝐶(A) via substituting A
with B into the regularization term of formula (5). Finally,
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Figure 1: Sample images from COIL-20 dataset.

Figure 2: Samples of the cropped images from USPS dataset.

by the same argument as formula (7), we give the following
gradient:

𝑑𝐶 (B)
𝑑 (B)
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In order to make formula (15) easy to be comprehended,
𝑤
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Meanwhile, the gradient expression (15) can be reduced to
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Figure 3: Sample face images from ORL dataset.

= 4B {(KD1𝐻K𝑇 − KU1𝐻K𝑇)

+ (KD1𝑀K𝑇 − KU1𝑀K𝑇)}

= 4B {K (D1𝐻 − U1𝐻 +D1𝑀 − U1𝑀)K𝑇} ,
(17)

where U1𝐻 is the𝑁 order matrix with element 𝑢1𝐻
𝑖𝑗
, and U𝑀

is the 𝑁 order matrix with element 𝑢1𝑀
𝑖𝑗

. Note that U1𝐻 and
U1𝑀 are symmetric matrices; therefore, D1𝐻 can be defined
as a diagonal matrix that each entry is column (or row) sum
of U1𝐻 and the same for D1𝑀, that is, D1𝐻

𝑖𝑖
= ∑
𝑗
U1𝐻
𝑖𝑗

and
D1𝑀
𝑖𝑖

= ∑
𝑗
U1𝑀
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.
For convenience, we name this kernel method as FKD-

SNE1.
Another strategy is that we let 𝐶𝐹(A) be the objective

function in the embedding space 𝐹. So its gradient can be
written as
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(a) FKDSNE2 (b) FKDSNE1 (c) FDSNE

(d) MSNP (e) SNE (f) 𝑡-SNE

Figure 4: Visualization of 100 images from COIL-20 images dataset.

×( ∑

𝑡∈𝑀
𝑚

(1 + (𝐾
𝑚
− 𝐾
𝑡
)
𝑇B𝑇B (𝐾

𝑚
− 𝐾
𝑡
))

−1

)

−1

]

]

= 2[

[

∑

∀𝑗∈𝐻
𝑖

𝑝
1

𝑖𝑗
𝑤
1

𝑖𝑗
B𝑄(𝐾𝑖−𝐾𝑗)
𝑖𝑗

− ∑

𝑡∈𝐻
𝑚

𝑞
1

𝑚𝑡
𝑤
1

𝑚𝑡
B𝑄(𝐾𝑚−𝐾𝑡)
𝑚𝑡

]

]

Φ

+ 2[

[

∑

∀𝑗∈𝑀
𝑖

𝑝
1

𝑖𝑗
𝑤
1

𝑖𝑗
B𝑄(𝐾𝑖−𝐾𝑗)
𝑖𝑗

− ∑

𝑡∈𝑀
𝑚

𝑞
1

𝑚𝑡
𝑤
1

𝑚𝑡
B𝑄(𝐾𝑚−𝐾𝑡)
𝑚𝑡

]

]

Φ

= 2[

[

∑

∀𝑗∈𝐻
𝑖

𝑢
1

𝑖𝑗
B𝑄(𝐾𝑖−𝐾𝑗)
𝑖𝑗

+ ∑

∀𝑗∈𝑀
𝑖

𝑢
1

𝑖𝑗
B𝑄(𝐾𝑖−𝐾𝑗)
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(18)

in this form,𝑄(𝐾𝑖−𝐾𝑗)
𝑖𝑗

can be regard as the𝑁×𝑁matrix with
vector 𝐾

𝑖
− 𝐾
𝑗
in the 𝑖th column, and vector 𝐾

𝑗
− 𝐾
𝑖
in the

𝑗th column and the other columns are all zeros.
Thismethod is termed as FKDSNE2.Note thatΦ is a con-

stant matrix. Furthermore, the observations of formula (18)
make us know that updating thematrixA in the optimization
only means updating the matrix B. Additionally, Φ does not
need to be computed explicitly. Therefore, we do not need to
explicitly perform the nonlinear map 𝜑(x) to minimize the
objective function 𝐶𝐹(A). The computational complexity of

FKDSNE1 and FKDSNE2, is respectively,𝑂(2𝑟𝑁2+𝑟𝑁𝐾) and
𝑂(2𝑟𝐾𝑁 + 𝑟𝑁

2
) in each iteration. Hence, it is obvious that

FKDSNE2 is faster than FKDSNE1 during each iteration.

5. Experiments

In this section, we evaluate the performance of our FDSNE,
FKDSNE1, and FKDSNE2 methods for feature extraction.
Three sets of experiments are carried out onColumbiaObject
Image Library (COIL-20) (http://www1.cs.columbia.edu/CA
VE/software/softlib/coil-20.php), US Postal Service (USPS)
(http://www.cs.nyu.edu/∼roweis/data.html), and ORL (http:
//www.cam-orl.co.uk) face datasets to demonstrate their
good behavior on visualization, accuracy, and elapsed time.
In the first set of experiments, we focus on the visualization of
the proposed methods which are compared with that of the
relevant algorithms, including SNE [17], 𝑡-SNE [18], and
MSNP [21]. In the second set of experiments, we apply our
methods to recognition task to verify their feature extraction
capability and compare them with MSNP and DSNE [22].
Moreover, the elapsed time of FDSNE, FKDSNE1, FKDSNE2,
and DSNE is compared in the third set of experiments. In
particular, the Gaussian RBF kernel 𝜅(x, x) = exp(−‖x−
x‖2/2𝜎2) is chosen as the kernel function of FKDSNE1 and
FKDSNE2, where 𝜎 is set as the variance of the training
sample set of X.

http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.nyu.edu/~roweis/data.html
http://www.cam-orl.co.uk
http://www.cam-orl.co.uk
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(a) FKDSNE2 (b) FKDSNE1 (c) FDSNE

(d) MSNP (e) SNE (f) 𝑡-SNE

Figure 5: Visualization of 140 images from USPS handwritten digits dataset.

5.1. COIL-20, USPS, and ORL Datasets. The datasets used in
our experiments are summarized as follows.

COIL-20 is a dataset of gray-scale images of 20 objects.
The images of each object were taken 5 degrees apart as the
object is rotated on a turntable and each object has 72 images.
The size of each image is 40×40 pixels. Figure 1 shows sample
images from COIL-20 images dataset.

USPS handwritten digit dataset includes 10 digit charac-
ters and 1100 samples in total. The original data format is of
16 × 16 pixels. Figure 2 shows samples of the cropped images
from USPS handwritten digits dataset.

ORL consists of gray images of faces from 40 distinct
subjects, with 10 pictures for each subject. For every subject,
the images were taken with varied lighting condition and dif-
ferent facial expressions. The original size of each image
is 112 × 92 pixels, with 256 gray levels per pixel. Figure 3
illustrates a sample subject of ORL dataset.

5.2. Visualization Using FDSNE, FKDSNE1, and FKDSNE2.
We apply FDSNE, FKDSNE1, and FKDSNE2 to visualization
task to evaluate their capability of classification performance.
The experiments are carried out, respectively, on COIL-20,
USPS, and ORL datasets. For the sake of computational effi-
ciency as well as noise filtering, we first adjust the size of each

image to 32×32pixels onORL, and thenwe select five samples
fromeach class onCOIL-20, fourteen samples fromeach class
on USPS, and five samples from each class on ORL.

The experimental procedure is to extract a 20-dime-
nsional feature for each image by FDSNE, FKDSNE1, and
FKDSNE2, respectively. Then to evaluate the quality of fea-
tures through visual presentation of the first two-dimensional
feature.

FDSNE, FKDSNE1, and FKDSNE2 are compared with
three well known visualization methods for detecting classi-
fication performance: (1) SNE, (2) 𝑡-SNE, and (3) MSPN.The
parameters are set as follows: the 𝐾-nearest neighborhood
parameter of FDSNE, FKDSNE1, and FKDSNE2 methods is
𝐾
1
= ℎ − 1 (let ℎ denote the number of training samples in

each class), 𝐾
2
= 40; for SNE and 𝑡-SNE, the perplexity

parameter is perp = 20 and the iteration number is 𝑀𝑡 =

1000; for MSNP, the degree freedom of Cauchy distribution
is 𝛾 = 4 and the iteration number is 1000 as well.

Figures 4, 5, and 6 show the visual presentation results
of FDSNE, FKDSNE1, FKDSNE2, SNE, 𝑡-SNE, and MSNP,
respectively, on COIL-20, USPS, and ORL datasets. The vis-
ual presentation is represented as a scatterplot in which a dif-
ferent color determines different class information. The fig-
ures reveal that the three nearest-neighbor-based methods,
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(a) FKDSNE2 (b) FKDSNE1 (c) FDSNE

(d) MSNP (e) SNE (f) 𝑡-SNE

Figure 6: Visualization of 200 face images from ORL faces dataset.
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Figure 7: Recognition rate (%) versus subspace dimension on COIL-20.
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Figure 8: Recognition rate (%) versus subspace dimension on USPS.

10 20 30 40 50 60
0.6

0.65

0.7

0.75

0.8

0.85

Dimensionality

Re
co

gn
iti

on
 ra

te
 (%

)

FKDSNE2
FKDSNE1
FDSNE

DSNE
MSNP

(a) ℎ = 3

Re
co

gn
iti

on
 ra

te
 (%

)

10 20 30 40 50 60
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Dimensionality

FKDSNE2
FKDSNE1
FDSNE

DSNE
MSNP

(b) ℎ = 5

Figure 9: Recognition rate (%) versus subspace dimension on ORL.

that is, FDSNE, FKDSNE1, and FKDSNE2, give considerably
better classification result than SNE, 𝑡-SNE, andMSNP on all
datasets, for the separation between classes is quite obvious.
In particular, SNE and 𝑡-SNE not only get less separation for
the interclass data but also produce larger intraclass scatter.
For MSNP, it has smaller intraclass scatter, but there exists
an overlapping phenomenon among classes. With regard to
FDSNE, FKDSNE1, and FKDSNE2, we can find from the fig-
ures that FKDSNE1 shows the best classification performance
among all the algorithms on ORL face dataset, while not
on the other two datasets COIL-20 and USPS; thereinto, the
classification performance of FKDSNE1 is inferior to FDSNE

on COIL-20 while on USPS it is inferior to FKDSNE2. In
addition, the clustering qualities and separation degree of
FKDSNE1 and FKDSNE2 are obviously better than that of
FDSNE.

5.3. Recognition Using FDSNE, FKDSNE1, and FKDSNE2. In
this subsection, we apply FDSNE, FKDSNE1, and FKDSNE2
to recognition task to verify their feature extraction capability.
Nonlinear dimensional reduction algorithms such as SNE
and 𝑡-SNE lack explicit projection matrix for the out-of-
sample data, which means they are not suitable for recogni-
tion. So we compare the proposed methods with DSNE and
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Figure 10: Elapsed time (seconds) versus subspace dimension on COIL-20.
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Figure 11: Elapsed time (seconds) versus subspace dimension on USPS.

MSNP, both of them are linear methods and were proved
to be better than existing feature extraction algorithms such
as SNE, 𝑡-SNE, LLTSA, LPP, and so on in [21, 22]. The
procedure of recognition is described as follows: firstly, divide
dataset into training sample set Xtrain and testing sample set
Xtest randomly; secondly, the training process for the optimal
matrixA or B is taken for FDSNE, FKDSNE1 and FKDSNE2;
thirdly, feature extraction is accomplished for all samples
using A or B; finally, a testing image is identified by a near-
est neighbor classifier. The parameters are set as follows: the
𝐾-nearest neighborhood parameter𝐾

1
,𝐾
2
in FDSNE, FKD-

SNE1, and FKDSNE2 is 𝐾
1
= ℎ − 1, 𝐾

2
= 40; for DSNE,

the perplexity parameter is 𝜆 = 0.1 and the iteration number
is 𝑀𝑡 = 1000; for MSNP, the freedom degree 𝛾 of Cauchy
distribution in MSNP is determined by cross validation and
the iteration number is 1000 as well.

Figure 7 demonstrates the effectiveness of different sub-
space dimensions for COIL-20 ((a): ℎ = 5, (b): ℎ = 10).
Figure 8 is the result of the experiment in USPS ((a): ℎ =

14, (b): ℎ = 25), and Figure 9 shows the recognition rate
versus subspace dimension on ORL ((a): ℎ = 3, (b): ℎ = 5).
The maximal recognition rate of each method and the corre-
sponding dimension are given in Table 1, where the number
in bold stands for the highest recognition rate. From Table 1,
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Figure 12: Elapsed time (seconds) versus subspace dimension on ORL.

Table 1: The maximal recognition rates (%) versus the subspace dimension.

COIL-20 h = 5 COIL-20 h = 10 USPS h = 14 USPS h = 25 ORL h = 3 ORL h = 5
MSNP 0.8149 (32) 0.9063 (50) 0.7958 (38) 0.8395 (58) 0.7989 (59) 0.8690 (58)
DSNE 0.8325 (36) 0.9130 (54) 0.8093 (50) 0.8522 (42) 0.8357 (42) 0.9150 (39)
FDSNE 0.8396 (52) 0.9277 (54) 0.8150 (58) 0.8489 (59) 0.8279 (58) 0.9160 (39)
FKDSNE1 0.8651 (22) 0.9575 (20) 0.8409 (26) 0.8848 (26) 0.8550 (26) 0.9405 (24)
FKDSNE2 0.8689 (28) 0.9491 (22) 0.8585 (22) 0.9021 (28) 0.8470 (24) 0.9193 (20)
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Figure 13: Objective function value (log) versus iterative number on
ORL dataset.

we can find that FKDSNE1 and FKDSNE2 outperform
MSNP, DSNE, and FDSNE on COIL-20, USPS, and ORL. As
can be seen, FKDSNE1 and FKDSNE2 enhance the maximal

recognition rate for at least 2% compared with other three
methods. Besides, FKDSNE1 and FKDSNE2 achieve consid-
erable recognition accuracy when feature dimension is 20 on
the three datasets. It indicates that FKDSNE1 and FKDSNE2
grasp the key character of face images relative to identification
with a few features. Though the maximal recognition rate
of DSNE and FDSNE is closer to that of FKDSNE1 and
FKDSNE2 on ORL dataset, the corresponding dimension of
FKDSNE1 and FKDSNE2 is 20 while that of DSNE and
FDSNE exceeds 30. From the essence of dimensional reduc-
tion, this result demonstrates that FDSNE and DSNE are
inferior to FKDSNE1 and FKDSNE2.

5.4. Analysis of Elapsed Time. In this subsection, we further
compare the computational efficiency of DSNE, FKDSNE,
FKDSNE1, and FKDSNE2.The algorithmMSPN is not com-
pared since its recognition rate is obviously worse than other
algorithms. The parameters of the experiment are the same
to Section 5.3. Figures 10, 11, and 12, respectively, show the
elapsed time of four algorithms under different subspace
dimensions on the three datasets. It can be observed from
the figures that FKDSNE2 has the lowest computational cost
among the four algorithms while DSNE is much inferior to
other nearest-neighbor-based algorithms on all datasets. Par-
ticularly, on the COIL-20 dataset, the elapsed time of FKD-
SNE2 is more than 2 times faster than DSNE. As for DSNE
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and FDSNE, the former is obviously slower than the latter.
Besides, for the two kernel methods, FKDSNE2 is notably
faster than FKDSNE1, which confirms our discussion in
Section 4.

Furthermore, kernel-based algorithms FKDSNE1 and
FKDSNE2 can effectively indicate the linear structure on
high-dimensional space.Their objective function can achieve
better values on desirable dimensions. For instance, Figure 13
illustrates the objective function value ofMSNP,DSNE, FKD-
SNE, FKDSNE1, and FKDSNE2 versus iterative number on
ORL dataset. It can be found that FKDSNE2 and FKDSNE1
is close to the convergence value 1𝑒 − 7 while FDSNE and
DSNE only achieve 1𝑒 − 6 and MSNP achieves 1𝑒 − 5.4 when
the iterative number is 400. It means that FKDSNE1 and
FKDSNE2 can get the more precise objective function value
with less iterative number compared with DSNE and FDSNE;
that is to say that, FKDSNE1 and FKDSNE2 can achieve the
same value by using forty percent of the elapsed time ofDSNE
and FDSNE.

6. Conclusion

On the basis of DSNE, we present a method called
fast discriminative stochastic neighbor embedding analysis
(FDSNE) which chooses the reference points in 𝐾-nearest
neighbors of the target sample from the same class and the
different classes instead of the total training samples and thus
has much lower computational complexity than that of
DSNE. Furthermore, since FDSNE is a linear feature dimen-
sionality reduction algorithm, we extend FDSNE to a nonlin-
ear scenario using techniques of kernel trick and present two
kernel-based methods: FKDSNE1 and FKDSNE2. Experi-
mental results onCOIL-20, USPS, andORLdatasets show the
superior performance of the proposed methods. Our future
work might include further empirical studies on the learning
speed and robustness of FDSNE by using more extensive,
especially large-scale, experiments. It also remains important
to investigate acceleration techniques in both initialization
and long-run stages of the learning.
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