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Abstract: Pasmo (Septoria linicola) is a fungal disease causing major losses in seed yield and quality and
stem fibre quality in flax. Pasmo resistance (PR) is quantitative and has low heritability. To improve
PR breeding efficiency, the accuracy of genomic prediction (GP) was evaluated using a diverse
worldwide core collection of 370 accessions. Four marker sets, including three defined by 500, 134 and
67 previously identified quantitative trait loci (QTL) and one of 52,347 PR-correlated genome-wide
single nucleotide polymorphisms, were used to build ridge regression best linear unbiased prediction
(RR-BLUP) models using pasmo severity (PS) data collected from field experiments performed during
five consecutive years. With five-fold random cross-validation, GP accuracy as high as 0.92 was
obtained from the models using the 500 QTL when the average PS was used as the training dataset.
GP accuracy increased with training population size, reaching values >0.9 with training population
size greater than 185. Linear regression of the observed PS with the number of positive-effect QTL in
accessions provided an alternative GP approach with an accuracy of 0.86. The results demonstrate
the GP models based on marker information from all identified QTL and the 5-year PS average is
highly effective for PR prediction.

Keywords: genomic selection; genomic prediction; genotyping by sequencing; pasmo resistance;
pasmo severity; quantitative trait loci; single nucleotide polymorphism; Septoria linicola; flax

1. Introduction

Flax (Linum usitatissimum L.) is an important food and fibre crop cultivated and grown in cooler
regions of the world, such as Canada [1]. Pasmo, elicited by the fungus Septoria linicola, is one of the
most widespread diseases of flax, causing reductions in seed and oil yield, as well as fibre quality
and durability [2]. Developing resistant cultivars is the most viable and effective option to control
this disease that has become widespread in all flax production areas of North America and other
parts of the world. Resistance to pasmo has a low heritability [3] and is quantitatively inherited [4].
Large variations in pasmo disease severity were observed in the flax core collection, which can be
capitalized upon to develop resistant cultivars [3]. Phenotypic recurrent selection is typically used to
develop cultivars with improved resistance and selection is usually carried out based on phenotypic
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assessments of resistance in field conditions [5]. However, field assessment of pasmo severity (PS) in
germplasm and breeding lines is costly and, is heavily influenced by the environments due to strong
genotype × environment (G × E) interactions [3,4].

With the advancements in molecular marker development over the last decade, efforts to use
marker-assisted breeding strategies have been pursued. One such strategy involves identifying
quantitative trait loci (QTL) in biparental mapping populations and using markers to efficiently
backcross QTL into elite breeding materials [6]. This so-called marker-assisted recurrent selection
(MARS) or simply marker-assisted selection (MAS) characterizes many breeding programs that employ
molecular markers to select non-phenotyped individuals for crossing and downstream selection of
segregating populations [7]. This method is suitable for the selection of monogenic or oligo-genic
architectures but has limited use for quantitative traits controlled by many genes of smaller effects [8].
Genomic selection (GS) or prediction (GP) is an alternative marker-assisted breeding strategy better
suited to polygenic quantitative traits, especially those with low heritability, because it makes use of all
marker effects across the entire genome to calculate genomic estimated breeding values (GEBVs) [9]
for individual plant selection [9,10].

In GP, a training population (TP) is genotyped with genome-wide markers and phenotyped for
the trait(s) under selection; statistical models that best predict the breeding values from the marker
data are then applied to select non-phenotyped germplasm. GP has been used to select for disease
resistance in several crops such as Fusarium head blight (FHB) in wheat, a typically quantitatively
inherited trait with predominantly additive genetic variation, where GP had a significantly higher
accuracy than pedigree-based information alone [11]. GP feasibility has also been studied for selection
of wheat rust resistance and was found particularly effective when validation lines had at least one
which is close to the reference lines [12]. The implementation of GP on northern leaf blight, a complex
genetic architecture trait in maize, resulted in superior gains and reduced breeding cycle time to ≤80%
of the phenotypic cycle [13]. Despite the many successful examples, the use of GP to improve disease
resistance in crops has been challenging for two reasons: (i) selection for major resistance genes can be
ephemeral due to changes in pathogen races; and (ii) breeding for minor resistance genes with small
effects may face the remarkable complexities encountered in GP [14].

The fast-evolving genotyping platforms have been a game-changer in the implementation of GP,
allowing the production of large numbers of genome-wide markers, whereas progresses in phenotyping
were not associated with similar cost reduction or quantum leaps in throughput. Given the number of
markers (p) and sample size (n) in a given population, there are many more p effects to be estimated
than the n, leading to an infinite number of possible marker effect estimates [15], that is, the so-called
“large p, small n problem” (p >> n) when applying markers to predict phenotypes [11]. Several GP
statistical models have been proposed to address this issue [16]. For example, the ridge-regression
best linear unbiased prediction (RR-BLUP) is a mixed linear model that considers markers as random
effects. Covariance between markers is considered to be zero and the marker variance is assumed to be
the total genetic variance divided by the number of markers. The variance is assumed to be equal for
all markers, allowing many more marker effects to be estimated than there are phenotypic records [17].
Unlike RR-BLUP, the Bayesian LASSO (BL) assumes markers to have unequal variances and, performs
continuous shrinkage and variable selection simultaneously, with small-effect markers shrinking more
severely than larger-effect loci. In the p >> n setting, LASSO will select at most n − 1 variables and set
the effects of the remaining predictors at zero [18]. Although the problem is solved statistically in these
models, improving the accuracy and efficiency of GP by reducing the number of genome-wide markers
would be advantageous because any increment in the TP size comes at a cost [19–22]. Genome-wide
association study (GWAS) is an approach to identify genome-wide markers linked to QTL, resulting in
a limited number of favourable genetic loci responsible for traits of interest [23]. For example, GP of
crown rust resistance in Lolium perenne demonstrated GWAS’s ability to identify and rank markers,
which enabled the identification of a small subset of single nucleotide polymorphisms (SNPs) that
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could achieve predictive abilities close to that attained using the complete marker set [24]. Utilization of
GWAS removes a large proportion of unrelated markers and in the construction of prediction models.

The only GP empirical study published to date in flax, which used bi-parental populations for
yield, oil content and fatty acid composition traits, indicated that GP could increase genetic gain per unit
time in linseed breeding. The GP results significantly exceeded those from direct phenotypic selection,
especially for traits with low broad-sense heritability [25]. Resistance to flax pasmo is polygenic. Our
previous study reported 500 non-redundant QTL for PR from 370 diverse flax accessions of a core
collection based on five-year pasmo field assessments; of those, 134 QTL were statistically stable in all
five years and 67 had relatively stable and large effects [4].

The objective of this study was to evaluate the potential of QTL markers in GP and compare
the GP efficiency affected by different markers, including genome-wide SNPs and QTL markers, to
provide a realistic and highly accurate model for germplasm evaluation and parent selection in pasmo
resistance breeding.

2. Results

2.1. Evaluation of Pasmo Resistance

PS ratings at green boll stage or maturity across five consecutive years were similar but on average
PS ratings in 2014 and 2016 were higher than those in other years (Table 1). They had single peak
distributions but skewed towards high PS ratings except for those in 2014 (Figure 1). Scatter plots
of PS ratings between years indicated strong genotype × year interaction even though statistically
significant correlations of PS ratings between years were observed (Figure 1), as shown in the variance
analysis results in the previous study [4]. However, the Pearson correlations of 5-year averages of PS
ratings (PS-mean) with those in individual years (r = 0.72–0.83) were much higher than the Pearson
correlations between individual years (r = 0.31–0.62) (Figure 1), implying that the mean PS ratings
over multiple years or environments were a more suitable data set than individual year’s data sets for
model construction of genomic prediction.

Table 1. Pasmo severity of 370 flax accessions across five years in the field condition.

Data Set x ± s Range CV (%)

PS-2012 5.57 ± 1.86 1.00–9.00 32.76
PS-2013 5.69 ± 1.91 2.00–9.00 33.20
PS-2014 6.86 ± 2.07 1.00–9.00 29.41
PS-2015 6.11 ± 1.55 1.00–9.00 25.44
PS-2016 6.72 ± 1.37 2.00–9.00 20.39
PS-mean 6.22 ± 1.32 1.80–9.00 21.27

x: average pasmo severity across five years; s: standard deviation; CV: coefficient of variation.

2.2. Evaluation of Marker Sets Used in Genomic Prediction

Four marker sets were used for GP of pasmo resistance. The first marker set contained 52,347
genome-wide SNPs (SNP-52347) that were correlated to the five-year average PS and the PS of the five
individual years at a 10−5 probability level [4]. The other three marker sets were the 500 unique QTL
(SNP-500QTL), the 134 QTL statistically stable over five consecutive years (SNP-134QTL) and the 67
stable and relatively large-effect QTL (SNP-67QTL) sets previously identified [4]. The SNP-500QTL
dataset comprises markers for all small- or large-effects, including QTL stable across environments and
environment-specific QTL identified using three single-locus and seven multi-locus statistical models
and all six phenotypic datasets (Figure 2). The SNP-134QTL dataset is a subset of the SNP-500QTL
dataset whereas SNP-67QTL is a subset of the former; all SNP-500QTL markers were included in
SNP-52347. These four marker sets explained 54%, 72%, 27% and 29% of the phenotypic variation of
the five-year PS average (PS-mean), respectively; these values exceeded those of the individual year PS
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data (Table 2). Although SNP-500QTL was a subset of SNP-52347, this marker set explained a greater
percentage of the phenotypic variation for PS than SNP-52347 for all datasets.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  4 of 18 
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Figure 1. Dot plots (lower triangle), histograms (diagonal) and Pearson correlations (upper triangle)
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Table 2. Phenotypic variation of pasmo severity (PS) (h2
± s) explained by the four marker sets.

PS Dataset
Marker Set

SNP-500QTL SNP-134QTL SNP-67QTL SNP-52347

PS-mean 0.72 ± 0.04 0.27 ± 0.05 0.29 ± 0.05 0.54 ± 0.07
PS-2012 0.64 ± 0.06 0.18 ± 0.05 0.16 ± 0.04 0.43 ± 0.08
PS-2013 0.63 ± 0.06 0.12 ± 0.04 0.12 ± 0.04 0.38 ± 0.08
PS-2014 0.65 ± 0.06 0.23 ± 0.05 0.20 ± 0.05 0.45 ± 0.08
PS-2015 0.56 ± 0.06 0.20 ± 0.05 0.17 ± 0.04 0.44 ± 0.09
PS-2016 0.53 ± 0.06 0.18 ± 0.05 0.18 ± 0.05 0.38 ± 0.07
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Figure 2. Distribution of R2 (%) (phenotypic variation explained by individual QTL) in the three QTL
marker sets.

2.3. Accuracy of Genomic Prediction in Relation to Marker Sets and Pasmo Severity Datasets

Genomic prediction models were constructed using RR-BLUP with pairwise combinations of the
four marker sets and the six PS datasets. Statistical models for the 24 combinations were generated and
evaluated for their accuracy (r) and relative efficiency (RE) using a five-fold random cross-validation
scheme (Table 3). RE represents the relative efficiency of GP over direct phenotypic selection which
depends on the heritability of a selective trait. Direct phenotypic selection for a trait was considered to
have a baseline efficiency of 1. Thus, RE values greater than 1 indicate GP models more efficient than
direct phenotypic selection in one selection cycle [25–27]. Analysis of variance (ANOVA) (Table S1)
indicated that r and RE both significantly differed among the four marker sets and the six PS datasets;
there was also a significant interaction effect between marker sets and PS datasets (Table S1). Owing to
the significant marker × phenotype dataset interaction, multiple comparisons of the 24 combinations
were performed. For all marker sets, the PS-mean models significantly outperformed those based on
individual year datasets (Table 3). The SNP-500QTL marker set models generated significantly higher
r and RE values than any other marker sets (Figure 3). Interestingly, the SNP-67QTL derived models
produced slightly but significantly higher values of r and RE than SNP-134QTL models. The highest r
and RE values were obtained for models combining the SNP-500QTL and PS-mean datasets (Table 3,
Figure 3). Intriguingly, the SNP-52347 models yielded the lowest r and RE values despite including
all QTL markers (Table 3, Figure 3); both BL and Bayesian ridge regression (BRR) corroborated this
finding (Figure S1). No significant differences in r and RE values were observed among the three
statistical models: RR-BLUP, BL and BRR (Figure S1).

2.4. Sample Size of Training Populations versus Genomic Prediction Accuracy

To find an optimal size for the TP, the relationship between TP size and prediction accuracy was
analysed. TPs of various sizes from 18 to 351, corresponding to 5% to 95% of the total 370 accessions,
were used to build models with the SNP-500QTL marker set and the PS-mean phenotypic dataset.
The prediction accuracy significantly increased for TP sizes up to 100, followed by smaller accuracy
gains with every additional TP size increments (Figure 4). A GP accuracy >0.9 was obtained once the
TP size reached 185 (Figure 4).
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Table 3. Accuracy (r) and relative efficiency (RE) values of the 24 combinations representing the
four marker sets and six pasmo severity (PS) datasets using RR-BLUP obtained using a random
five-fold cross-validation.

Marker Set PS Dataset r (x ± s) 1 RE (x ± s) 1

SNP-500QTL

PS-mean 0.92 ± 0.02a 1.84 ± 0.04a
PS-2012 0.84 ± 0.03b 1.68 ± 0.06b
PS-2013 0.81 ± 0.04c 1.62 ± 0.07c
PS-2014 0.82 ± 0.04c 1.63 ± 0.07c
PS-2015 0.76 ± 0.05d 1.52 ± 0.09d
PS-2016 0.76 ± 0.05d 1.52 ± 0.11d

SNP-134QTL

PS-mean 0.75 ± 0.06e 1.49 ± 0.11e
PS-2012 0.68 ± 0.06f 1.36 ± 0.11f
PS-2013 0.60 ± 0.07ij 1.19 ± 0.14ij
PS-2014 0.60 ± 0.07i 1.21 ± 0.14i
PS-2015 0.47 ± 0.09o 0.94 ± 0.18o
PS-2016 0.56 ± 0.09l 1.12 ± 0.17l

SNP-67QTL

PS-mean 0.76 ± 0.05d 1.53 ± 0.1d
PS-2012 0.67 ± 0.06g 1.35 ± 0.11g
PS-2013 0.60 ± 0.07ij 1.20 ± 0.14ij
PS-2014 0.60 ± 0.07ij 1.20 ± 0.14ij
PS-2015 0.50 ± 0.09n 1.00 ± 0.17n
PS-2016 0.59 ± 0.08k 1.17 ± 0.17k

SNP-52347

PS-mean 0.67 ± 0.07g 1.33 ± 0.14g
PS-2012 0.63 ± 0.06h 1.27 ± 0.12h
PS-2013 0.59 ± 0.07jk 1.19 ± 0.14jk
PS-2014 0.53 ± 0.08m 1.06 ± 0.17m
PS-2015 0.38 ± 0.09q 0.77 ± 0.17q
PS-2016 0.46 ± 0.09p 0.93 ± 0.18p

1 Different letters represent multiple test significance among the 24 combinations at the 0.05 probability level.
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Figure 3. Accuracy (r) (a) and relative efficiency (RE) (b) of RR-BLUP prediction models built with
combinations of four marker sets using the five-year average PS dataset (PS-mean) and random five-fold
cross-validations. Letters above box plots indicated statistical significance (p < 0.05) for r and RE among
marker sets.
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Figure 4. Relationship between the genomic prediction accuracy (r) and the size of the training
population based on the SNP-500QTL marker set, the PS-mean dataset and the RR-BLUP models. The
dash line represents a prediction accuracy of 0.9.

2.5. Prediction Models of Pasmo Resistance

All 370 accessions were used as a training population to build a prediction model using the
SNP-500QTL genotypic dataset and the PS-mean phenotypic dataset because this combination
outperformed all other models. The model was then employed to predict PS in each year (Table 4).
Prediction accuracies (r) ranging from 0.71 to 0.81 and RE values of 1.42 to 1.62 were obtained when
predicting PS for individual years (Table 4).

A prediction accuracy as high as 0.98 and a RE value of 1.96 were obtained when the model was
used to predict PS-means of the 370 accessions (Table 4). A linear relationship was observed between
the observed (y) and predicted PS (x): y = 1.0522x − 0.3267 (R2 = 0.96) (Figure 5a). Based on this
equation, the average prediction interval between the two red dashed lines, representing the 95%
confidence interval, was only less than 1 (an average of 0.97) on the PS ratings (Figure 5a).

NPQTL in the 370 accessions for the 500 QTL set was tallied. Significant linear correlation between
PS-mean and NPQTL (r = 0.86 or R2 = 0.73) was observed (Figure 5b). This correlation was less than
but close to the accuracy of the GP model with SNP-500QTL and higher than the GP models using
other marker sets (Table 3). However, the single linear regression equation (y = −0.0262x + 11.934) of
the observed PS (y) to NPQTL (x) had a large standard deviation for each prediction value, with an
average prediction interval width of 2.70, nearly three times the average prediction interval width of
the GP model; that is, the NPQTL model had a higher prediction error than the GP model.

Table 4. Accuracy (r) and relative efficiency (RE) of genomic prediction for pasmo severity in different
years using the RR-BLUP model built with the SNP-500QTL marker set and the PS-mean phenotypic
data using all 370 accessions as training data set.

PS Dataset for Prediction r RE

PS-mean 0.98 1.96
PS-2012 0.73 1.46
PS-2013 0.71 1.42
PS-2014 0.81 1.62
PS-2015 0.71 1.43
PS-2016 0.77 1.55
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S2. The prediction accuracy was as high as 0.95 (r between observed and predicted PS). Similarly, a 
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Figure 5. Relationship of observed pasmo severity (PS) with PS predicted by a GP model (a,c) or with
PS predicted by the number of QTL with positive-effect alleles (NPQTL) (b,d). (a) Linear regression of
observed PS (y) to predicted PS (x) using the genomic prediction model built with the PS-mean dataset
and the SNP-500QTL marker set of all 370 accessions as training data set. (b) Linear regression of
observed PS (y) to NPQTL (x) in the 370 flax accessions. (c) Relationship of observed PS of 93 randomly
chosen accessions with the PS predicted by the genomic model constructed with the SNP-500QTL
marker set and PS-mean dataset when a random subset of 277 accessions was used as training
population. (d) Relationship of observed PS of 93 randomly chosen accessions with the PS predicted by
NPQTL (Figure S2) The red dashed lines represent upper and lower boundaries of the 95% prediction
intervals, that is, it is expected that the value of a sample lies within that prediction interval in 95%
of the samples. The grey band represents the 95% confidence interval, that is, 95% of those intervals
include the true value of the population mean.

2.6. A Case Study of Genomic Prediction

To assess GP prediction accuracy, a training-testing partition was generated with random
assignment of breeding lines to either training or testing subsets. Considering the different improvement
status of accessions in the population (cultivars, breeding lines, landraces or unknown types) and
different levels of resistance, we randomly chose 20% of the 370 accessions in the population, that is, 93
accessions (52 cultivars, 21 breeding lines, 3 landraces and 17 unknown types) as validation dataset,
that is, a five-fold random cross-validation set. To predict the PS of these 93 accessions, a RR-BLUP
model using the SNP-500QTL set and the PS-mean of the remaining 277 accessions as TP set was built
to predict PS. The predicted results are shown in Figure 5c and Table S2. The prediction accuracy
was as high as 0.95 (r between observed and predicted PS). Similarly, a linear regression model of
observed PS (y) to NPQTL (x) of the 277 accessions (the same TP as GP) produced y = −0.026x +

11.902 (Figure S2), which was similar to the regression equation previously obtained with the complete
accession set (Figure 5b). Using this prediction model, predicted PS and intervals were calculated
(Figure 5d, Table S2). The prediction accuracy of 0.92 for NPQTL was slightly inferior to that of the GP
model. The observed PS values all fell within prediction intervals (Table S2).



Int. J. Mol. Sci. 2019, 20, 359 9 of 18

3. Discussion

Cross-validation remains the most popular method to evaluate GP accuracy [14,28]. Our RR-BLUP
model prediction accuracy of 0.92 for PR is the highest of all published GP models for plant disease
resistance traits [14]. This model is especially valuable because PR has low heritability and high
inheritance complexity [3,4]. The QTL markers, multi-year phenotypic data and the genetic diversity
and size of the population likely contributed positively to this high prediction accuracy [29].

3.1. All Detected QTL Used as Markers in Genomic Prediction

Three sets of QTL markers (SNP-500QTL, SNP-134QTL and SNP-67QTL) and a genome-wide
SNP marker set (SNP-52347) were evaluated here. GP models built using SNP-500QTL consistently
outperformed models derived with any of the other three marker sets (Table 3, Figure S1), lending
credence to the robustness and reliability of the QTL identified using multiple single-locus and
multi-locus GWAS statistical methods [4]. Most GWAS aim to detect large-effect QTL, such as the
SNP-67QTL set. While potentially useful in MAS, these tend to explain a reduced portion of the
phenotypic variation compared to more comprehensive models (Table 2). Consequently, the GP
models built with such marker sets have lower GP accuracies. Therefore, using all potential QTL
associated with the selective trait to build GP models is advantageous because it greatly improves
prediction accuracy. Prediction accuracies of models obtained with SNP-134QTL and SNP-67QTL data
sets were comparable (Table 3, Figure S1) and they explained a similar proportion of the phenotypic
variation for PS (Table 2), confirming the redundancy or overlap between the two datasets. Removal of
redundant QTL from SNP-134QTL to produce SNP-67QTL produced slightly higher accuracy models
(Figure 3). Simplifying GP models by removal of redundant and unrelated markers will ease the
practical implementation of GP in breeding programs.

3.2. Superior Performance of Genomic Prediction Combined with GWAS

Surprisingly, the GP models built using SNP-52347 generated a lower prediction accuracy than
the models with SNP-500QTL (Table 3, Figure S1), regardless of the statistical methods (Figure S1).
Similarly, SNP-52347 explained a lower percentage of the phenotypic variation for PS than SNP-500QTL
(Table 2). Besides interaction between SNPs, introduction of noise from genome-wide markers [30],
the low prediction accuracy may also be owing to some of the erroneously called SNPs and imputation
of missing SNP data. SNP-500QTL includes all or nearly all QTL potentially associated with PS;
additional markers, not only failed to increase but actually reduced the prediction accuracy, further
emphasizing the effectiveness of the QTL identification methodology adopted in our previously
published GWAS study [4]. Similar findings were found for FHB in wheat where deoxynivalenol
(DON) concentration QTL-linked markers significantly improve prediction accuracy compared to
random genome-wide markers [30]. Markers linked to QTL underlying important traits are deemed
more useful for prediction strategies because genome-wide markers may introduce noise, thereby
reducing accuracy [30]. Using QTL for GP models may be beneficial to balance genetic backgrounds
along with maximum gain of breeding value [31]. Genome-wide prediction models based on ~5000
SNPs from de novo GWAS for tropical rice improvement were as effective for prediction as the full
marker set of 108,005 SNPs, indicating that the relationship between marker number and prediction
accuracy is neither strict nor linear [32]. To sum up, combined applications of the QTL discovered via
GWAS and the accelerated breeding cycles through GP facilitate the full use of genome-wide markers
in crop disease resistance breeding [10,33]. Removal of redundant markers has the potential to alleviate
the effect of the “large p, small n” issue.

3.3. Accuracy of GP Modelling by Environment, Training Population and Statistical Methods

G × E interactions, which affects the accuracy of trait assessment, are common for plant traits.
A strong G × E interaction was observed in flax PR [4]. As a consequence, different PS QTL were
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identified for individual years and for the 5-year average [4]; similarly, GP efficiencies differed
when individual yearly and average PS data sets were used as training sets (Table 3). The highest
accuracies were obtained when the 5-year mean phenotypic data was used as training data (Table 4),
suggesting that the average phenotypic data across multiple environments should be used for GP model
construction. Because phenotypic values of genotypes in each year had one replication, the average
phenotypic data across multiple years is actually equivalent to the best linear unbiased prediction
values (BLUPs) or the best linear unbiased estimators (BLUEs). Therefore, the means across multiple
environments estimate or reflect the true breeding values of a trait.

Some studies report that prediction accuracy of GP is highly affected by the size of the TP.
In general, the prediction accuracy increases with TP size [21,28,29,34–36]. In the GP of seed weight in
soybean, for example, prediction accuracy was sensitive to changes in TP size, which may have led to
changes of relatedness between training and validation sets [21]. Lorenzana and Bernardo observed
that, in an Arabidopsis family, prediction accuracy improved by 0.10 when TP size increased from 48
to 96, by an additional 0.07 when TP size was increased to 192 and by a further 0.05 with a TP size of
332 [37]. Here GP accuracy >0.9 was observed when the TP size reached 185 which slightly increased
to 0.921 with a TP size of 314 (Figure 4). Large TPs provide the statistical power needed to improve
prediction accuracy [38], especially for traits with low heritability [34,39]. When TP size is sufficiently
large, even low heritability traits can be accurately predicted [28,40], including the low heritability PS
studied therein. Diversity of the population also affect prediction accuracy [21,29,34,41–43]. A diverse
TP may contain more QTL associated with selective traits and increase the correlation of the TP with
validation populations (VPs) or test/prediction populations (PPs), resulting in a subsequent increase in
prediction accuracy. Although some breeding lines [11,30,44] and bi-parental derived lines [25,41,45,46]
are used for TPs, many studies have opted for a more diverse TP germplasm [29,41–43]. Our core
collection TP preserves the variation present in the world collection of 3378 accessions maintained
by Plant Gene Resources of Canada (PGRC) and represents a broad range of geographical origins,
different improvement statuses (landraces, historical and modern cultivars, breeding lines) and two
morphotypes (linseed and fibre types) [1,3]. This collection also contains most parents of modern
Canadian flax cultivars [25]. Therefore, diverse phenotypic and genetic variabilities within the flax
core collection render it useful as a resource for breeding and as a TP for GP model construction.

A variety of statistical methods have been proposed to estimate marker effects for GP. In general,
GP methods are based on additive genetic models and their accuracies may vary depending on genetic
architecture of target traits. According to the assumptions for statistical distributions of the marker
effects, two groups of GP models have been proposed. The first group of models, such as RR-BLUP,
genomic BLUP (GBLUP) and BRR, assume that all markers have some effects on the target trait and the
same variance, that is, all makers contribute to the variation of the trait. The second group of models,
including BayesA, BayesB, BayesC and BL, assume a specific variance for each marker. Some of these
models such as BayesB, BayesC and BL, also allow variable (marker) selection when some of markers
have very small or no effects. Based on these assumptions, the first group of models are expected to
be useful for complex quantitative traits that have a polygenic architecture, while the second group
of models are suitable for traits that controlled by a small number of genes or QTL with large effects.
Several studies have shown better performance of BayesB for traits controlled by a few of genes with
large effect [47–50]. Some simulation studies have also shown that BayesB outperformed GBLUP that is
equivalent to RR-BLUP, when the number of QTL underlying a trait are small [47,51]. However, BayesB,
RR-BLUP and other models had a similar prediction accuracy under the infinitesimal model [51] or for
some complex traits [19,49]. In this study, no difference among RR-BLUP, BRR and BL was observed
(Figure S1), primarily because flax pasmo resistance is a complex and polygenic trait and most of QTL
associated with it had similar and small effects (Figure 2). RR-BLUP is most commonly used because
of some superior features [11,14,42,52–54]. For example, RR-BLUP successfully recognized complex
patterns with additive effects and delivered good GP in wheat disease resistance [55]. RR-BLUP also
has a clear-cut computational efficiency compared with any other statistical models [11,54,56,57]. Here
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the RR-BLUP model with the 500 QTL markers and the 5-year mean PS produced high prediction
accuracy and is therefore recommended for the prediction of PR in flax.

3.4. Pasmo Severity Prediction Using Number of Positive-Effect QTL

A highly significant correlation (r = 0.86 or R2 = 0.73) between NPQTL and PS (Figure 5b) provides
an alternative approach to directly predict PS phenotypes. The prediction accuracy using the linear
regression equation of PS to NPQTL was inferior to the GP model (Figure 5) because the QTL effects
were variable (Figure 2), whereas the linear regression equation considered only the number of QTL
but not their individual effects. However, NPQTL is advantageous because it can be readily calculated
based on the genotyping by sequencing (GBS) or other genotyping data for the QTL markers [14]
and the prediction accuracy based on the NPQTL is comparable to most GP models. Thus, the
NPQTL-based prediction equation provides a simple alternative model for PS prediction.

3.5. Breeding Application of Genomic Prediction

Plant breeding is to pyramid favourite alleles from distinct parents using different approaches
such as conventional crossing, mutation or transgenic methods to develop new varieties. However,
most traits of agronomic importance are genetically controlled by polygenes and have a low heritability
such as seed yield and horizontal resistance to diseases. Conventional phenotype selection for these
traits is usually inefficient because assessment for them must be performed in multiple environments
to obtain breeding values of individuals and thus it is very costly, time consuming and inaccurate;
and also because of difficulty of evaluation in fields, greenhouses or laboratories. GS or GP provides
an efficient approach to increase selection efficiency by not only increasing selection accuracy but
also shortening breeding cycles [58]. In this study, we demonstrate a good example of GP for flax
pasmo resistance that is environment-sensitive, costly and difficult for field evaluation. As high as
0.92 of prediction accuracy was obtained for PR, corresponding to 1.84 of relative efficiency over
the direct phenotypic selection (Table 3), demonstrating efficiency of GP for low heritability traits.
Because the training population underlying the GP models is a diverse germplasm collection that
contains more than 90 breeding lines and 245 varieties from different breeding programs [3], the GP
models developed in this study are expected to be used for germplasm evaluation, parent selection
and individual selection of segregation populations for PR.

4. Materials and Methods

4.1. Population

A total of 370 diverse flax accessions from the core collection [1] were used to evaluate different
GP models. This subset of the core collection collected from 38 countries in 12 geographic regions has
been used to identify the QTL associated with PS used in our PS models [4].

4.2. Pasmo Resistance Data

All flax accessions were assessed for PS in the same pasmo nursery from 2012 to 2016 at the
Morden Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Morden,
Manitoba, Canada [4]. A type-2 modified augmented design (MAD2) [59,60] was used for the field
trials [3]. Accessions were seeded during the second or third week of May every year. Approximately
200 g of pasmo-infested chopped straw from the previous growing season was spread between rows
as inoculum when plants were approximately 30-cm tall. A misting system was operated for 5 min
every half hour for 4 weeks, except on rainy days, to ensure conidia dispersal and disease infection
and development. Field assessments were conducted at the early (P1) and late flowering stages (P2,
7–10 days after P1), the green boll stage (P3, 7–10 days after P2) and the early brown boll stage (P4,
7–10 days after P3). In 2014 and 2015, only the first three field assessments were conducted because
early maturity of the plants did not allow for a fourth rating. The PS observed at green boll stage or
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maturity was used for GP as previously described [4]. PS was assessed on leaves and stems of all
plants in a single row plot using a 0–9 scale (0 = no sign of infection and 9 = > 90% leaf and stem
area infected) [4]. Six sets of PS, including five individual year datasets and the 5-year average, were
used for GP modelling. The function “chart.Correlation” of the R package PerformanceAnalytics
(v1.5.2, https://cran.r-project.org/web/packages/PerformanceAnalytics/index.html) was used to analyse
correlations between different PS datasets and draw histograms and scatter plots.

4.3. Genomic Data

A total of 258,873 SNPs were obtained from the 370 accessions after pruning by removing
redundant SNPs [4]. The missing data of SNPs (on average 14.13% of a missing data rate) were
imputed using Beagle v.4.2 with default parameters [61]. Our previous GWAS analyses of PS in flax
were conducted separately for combinations of the five individual year and the 5-year average datasets
with ten statistical methods [4]. The statistical methods for GWAS included three single locus models
(GLM [62], MLM [63] and GEMMA [64]) and seven multi-locus models (FarmCPU [65], mrMLM [66],
FASTmrEMMA [67], ISIS EM-BLASSO [68], pLARmEB [69], pKWmEB [70], FASTmrMLM [71]).
For GLM, MLM and FarmCPU, the first six principal components (PCs), accounting for 33.04%
of the total variation, were chosen as covariates to measure population structure, while Frappe
(http://med.stanford.edu/tanglab/software/frappe.html) was used to estimate the population structure
of the 370 accessions for other six multi-locus models. GEMMA does not require a Q matrix.
The threshold of significant associations for all three single-locus methods (GLM, MLM and GEMMA)
and the multi-locus method FarmCPU was determined by a critical p value (α = 0.05) subjected to
Bonferroni correction, that is, the corrected p value = 1.93 × 10−7 (0.05/258,873 SNPs), while a log of
odds (LOD) score of three was used to detect robust association signals for the remaining six multi-locus
models. The R package MVP (https://github.com/XiaoleiLiuBio/MVP) was used for GWAS analyses for
the GLM, MLM and FarmCPU, the GEMMA software (https://github.com/genetics-statistics/GEMMA)
for GEMMA and the R package mrMLM (https://cran.r-project.org/web/packages/mrMLM/index.html)
for the additional six multi-locus models. The details of GWAS analyses were described in Reference [4].
A total of 500 non-redundant QTL for PS were identified from 370 diverse flax accessions, including
134 QTL that statistically stable in all five years and 67 QTL with relatively stable and large effects [4].
These three QTL datasets (500 unique QTL, 134 statistically stable QTL and 67 stable and large-effect
QTL) were used for GP model construction. In addition, we performed Pearson’s χ2 test with Yate’s
continuity correction to detect all SNPs significantly associated with PS using a 10−5 probability level.
The three QTL sets and the genome-wide SNP set were used to construct the GP models. Thus, GP
models with the 24 combinations of the four marker sets and the six phenotypic datasets were built
and compared.

4.4. Genomic Prediction Models

Three statistical methods RR-BLUP [9,17,20], Bayesian LASSO (BL) [20,25,33] and Bayesian ridge
regression (BRR) [25,72] were used to build GP models for PS. These predictive models estimate
marker effects by modelling markers as random effects. No fixed effects were fitted in the models.
The statistical models and their computation procedures are described in detail elsewhere [40,73].
The R package rrBLUP [56] was used to fit the RR-BLUP model and the R package BLR [74] was
used to fit the BL and BRR models. The parameters used to fit BL and BRR were determined based
on suggestions of de los Campos et al. [74]. Broad-sense heritability (0.25) of PS estimated in the
population [3] was used. When preparing QTL marker data for model construction, the positive-effect
allele of the tag SNP of a QTL was coded ‘1’ and the alternative allele ‘−1’. Similarly for the SNP
marker set, the reference allele of an SNP was coded ‘1’ and the alternative allele ‘−1’. Missing data
were coded ‘0’. The EM algorithm implemented in the R package rrBLUP [56] was used to impute the
missing marker data because missing marker data were not allowed in the model construction.

https://cran.r-project.org/web/packages/PerformanceAnalytics/index.html
http://med.stanford.edu/tanglab/software/frappe.html
https://github.com/XiaoleiLiuBio/MVP
https://github.com/genetics-statistics/GEMMA
https://cran.r-project.org/web/packages/mrMLM/index.html
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4.5. Evaluation of Prediction Models

Two validation methods were used to evaluate prediction models generated from combinations of
statistical models, marker sets and PS datasets. The first method was a five-fold random cross-validation.
The 370 flax accessions were randomly partitioned into five subsets. For a given partition, each subset
was in turn used as validation or test data and the remaining four subsets made the training dataset.
This partitioning was repeated 500 times. In this manner, a total of 2500 training data sets were created
to build GP models and estimate marker effects. These were used to predict the breeding values of the
individuals in the corresponding 2500 test/validation datasets. The accuracy of the genomic predictions
(r) was defined by the Pearson’s simple correlation coefficient between the genetic values predicted by
GP and the observed phenotypic values. The relative efficiency of genomic prediction over phenotypic
selection (RE) was estimated using |r|/H2 [26,27], where H2 refers to the broad-sense heritability of PS,
estimated to be 0.25 [3]. RE was used as a criterion to compare the response to one cycle of genome-wide
selection versus one cycle of phenotypic selection. Means of r and RE of the 500 samplings for each
marker set, GP model and PS dataset were used to describe the prediction accuracy of GP and the
efficiency of one GP cycle relative to one phenotypic selection cycle, respectively. To compare different
marker and PS datasets, a joint analysis of variance with Tukey multiple pairwise-comparisons was
performed to test the statistical significance of differences in r and RE using R. As a case study, we
randomly selected 20% of all 370 accessions as validation dataset and used the remaining 277 accessions
as training dataset to build a GP model for genomic prediction of unknown germplasm.

The second cross-validation approach involved comparisons across different PS datasets, that is,
each of the six complete PS phenotypic datasets were used as training datasets to build GP models that
were applied to itself and to the other five phenotypic datasets. The same set of markers for all 370
accessions was used for training and validation. This method tests the relevance of models built based
on single year phenotypic data to predict phenotypes measured in different years.

4.6. Phenotypic Variation Explained by Markers

The phenotypic variation explained by all markers in various marker sets, denoted h2
SNP, was

estimated for all PS datasets based on the mixed linear model [75] implemented in the GCTA
software [76]. The detailed calculation is described in Reference [77].

5. Conclusions

Using a diverse worldwide flax core collection of 370 accessions as a training and test population
with 500 QTL identified by GWAS, the 5-year average PS data and the RR-BLUP statistical model, we
developed a highly effective GP model with a prediction accuracy as high as 0.92 for pasmo, a low
heritability and high inheritance complexity trait. This is the highest reported accuracy value of all GP
models for plant disease resistance traits and comparable with previously published results. As an
alternative, we developed a linear regression prediction model based on NPQTL that also produced
a high prediction accuracy of 0.86. The GP model and the NPQTL-based regression equation were
validated and deemed to be applicable to the evaluation of flax germplasm including parent selection
for PR. The use of all potential QTL associated with a target trait would be beneficial because the
exclusion of a large proportion of unrelated markers would facilitate the construction of highly accurate
GP models.
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Abbreviations

ANOVA Analysis of variance
BL Bayesian LASSO
BRR Bayesian ridge regression
DON Deoxynivalenol
FHB Fusarium head blight
G × E Genotype by environment interaction
GBS Genotyping by sequencing
GEBV Genomic estimated breeding value
GP Genomic prediction
GS Genomic selection
GWAS Genome-wide association study
MARS Marker-assisted recurrent selection
MAS Marker-assisted selection
NPQTL Number of QTL with positive-effect alleles
PGRC Plant Gene Resources of Canada
PP Test/prediction population
PR Pasmo resistance
PS Pasmo severity
QTL Quantitative trait locus/loci
RE Relative efficiency
RR-BLUP Ridge regression best linear unbiased prediction
SNPs Single nucleotide polymorphisms
TP Training population
VP Validation population
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