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ABSTRACT

RNA translation to protein is paramount to creating life, yet RNA and protein correlations vary widely across tissues, cells, and species. To
investigate these perplexing results, we utilize a time-series fixation method that combines static stimulation and a programmable formaldehyde per-
fusion to map pseudo-Signaling with Omics signatures (pSigOmics) of single-cell data from hundreds of thousands of cells. Using the widely stud-
ied nuclear factor kappa B (NFjB) mammalian signaling pathway in mouse fibroblasts, we discovered a novel asynchronous pseudotime regulation
(APR) between RNA and protein levels in the quintessential NFjB p65 protein using single molecule spatial imaging. Prototypical NFjB dynamics
are successfully confirmed by the rise and fall of NFjB response as well as A20 negative inhibitor activity by 90 min. The observed p65 translational
APR is evident in both statically sampled timepoints and dynamic response gradients from programmable formaldehyde fixation, which success-
fully creates continuous response measurements. Finally, we implement a graph neural network model capable of predicting APR cell subpopula-
tions from GAPDH RNA spatial expression, which is strongly correlated with p65 RNA signatures. Successful decision tree classifiers on Potential
of Heat-diffusion for Affinity-based Trajectory Embedding embeddings of our data, which illustrate partitions of APR cell subpopulations in latent
space, further confirm the APR patterns. Together, our data suggest an RNA-protein regulatory framework in which translation adapts to signaling
events and illuminates how immune signaling is timed across various cell subpopulations.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0227054

INTRODUCTION

Nuclear factor kappa B (NFjB) is a transcription factor signaling
pathway that is central to innate immune signaling in humans and
other mammals. Its activity has been implicated in cell differentiation,
fate, and apoptosis.1 While typically responsible for pro-inflammatory
activation, its dysregulation has been associated with cancers, rheuma-
toid arthritis, Alzheimer’s, autoimmune disorders, and others.1–4

Although its proteomic activity has been studied for decades, the role
of the transcriptome in the signaling pathway has not been examined.
The transcriptome has been known to play a larger role than sole
translation; the existence of non-coding and other RNAs in disease

pathology such as cancer has been acknowledged.5 In fact, RNA-pro-
tein correlations vary wildly across cells, tissues, and animals; it is
reported that some correlation figures only have 40% explanatory
power of their associated proteins.6 Disruptions of these processes
have been shown to engender cancer states.7 Therefore, investigating
translational regulation may reveal how RNAs and associated proteins
interact at the subcellular level, which likely plays a large role in signal-
ing mechanisms and disease pathologies.

For decades, NFjB has been an extensively studied signaling
pathway. Originally discovered in B cells, it has been found in almost
all cell types and affects a wide variety of other signaling pathways.8,9
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Earlier laboratory tools used blotting and other in vitro protein assays
to isolate interacting candidates. More elaborate in vivo mouse models
established the essential nature of NFjB and tied its role to the skin,
skeleton, brain, and other disease pathologies. Then, the advancement
of tools such as single-cell live fluorescent imaging enabled real-time
measurements of dynamical NFjB responses and how a single signal-
ing pathway contains redundancy and modularity to control different
types of responses. Furthermore, bioinformatics techniques involving
machine learning and protein modeling have identified more roles of
different NFjB members, such as Ijj,10 to uncover more signaling
relationships at a higher throughput than in vivo models. Together,
these tools have provided a more comprehensive picture of NFjB sig-
naling and its importance in human health.

While pro-inflammatory mechanisms have been discovered,
NFjB negative inhibitors have also been examined to investigate how
signaling events lessen.11–13 A20 and IjBa proteins are prominent
players in inhibiting phosphorylation events to reduce inflammatory
effects.14 However, elucidating this negative feedback mechanism at
the spatial transcriptomic and proteomic levels has not been accom-
plished thus far. Such measurements would highlight translational
control of signaling events in space and time. In this study, we use A20
protein activity to confirm the negative inhibition of our NFjB
measurements.

Microfluidics, involving the continuous treatment and monitor-
ing of live cells, offers a significant advantage over in vitro and in vivo
counterparts due to its ability to measure cell dynamics in real time.
For example, NFjB oscillatory responses can be recorded and watched
in live images with a microfluidic chip.15,16 Using live reporter pro-
teins, including p65, and a fluorescent imaging system, researchers
were able to measure different NFjB responses, in terms of duration
and amplitude, in single cells to the perfusion of stimulating media
with controlled valves.16,17 Continuous imaging provided real-time
video of oscillatory response in individual cells. It was recently discov-
ered that fibroblasts exhibit different NFjB responses at the single-cell
level based on not only the stimulus concentration but also the posi-
tion and distance to the stimulus source.16 This could mimic condi-
tions where a macrophage secretes stimulating cytokines from a point
source infection and may reveal how different cells can respond in
similar ways to the same cytokine stimulus. While microfluidics pro-
vides precise control over stimulus, concentration, distance, and high-
resolution, single-cell proteomic readouts, these setups are limited to 3
fluorescent proteins at a time and only monitor a single field of view
(around 20–30 cells). Additionally, such methods cannot be multiplex
labeled to highlight subcellular, spatial biomolecular patterns. Thus,
such methods are unfavorable for studying spatial variability and
translational patterns directly.

Single-cell RNA sequencing (scRNA-seq) has complemented live
cell studies by profiling whole cell transcriptomes at various timepoints
(“sample collection times”) and positions within tissues or cells.16 Such
methods have revealed pro-inflammatory gene hotspots and their tim-
ing in NFjB signaling. For example, A20 genes were localized closely
with the stimulus, whereas RANTES, Casp4, and other genes persisted
at high levels regardless of distance to stimulus.16 Another study of
NFjB scRNA-seq and live cell imaging has segregated heterogeneous
subpopulations based on distinct initial responses and transcriptome.18

With increasing NFjB stimulation, transcriptional analyses revealed
the upregulation of NFjB inhibitors including IjBa, A20, and IjBz.

Finally, end point RNA fluorescence in situ hybridization (FISH) con-
firmed a few of these transcriptional patterns.

Although spatial biology studies have revealed specific RNA and
protein molecules that play important roles,19 they (1) cannot discern
the temporal axis necessary to study translational dynamics or (2) are
limited to very few cells at a time. In situ dynamical studies have only
recently emerged and can provide potential single-cell differences in
this signaling response. Meanwhile, recent advances in single molecule
detection assays, such as fluorescence in situ hybridization (FISH),
sequential FISH (seqFISHþ), and multiplex immunofluorescence,
have enabled the profiling of up to thousands of molecules across
thousands of cells.20–24 Thus, live cell NFjB studies to date have lacked
significant cell throughput and continuous spatial pattern measure-
ments of single biomolecules (e.g., RNA). Live cells present difficulties
in spatial multiplexing to capture their transient, dynamic responses.
However, fixed animal tissues or cells permit multiplexing and more
complete assays but only provide a snapshot in time.

Hence, to overcome the cell throughput limitations of live cell
imaging and spatial tagging of single molecules, we propose program-
mable fixation with seqFISH. We present our timed and continuous
fixation method, pSigOmics, which involves concepts from scRNA
sequencing collected at different sample times (termed sample collec-
tion time). Previous work in this arena has suggested that reconstruct-
ing continuous responses from discrete sample collections is
possible.25 To increase throughput, we implemented a timed fixation
method that stimulated batches of 01-3T3 mouse fibroblasts after vari-
ous stimulation times followed by fixation. Each batch was visualized
along a pseudotime trajectory in which different cells from each time-
point were organized along an artificial time axis according to known
stimulation patterns. Cells from discrete timepoints could also be
concatenated along the pseudotime axis by normalized median p65
protein behavior.

With this high cell throughput data, we discovered strong asyn-
chronous pseudotime regulation (APR) between RNA and protein lev-
els in single cells over time. We then trained a graphneural network
(GNN) model to predict APR cell types from subcellular, spatial RNA
locations. Finally, we investigated how well these APR subpopulations
partitioned in latent space with Potential of Heat-diffusion for
Affinity-based Trajectory Embedding (PHATE).26 Together, our
results demonstrate a translational oscillatory lag and illustrate a new
way to study single-cell signaling in high cell throughput with multi-
plexed methods.

RESULTS
Programmable fixation enables high cell throughput
and multiplex advantages over live imaging

Compared to live cell imaging, pSigOmics measures multiplexed
RNA and protein detection in up to 8965 cells per timepoint and
89665 cells in total that were fixed after various stimulation times.
Similar to sample collection timepoints in scRNA sequencing,
pSigOmics utilizes replicates of cells in different wells, stimulates them
in various time intervals, and fixes the samples accordingly after stimu-
lation (Fig. 1). By fixing samples collected from different wells, multi-
plex spatial omics profiled p65 RNA, GAPDH RNA, and p65 protein
in thousands of single cells per timepoint [Fig. 1(a)].16 Additionally, to
create a more continuous stimulant response gradient, we slowly per-
fused 4% paraformaldehyde (PFA) at 25ll/min through six
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FIG. 1. The pSigOmics pipeline uses (a) static and (b) programmable fixation methods to uncover spatiotemporal dynamics. (a) Mouse 01-3T3 fibroblasts were grown to conflu-
ency in a T-75 flask and seeded on poly lysine-coated glass coverslips in six-well plates at constant density. Wells were stimulated with TNFa (10 ng/ml), IL1b (1 ng/ml), or
DMSO control, and fixed after certain time intervals per well. Fixed samples were then multiplexed with protein and single molecule RNA detection using seqFISH and imaged
on Nikon widefield microscopes. (b) Programmable, dynamic stimulation using helix perfusion. Wells were stimulated with feeding media containing 10 ng/ml TNFa across six
microfluidic channels and three timepoints: 45, 25, and 0 min. Then, six microfluidic channels were arranged in a helix pattern and stimulated with 4% paraformaldehyde fixative
(25 ll/min) to create a continuous gradient of cell response, with more nonresponding cells occurring earlier and more fully responding cells occurring later.
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microchannels containing statically stimulated cells from 0 to 45min
microchannels. A detailed comparison of static and programmable
experimental parameters can be found in Table S1. Sequential imaging
of p65 protein reporters, p65 RNA, and finally GAPDH RNA allowed
the detection of RNA and protein signatures in the same single cells.
The subsequent analysis will focus on the interrelation of p65 protein
and p65 RNA while the GAPDH RNA was used as a positive control
to confirm cell viability and robust single molecule mRNA detection
capabilities in this multiplexed data acquisition pipeline. Finally, A20
protein signatures were used to measure negative NFjB inhibitor
activity. Our complete multiplex target panel can be found in Fig. 2.

As time progressed from 0 to 105min, the p65 protein transcrip-
tion factor appeared to translocate from the cytosol to the nucleus
more extensively under cytokine treatment than unstimulated base-
lines, thus agreeing well with expected NFjB behavior (Fig. 3). Note
that p65-reporter signals were only imaged after fixation with formal-
dehyde (no permeabilization) for all samples to prevent reporter leak-
ing (Fig. 2). To ensure proper single-cell characterization, we
compared segmented 3D cell masks using (1) GAPDH RNA or (2)
segmentation antibodies including Vim, aSMA, Hsp47, and S100A4
[Figs. S1(a) and S1(b)]. Both masks were comparable but the segmen-
tation antibodies, which highlight the fibroblast membranes, generated
finer cytosolic edges, and thus we chose the segmentation antibody
masks for further analyses. Additionally, we verified that p65 and
GAPDH RNA dot counting was accurate enough to profile single cells
[Fig. S1(c)]. Our static fixation method preserved the typical p65 trans-
location from the nucleus to cytosol akin to live imaging of p65 report-
ers (Fig. 3). Interestingly, as an important advancement of this
pSigOmics platform, the spatial distribution of RNA transcripts for
p65 exhibited heterogeneity across cytoplasmic and nuclear volumes
of individual cells. Thus, the density and spatial co-localization of p65
RNA and proteins need to be investigated to dissect how p65 RNA
encoding regulates corresponding proteins as a function of time, which
we observe to be mostly APR.

pSigOmics recapitulates live cell signaling dynamics

To compare pSigOmics cell response to known live cell behavior,
we visualized p65 protein subcellular localization over discrete time-
series data. We first observed cytokine-stimulated subtypes in which
p65 protein expresses the highest in the nucleus, nuclear membrane,
or cytosol [Fig. 4(a)]. Thus, we categorized cells by the highest median
p65 protein signal in each subcellular region. Nonresponding cells had
the highest p65 protein signal in the cytosol, partially responding cells
had the highest signal in the nuclear membrane, and fully responding
cells had the highest protein signal in the nucleus. Additionally, we
observed some cells expressing high p65 protein and low p65 RNA,
while others express low p65 protein and high p65 RNA. To explore
this interesting phenomenon, we gathered all p65 protein and p65
RNA content in each cell’s cytosol, nuclear membrane, and nucleus
regions to project all 45 000þ cells in latent space on a uniform mani-
fold and projection (UMAP) representation [Fig. 4(b)]. Timepoint col-
oring showed a gradient starting from the top right and moving
toward the bottom left. Stimulation classifications were also colored,
showing a gradual transition from nonresponding cells toward the left
to partially and fully responding cells toward the right. Meanwhile, to
quantify p65 RNA and p65 protein APR, cells were colored by their
whole cell p65 protein to p65 RNA difference [Fig. 4(b), bottom]. This

difference calculation measures each single cell’s translational “offset”
to gauge the population’s p65 translational variability. Smaller p65
protein to p65 RNA difference values highlighted cells with low pro-
tein and high RNA while larger ratio values highlighted cells with high
protein and low RNA patterns. Similarly, p65 protein to RNA ratios
can be observed in Fig. S2(a). Single-cell examples of both these APR
patterns were visualized to confirm this quantification [Fig. 4(b),
bottom]. Additional principal component analysis (PCA) latent space
embeddings can be observed in Fig. S3. PCA plots show a slight gradi-
ent pattern from top left to bottom right in terms of stimulation time,
subtypes, and p65 RNA-protein difference [Fig. S3(a)]. The scree plot
indicates that adding principal components only slightly increases
the explained variance ratio of the data because PC1 is dominant
[Fig. S3(a)]. When investigating which features contribute most to
PC1, we discovered that p65 protein, especially in the nuclear mem-
brane and cytosolic regions, dominated over the other features, which
is logical because p65 protein translocation across the nuclear mem-
brane differentiates the stimulating cell subtypes [Fig. S3(b)]. Overall,
single-cell APR patterns are evident in most latent space embeddings
but are most prominent in UMAP.

Stimulation subtypes aided in quantifying signaling dynamics
[Fig. S4(a)]. Over time, for fully responding cells, there are fewer
partially responding cells and more fully responding cells. The
median p65 protein signal in each cell region also shows a
stronger protein signal in the nuclear membrane and nucleus over
time compared to the cytosol [Fig. S4(a)]. Additionally, the
NFjB response, computed by the ratio of median nucleus to cyto-
solic p65 protein, appears to peak and fall more than the unstimu-
lated baseline over time in concordance with previous studies
[Figs. S4(b) and S5].16 To support the consistency of these patterns,
we stimulated the same 01-3T3 cells on coverslips for 0–50 min in
10-min intervals and repeated this experiment for six batches. We
mixed various static timepoints from different batches in silico to
ascertain the same resulting NFjB response pattern (Fig. S6).
Furthermore, we considered the NFjB inhibition activity via A20
deubiquitinase expression, which appeared to be more active and
colocalized with p65 Protein at TNFa 90 min (Fig. S7). Thus, we
conclude that NFjB activity successfully peaks and terminates dur-
ing the static time course. Finally, we investigated the p65 RNA sig-
naling relationship with metabolic signatures, e.g., GAPDH RNA
[Fig. S4(c)]. p65 RNA and GAPDH RNA dots exhibited a strong
positive association [Fig. S4(c), top row]. Simultaneously, p65 and
GAPDH RNA demonstrated similar associations, thus confirming
the strong link between NFjB signaling and glycolytic metabolism.
To further support this relationship, we implemented a GNN on
all multiplexed signals excluding p65 RNA and protein to predict
each cell’s APR subpopulation label—either low p65 protein and
high RNA or high protein and low RNA [Figs. S8(a) and 8(b)].
Generally, GNN classifiers outperformed machine learning classi-
fiers for TNFa, IL1b, and unstimulated baseline cells [Fig. S8(c),
Table S2]. Furthermore, GNN classifiers solely trained on GAPDH
RNA still successfully discriminated both APR subpopulation clas-
ses, suggesting that metabolism is driving this signaling difference
among cells [Fig. S8(d), Table S3]. PHATE ordering features also
demonstrated successful APR classification with a decision tree
classifier, thus highlighting the behavioral differences of these cell
subpopulations (Fig. S9, Videos S1–S4).26
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FIG. 2. Complete multiplex panel of mRNA and protein targets for static and programmable experiments using seqFISH and multiplex immunofluorescence. (a) Multiplex RNA and
proteins were detected with seqFISH and multiplex immunofluorescence, respectively, over five cycles of iterative staining, imaging, and bleaching. Cycle 1 consisted of transfected
H2B and p65 protein reporters on GFP and RFP, respectively. After imaging, cells were permeabilized and labeled with p65 RNA using seqFISH. Following imaging, DNAse removed
the fluorescent p65 RNA signal. Next, GAPDH RNA was labeled for cycle 3. After imaging and another DNAse signal removal, A20 Ab was labeled with multiplex immunofluores-
cence. Finally, after bleaching out this Ab signal with LiBH4, segmentation Abs including Vim, aSMA, Hsp47, and S100A4 were labeled and imaged for the final cycle 5. (b) A visual
example of cells from statically stimulated IL1b treatment for 0 min. All five multiplex samples are shown: cycle 1, H2B (purple) and p65 Protein (yellow); cycle 2 p65 RNA (magenta);
cycle 3, GAPDH RNA (green); cycle 4, A20 Ab (cyan); cycle 5, Vim/aSMA, Hsp47, and S100A4 Abs (white). DAPI (blue) was used to counterstain the nucleus.

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 046108 (2024); doi: 10.1063/5.0227054 8, 046108-5

VC Author(s) 2024

pubs.aip.org/aip/apb


FIG. 3. Multiplexed, single-cell spatiotemporal visualizations from static stimulations. Representative, multiplexed images from different timepoints in stimulated wells. Gradually,
the p65 protein translocates from the cytosol to the nucleus (counterstained with blue DAPI). Cells respond in similar p65 patterns to TNFa and IL1b while control cells remain
cytosolically active. p65 RNA (magenta) indicates the translational level in each single cell. Each timepoint contained 1000þ cells. GAPDH RNA (green) served as a positive
control for RNA labeling.
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FIG. 4. pSigOmics reveals heterogeneous cell response and p65 translational APR. (a) p65 protein (yellow) stimulated subtypes observed across all timepoints. Stimulation
classes are based on the highest median p65 protein signal in each subcellular region. Canonical “nonresponding” cells (p65 protein cytosolic active) are shown in the first row.
The bottom row illustrates the canonical “fully responding” subtype in which the p65 protein is most active in the nucleus. “Partially responding” cells, in the middle row, possess
the majority of p65 protein in the nuclear membrane region. Representative, single-cell examples are shown on the right side with labeled scale bars on the bottom right. (b)
p65 RNA-protein APR patterns. All cells were colored by their corresponding fixed timepoint on the UMAP embedding (top left). Gradual time pattern starts at the top right and
shifts to the bottom left as cells are stimulated. The same UMAP embedding is colored by cell stimulation subtypes (top right). Most fully responding cells appear on the right
and central sides. Meanwhile, nonresponding cells lie on the left side. Finally, the UMAP embedding was also colored by the whole cell protein RNA difference (bottom). Lower
values (blue) indicate low protein and high RNA-containing cells (visualized on the left) while higher values (red) indicate high protein and low RNA-containing cells (visualized
on the right). GAPDH RNA (green) was used as a positive control.
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pSigOmics reveals RNA-protein APR across time

To further elucidate if all cells exhibited p65 RNA and p65
protein APR, median p65 protein and sum p65 RNA signals were plot-
ted by cell region for TNFa and IL1b stimulations compared to unsti-
mulated baselines (Fig. 5). Strikingly, all cell regions and whole cell
patterns exhibited an oscillatory phase lag between p65 protein and
p65 RNA. Compared to the unstimulated baseline, cytokine stimula-
tions appeared to amplify the p65 protein to larger oscillations, which
is expected of transient, pro-inflammatory signaling behavior like
NFjB. This significant p65 protein activity seems to slightly delay p65
RNA upregulation in the cytosol, nuclear membrane, and whole cell
patterns. The larger, later p65 RNA peak may be attributable to the
depletion of higher p65 protein activity and how cells maintain transla-
tional balance during this signaling event. Unstimulated baseline cells
exhibit smaller amplitude p65 RNA-protein APR over time. When
ordering cells from various 0–50min timepoints along the same pseu-
dotime axis, we still observed lags in single-cell p65 RNA and protein
levels (Fig. S10). We applied the same pseudotime ordering to cells
stimulated for 0–105 min and discovered similar peak-to-peak p65
RNA and protein lags (Fig. S11). When each timepoint is examined in
isolation, the least squares linear regression between p65 RNA and
protein levels appears to vary (Fig. S12). However, note that this analy-
sis only captures APR within each timepoint rather than across
timepoints.

From this general APR trend, we grouped cells based on APR
patterns by grouping the whole cell p65 protein to p65 RNA ratio by
quartiles [Fig. 6(a)]. Cells in the lower quartile were classified as low
p65 protein and high p65 RNA while cells in the upper quartile were
considered high p65 protein and low p65 RNA. The interquartile range
was defined to consist of medium p65 RNA and medium p65 protein
cells. Finally, cells from each category were counted and segregated for
later analysis.

RNA protein APR vary by subpopulation

To investigate if subpopulations also exhibited APR behavior, we
separated p65 RNA and p65 protein behavior by subpopulation
[Fig. 6(b)]. Cells in the bottom quartile were low p65 protein and high
p65 RNA (22 415 cells) while cells in the top quartile were high p65
protein and low p65 RNA (22 417 cells). Finally, cells in the interquar-
tile range were considered medium p65 protein and medium p65-
(44 833 cells). This partition is not unique; other partitions of this con-
tinuous cell’s RNA and protein distribution are possible. Large changes
in p65 protein appear to precede large changes in p65 RNA, thus
implying that protein signaling activity is upregulating its downstream
translation. Representative, stimulated cells are shown on the right of
Fig. 6(b). The association of cell-stimulated subtypes with APR subpo-
pulations is shown in Fig. S13, suggesting more nonresponding and
partially responding cells in the medium RNA and medium protein
group at earlier and later timepoints while more fully responding and
high/low p65 RNA and protein groups at the middle 15–60min
timepoints.

Programmable fixation in helical pattern creates a
continuous gradient of cell response

Beyond our static studies, we aimed to create a more dynamic
continuum of cell response via perfusion. Briefly, we statically

stimulated 6 microchannels containing cells in 0, 25, and 45 min stati-
cally stimulated TNFa (10 ng/ml) in duplicate: A0, B0, C25, D25, E45,
and F45 (Fig. 7). Gradually, from static 0 to 45 min, the p65 protein
translocates from the cytosol (0 min start) to the nucleus (45 min start)
in Fig. 7(a). The exact static, perfusion, and fixation time for the 6
microchannels is shown in Fig. 7(b) in the top barplot. At 25 ll/min of
4% PFA perfusion, the fixation buffer traversed a single microchannel
in 6 and 17 min between adjacent microchannels [Fig. 7(b), left sche-
matic]. Quantitatively, the NFjB response also exhibits a gradual
increase over time [Fig. 7(b), bottom boxplot]. In total, we multiplexed
4521 cells for A0, 2605 cells for B0, 2963 cells for C25, 2911 cells
for D25, 4266 for E45, and 1998 for F45. Interestingly, microchannels
A0, C25, D25, and E45 exhibit smaller, oscillatory fluctuations in
time, thus capturing the shuttling of the p65 protein reporter between
cytosol and nucleus. Thus, the pSigOmics programmable fixation
experiment successfully creates a more continuous gradient of
NFjB response. Compared to traditional live cell imaging, our pro-
grammable fixation method possesses certain advantages such as
multiplexing ability, higher temporal resolution, and higher cell
throughput (Table S4).

The programmable experiment also highlighted p65 RNA and
protein APR differences as observed in the static experiments. The
classical NFjB response gradually increases over the elapsed time
[Fig. 8(a)] and exhibits the single-cell p65 RNA and protein difference
across all microchannels and stimulation responding classes in latent
space [Fig. 8(a), tSNE plots]. During this continuous response gradient,
median p65 RNA and protein levels exhibit tighter co-regulation with
a finer p65 RNA and protein lag, especially within single microchan-
nels when plotted as a function of perfusion distance [Fig. 8(b)]. Thus,
programmable fixation highlights the finer gradient of p65 RNA and
protein APR.

Together, our pSigOmics results capture the spatial variance of
NFjB time-series signaling. We propose a biological mechanism in
which cytokines (TNFa, IL1b) bind to fibroblast receptors, initiate the
NFjB phosphorylation cascade, and engender APR translational con-
trol of p65 [Fig. 9(a)]. While numerous single-cell studies struggle to
correlate RNA and protein (or show a positive linear relationship), our
results highlight a fascinating APR of p65 RNA and protein in time.27

When considered in this context, there must be some downstream
inhibition of p65 RNA from its corresponding protein expression/
translocation. To support this hypothesis, we used our pSigOmics
method to (1) sample static timepoints and (2) perfuse fixative to cre-
ate a dynamic time gradient [Fig. 9(b)]. Both approaches reveal a strik-
ing APR p65 RNA to protein pattern [Fig. 9(c)], which may be
implicated in cyclic pro-inflammatory behavior and determine the effi-
cacy of timed drug interventions.

DISCUSSION

We have proposed and validated a high cell throughput method
of studying translational behavior in single cells in Fig. 1. By measuring
tens of thousands of cells, we have uncovered an inverse RNA-protein
APR pattern that was previously thought to be uncorrelated or
strongly correlated. This heterogeneous response is appropriate to the
native in situ fibroblast environment in which the host will need early
and late responders for wound healing and building connective tissue.

One key consideration for the programmable fixation approach
is the concentration and types of chemical fixatives. In the current
demonstration, the pSigOmics approach was implemented on cells
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FIG. 5. p65 RNA and protein APR across time. (a) Median, single-cell p65 protein (blue, left axis) and p65 RNA (green, right axis) over time are represented as scatter dots for
TNFa stimulated cells. Stimulated cells (solid line) exhibit a larger amplitude of APR than unstimulated baseline cells (dashed line). Both curves were interpolated with cubic
splines with error bars around each timepoint. Each graph shows different cell regions (cytosol, nuclear membrane, nucleus, and whole cell). (b) Median, single-cell p65 protein
(blue, left axis) and p65 RNA (green, right axis) over time are represented as scatter dots for IL1b stimulated cells. Stimulated cells (solid line) exhibit a larger amplitude of
APR than unstimulated baseline cells (dashed line). Both curves were interpolated with cubic splines with error bars around each timepoint. Each graph shows different cell
regions (cytosol, nuclear membrane, nucleus, and whole cell).

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 046108 (2024); doi: 10.1063/5.0227054 8, 046108-9

VC Author(s) 2024

pubs.aip.org/aip/apb


FIG. 6. APR cell subpopulations show distinct RNA and protein co-regulation. (a) Dividing all cells into subpopulations based on the APR pattern. The histogram shows the whole
cell p65 protein to RNA ratio for all cells divided into quartiles. The bottom quartile cells were designated as low protein and high RNA, the interquartile range as medium protein
and medium RNA, and the upper quartile as high protein and low RNA. Vertical magenta lines denote the 25th and 75th percentiles, or the boundaries between quartiles used for
classifying cells. (b) Median p65 RNA (green, right axis) and protein (blue, left axis) levels per cell in the (top row) low protein and high RNA, (middle row) medium protein and
medium RNA, and (bottom row) high protein and low RNA subpopulations. Graphs are separated by cell region and include whole cell measurements. Example cells are shown on
the right. The APR score of each graph is shown in bold font on the bottom left. Smaller scores denote higher APR levels. GAPDH RNA (green) provides a positive control.
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FIG. 7. Programmable fixation experiment generates a continuous gradient of stimulated cell response across time. (a) Helix perfusion setup with six microfluidic chips contain-
ing fibroblasts. Chips are statically stimulated at 37 C before being perfused in a helical arrangement with 4% paraformaldehyde fixative at 25 ll/min. Earlier chips are fixed at
earlier timepoints while the latter chips are fixed later, thus giving them more time to stimulate while the fixative reaches them. The faded phenol red color indicates the perfu-
sion path. The waste beaker to collect the solution at the end is shown at the bottom. Visual cell representations from each static microfluidic chip are shown on the sides. (b)
The left diagram indicates the simplified helical perfusion experiment with six microfluidic chips. At 25 ll/min of paraformaldehyde perfusion, it took 6 min to completely pass
through a single chip and 17 min to pass between chips. The top right plot shows fixation time, and conversely stimulation time, for each chip for 37 C stimulation (orange),
20 C stimulation, (blue), and finally 20 C fixation (gray). The bottom right boxplot shows the distribution of NFjB response, equivalent to p65 protein nuclear to cytosolic ratio,
for each chip from perfusion start to end (left to right within each group). Small, fluctuating oscillations are observed within microchannels A0, C25, D25, and E45.
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FIG. 8. Single-cell gradient response in programmable fixation helix experiment. (a) Classical NFjB dynamics across six stimulated microchannel gradients. Latent space
embeddings show single cells colored by microchannel (TimeStamp), p65 protein–RNA translational difference (P-R), and stimulation response. (b) p65 RNA-protein APR
across six microchannels as shown by the total elapsed stimulation/perfusion time on the x-axis [from Fig. 6(b)]. Each plot shows the median p65 RNA (green) and p65 Protein
(blue) expression per cell separated by subcellular region.
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FIG. 9. Proposed biological model of translational regulation in NFjB signaling. (a) Proposed mechanism of APR activity in NFjB signaling. Established pro-inflammatory sig-
naling events are triggered by secretion of cytokines such as TNFa and IL1B cytokines, which are received by fibroblast receptors, thus triggering a phosphorylation cascade
that translocates the NFjB transcription factor, typically p65 or p50, to the nucleus to activate transcription. We hypothesize a type of negative inhibitory feedback between p65
RNA and protein oscillating in time as revealed by pSigOmics. (b) pSigOmics reveals APR translational patterns via static fixation sampling (left) and perfusive, programmable
fixation (right). Although the static method captures hundreds of thousands of cells in each timepoint, dynamic, programmable methods improve the temporal resolution by cre-
ating a gradient of stimulation response. (c) Proposed APR subpopulations of fibroblast cells when NFjB stimulated. Cells are (1) p65 low protein (yellow) and high RNA
(magenta), (2) medium protein and medium RNA, or (3) high protein and low RNA.
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fixed with 4% formaldehyde. HCR RNA FISH protocols yield better
results with 4% fixation and thus RNA counts are more reliable. In
separate static experiments from 0 to 50 min, three batches were fixed
with 1.6% formaldehyde, and another 3 were fixed with 4% formalde-
hyde. The combined data yielded consistent NFjB results (Fig. S6).
The pSigOmics programmable fixation method could easily consider
other fixatives such as methanol, glutaraldehyde, or acetone. When
using the same fixative across different batches, we expect comparable
results to the ones presented here provided each batch is treated with
the same fixative.

The presented pSigOmics could impact the studies of human
inflammatory responses that are relevant to many diseases.
Therapeutic dose concentrations and timing are difficult to precisely
tune in to different patients. Furthermore, the translational timing of
inflammatory response is not well understood. With pSigOmics, we
revealed that translational expression behaves in an oscillatory, APR
RNA-protein relationship in response to external cytokine stimulation.
Hence, this aspect of immune stimulation could be analogous to dis-
ease and dosage timing in human patients. For example, the delayed
timing of types I and III interferon activity in controlling epithelial cell
infection rate has been implicated in SARS-CoV-2.27 Therefore,
pSigOmics robustly illustrates how immune responses vary in space
and time in high cell throughput, which opens the door to uncovering
signaling dynamics in other disease states.

Traditional cell signaling studies have involved in vitro cell altera-
tions, in vivo animal models, or live cell imaging. These methods typi-
cally lack throughput (limited to a few tens of cells) or resolution
(subcellular behavior is difficult or impossible to measure). Our pre-
sented pSigOmics method is a scalable, high cell throughput method
that utilizes timed fixation of fully responding cells that can be spatially
multiplexed. pSigOmics samples both static timepoints and a continu-
ous gradient of cell responses via programmable fixation. Strikingly,
when applied to cytokine-stimulated NFjB fibroblasts, pSigOmics
revealed RNA and protein APR over time, which is contrary to con-
ventional wisdom and published literature—certainly a new line of
translational regulation of how RNA and protein can even be asyn-
chronously regulated. To quantify this unexpected but observed APR,
we successfully predicted APR subpopulations with GNN training on
subcellular RNA spatial locations. Furthermore, we quantified p65
RNA and protein phase lag and used PHATE to segregate the APR
subpopulations in latent space. Therefore, pSigOmics enables a high
cell throughput study of single-cell signaling with programmable fixa-
tion and spatial multiplexing.

METHODS
Cultures

01-3T3 mouse fibroblasts containing H2B-GFP and p65 Protein
RFP reporters were obtained from Dr. Savas Tay at the University of
Chicago.16 The cell population was expanded on a T-75 flask until
70%–80% confluent.

Static cell stimulations

For static samples, two 12-well glass bottom plates were
coated with poly-L-lysine. Upon confluency, cells were seeded onto
coverslips, adhered overnight, and stimulated the following day
with 10 ng/ml of TNFa (BioTechne 410-MT), 1 ng/ml of IL1b
(BioTechne 401-ML-010), or DMSO unstimulated baseline (to the

same dilution as TNFa). Wells were stimulated with one of these
conditions for 0–105 min in 15-min intervals, inclusive. Finally,
cells were fixed with 4% formaldehyde.

A separate set of static samples was used for PHATE embeddings.
For these samples, 22 � 22mm2 glass coverslips were coated with
poly-L-lysine within six well plates. Cells were seeded onto coverslips,
adhered overnight, and stimulated the following day with 10 ng/ml of
TNFa (BioTechne 410-MT). At each 10-min interval from 0 to 50
min, inclusive, cells were fixed with 4% formaldehyde. In total, there
were six replicate batches of these cells from various passages. These
batches were used for computational batch mixing (Fig. S6) and
PHATE analyses (Fig. S9).

Programmable stimulations with fixative perfusion

For the six programmable microchannels in helix, cells were
seeded on Ibidi treated l-Slide I Luer with 0.6mm height (Ibidi
Cat. No. 80186). After overnight adherence, each pair of micro-
channels was stimulated for 0, 25, or 45 min at 37 �C with 10 ng/ml
TNFa in duplicate. We aimed to slowly perfuse formaldehyde
through them to create a continuous gradient of cell response. We
attempted many variations of formaldehyde perfusion setups, but
the formation of bubbles during flow presented difficulties. First,
we tried simple horizontal flow between microchannels, but bub-
bles would remain stuck inside the microchannel (Video S5). Next,
we turned each microchannel upside down at a tilt and perfused
each microchannel upward while arranging them in a helical pat-
tern [Fig. 7(a)]. To minimize bubble formation, we diluted the 4%
formaldehyde fixative with 0.1% Tween 20, which successfully pre-
vented bubbles (Video S6). Finally, to ensure Tween 20 did not
permeabilize or kill the cells before fixation, we repeated the helical
experiment with pure 4% formaldehyde excluding any Tween 20
(Video S7). Therefore, we chose this helical arrangement for the
final programmable design. An example of fluidic perfusion with
color dye at 20X experimental speed (0.5ml/min) can be found in
Video S8. Then, all six microchannels were flipped upside down
(to prevent bubbles) and arranged (from top to bottom) in 0–45
min. 4% formaldehyde was perfused through the system with a
programmable Harvard pump from top to bottom at 25 ll/min
(Fig. 7). Once the formaldehyde had passed through the entire sys-
tem, the microchannels were ready for spatial RNA and protein
profiling.

A complete description of experimental parameters for both static
and programmable experiments can be found in Table S1.

Spatial RNA profiling in single cells

To detect single molecule RNA targets, we utilized the Molecular
Instruments RNA FISH on mammalian cells on slides protocol for
HCR RNA FISH v3.0. p65 protein and H2B-protein reporters were
imaged in the first cycle after only formaldehyde fixation. p65 protein
was imaged in the ds-RED/TRITC channel and H2B-protein was
imaged in the A488/GFP channel. Then, samples were permeabilized
in 70% ethanol at �20� C for 30 min. HCR probes were detected in
HCR probe hybridization buffer, amplified 75 min (150 min for p65
RNA) in HCR amplification buffer, and washed with 5X SSC. The
complete multiplex panel can be found in Fig. 2.
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Sequential multiplexed imaging of protein reporters
and RNA transcripts

Cells on coverslips were superglued (Gorilla Glue) by the edges to
acrylic, laser cut coverslips for rigid mounting during multiplex imag-
ing. Otherwise, glass bottom and plates or Ibidi microchannels were
imaged directly as they were. Cycles were imaged according to Fig. 2
using a custom-modified Nikon widefield microscope (TE2000). Due
to the unavailability of GFP and TRITC channels due to existing and
H2B and p65 protein reporter signals, respectively, we only used Alexa
Fluor 647 fluorescent channel for HCR detection using B1 amplifiers.
To multiplex p65 RNA and GAPDH RNA, we performed the first
detection of p65 RNA in Alexa Fluor 647 channel, and then digestion
of HCR assembly using DNase I enzyme for 4 h at room temperature.
In the subsequent cycle, we performed GAPDH RNA detection using
the same Alexa Fluor 647 channel as a positive control (Fig. 2).
GAPDH RNA signal was removed with DNAse again for 4 h at RT.
Later, A20 Ab was labeled overnight, imaged, and quenched with
DNAse and LiBH4 (1mg/ml) bleach for 15 min under white light.
Finally, segmentation Abs (Vim, Hsp47, S100A4, and aSMA) were
labeled in the final cycle for later 3D cell segmentation. We performed
image registration across cycles using nuclear signatures from reporter
protein imaging, p65 RNA, and GAPDH RNA imaging cycles.

Benchmarking pSigOmics with synthetic cells and
batch mixing

Our pSigOmics workflow was validated with synthetic cell data.
For this analysis, we only used the six batches of coverslips with 0–
50min 10ng/ml TNFa stimulations. First, synthetic cells were gener-
ated in silico with random circles of nucleus radius 25 pixels and
expanded by another 25 pixels for the cytosol. The nuclear membrane
region was created by blurring the nucleus edge with a 10 � 10 pixel
Gaussian blur. p65 RNA and protein values were assigned to each cell
region based on Fig. S6(a) with added Gaussian noise (randomly
selected mean between 0 and 20, standard deviation between 0 and 5).
Each representative timepoint contained 40 field of views with 30 cells
each. Synthetic timepoints were created for 0, 10, 20, 30, 40, and 50
min.

Furthermore, we mixed timepoints from various experimental
batches to test the replicability across trials and passages. Specifically,
we chose Batch 6 Time 0, Batch 3 Time 10, Batch 1 Time 20, Batch 5
Time 30, Batch 2 Time 40, and Batch 4 Time 50 [Fig. S6(c)]. We again
visualized the fraction of nonresponding, partially responding, and
fully responding cells for each timepoint as well as the median p65
protein behavior.

Pseudotime ordering model

To examine the intracellular dynamic fluctuation of the p65
protein and p65 RNA after stimulation, we derived the pseudotime
ordering of the cells collected at 0, 15, 30, 45, 60, 75, 90, and 105min
of stimulation (Fig. S11). Recognizing that the overall protein and
RNA levels at these discrete time points vary, we assumed that the
overall stimulation levels of cells collected at various points were differ-
ent. Therefore, we ranked the cells from each time point separately
and concatenated them afterward. For cells with a stimulation time of
0min, we assume that the cell containing the least amount of protein
is the least stimulated and placed it earliest on the pseudotime axis.

Cell ordering after the initial cell is determined by recursively seeking
the closest neighbor based on the Euclidean distance of curated subcel-
lular RNA and protein substance (p65 RNA cytosol, p65 RNA nuclear
membrane, p65 RNA nucleus, p65 protein cytosol, p65 protein nuclear
membrane, p65 protein nucleus, GAPDH RNA cytosol, GAPDH
RNA nuclear membrane, and GAPDH nucleus). Since RNA content is
significantly lower than protein, we conducted min-max normalization
to each feature separately. The reason for using these nine dimensions
is that RNA and protein levels should be connected as a continuous
curve for all three subcellular regions for a properly ranked cell list to
reflect substance transport between cellular regions. For cells stimu-
lated for 15–105min, we started with the cell closest to the last ranked
cell of the previous timepoint.

Segregating and quantifying cell APR subpopulations

To investigate cell subpopulation behavior, we segregated cells
into APR subpopulations and computed the APR levels. Each cell’s
ratio of total p65 RNA and protein was computed. Then one was
added to every value to avoid division by zero errors. The histogram of
whole cell p65 protein to RNA ratio was visualized and divided into
quartiles [Fig. 6(a)]. The bottom quartile was designated as cells with
low protein and high RNA and the top quartile was cells with high
protein and low RNA. Finally, cells in the interquartile range were con-
sidered medium RNA and medium protein.

When visualizing median cell behavior over time [Fig. 6(b)], each
subpopulation behavior was plotted separately by cell region. To quan-
tify APR levels, each peak and trough of the p65 RNA and protein
curves were recorded. For each peak and trough, the nearest trough or
peak, respectively, of the other biomolecule was computed and the dif-
ference was recorded. Finally, all differences were concatenated
together, and the root mean squared difference of this vector was
reported in bold italics on the bottom left of each graph. Thus, the
lower scores indicate closer peak-trough distances that signify higher
APR levels.

Graph neural network modeling

1. Graph construction [Fig. S8(a)]: We constructed each graph by
one hot-encoding of each GAPDH RNA dot as a node and
RNA-located region (Cytosol, Nuclear Membrane, or Nucleus).
The edge is built through 3D Delaunay Triangulation and the
edge weight is represented by 1.0/(Spatial Euclidean Distance).
A20 protein intensity at this RNA location is also assigned to
these nodes. The goal was to predict the APR subpopulation
graph label: either p65 low RNA and high protein or high RNA
and low protein.

2. Graph architecture [Fig. S8(b)]: We utilized multi-layer graph
neural network architecture including message passing to achieve
communication between nodes of close proximity, a pooling
layer to aggregate information from all the nodes, and a linear
layer to achieve classification. To obtain the optimal GNN model
for each treatment group, we compared different message-
passing methods (GAT, GCN, GraphConv, and GATV2Conv),
and pooling methods (mean, max, sum, global attention, and
gated attention). In addition, we benchmarked hidden layers in
2, 3, and 4 for each GNN model.
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3. GNN training: We applied cross-entropy loss during training for
50 epochs with optimizer Adam with a learning rate of 5 � 10�4.
We conducted a 5-fold cross-validation of each dataset by sepa-
rating the datasets into 20% of the testing dataset and 80% of the
training dataset. Accuracy (ACC), area under the curve of the
receiver operating characteristic (AUC ROC), and F1 score are
calculated to evaluate the model performance.

4. Baseline model comparison [Figs. S8(c) and 8(d)]: We compared
the performance of the GNN model with logistic regression, sup-
port vector machine (SVM), Gaussian Naive Bayes
(GaussianNB), Decision Tree, and Histogram-based Gradient
Boosting Classification Tree (HistGradientBoostingClassifer) by
fivefold cross-validation by separating the datasets into 20% of
testing dataset and 80% of training dataset.

Single-cell PHATE modeling of subpopulations

We utilized the Potential of Heat-diffusion for Affinity-based
Trajectory Embedding (PHATE) to investigate the local and global
similarity of the cells with p65 protein and RNA six-dimensional
data.26 We only considered the cells on coverslips stimulated for 0–50
min with 10 ng/ml TNFa. To encode local distance, PHATE calculates
the Euclidean distance for cells in a pairwise fashion and applies
cell-specific a-decay kernel for each cell to derive affinity from spatial
distance. a-decay kernel utilizes the parameter nearest neighbor k to
control the local bandwidth and decay rate a to control the decay rate
for the kernel tail. In other words, a good choice of a and k allows the
local information to be well stored, maintain the full connectivity for
sparsely located cells, and avoid uniform affinity for farther cells. The
connectivity matrix is then normalized by rows to derive the transition
matrix (M). A random walk of t-steps is conducted after deriving M by
raising M to the t power to obtain diffusion operator (P), which enco-
des the global structure of the cells. PHATE next converts P into log
space, calculates informational distance between cells, and utilizes met-
ric multidimensional embedding (MDS) to embed cells into the 2D or
3D space. After examinations, we chose k¼ 5, a¼ 15, and t¼ 150 in
our case to ensure subtle and global trajectories are both well main-
tained. Furthermore, we colored PHATE embedding by both cell time-
stamps and APR labels in both 2D and 3D space (Fig. S9).

To quantify the separation of three APR cell populations in
PHATE-based 3D embeddings beyond visual examination, we utilized
a decision tree, with weight adjustments for three classes due to highly
unbalanced class labels. We reported the performance with a confusion
matrix and a summary of accuracy, F1 score, and recall [Fig. S9(c)].

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the full multiplex-
ing panel, in silico benchmarking, more latent space embeddings,
GNN training and testing, single-cell pseudotime orderings, and p65
RNA and protein correlations.
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