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Simple Summary: A new era has emerged in oncology in the last ten years with the development of
immune therapies. However, single-agent immune therapy such as immune checkpoint inhibitors
seems to have a limited clinical activity in biliary tract cancers and are still largely investigational,
except for the few patients with microsatellite-instable tumors. Here, we review: (i) the molecular
and immune landscape of biliary tract cancers, (ii) the existing results of immune therapies in biliary
tract cancers, and (iii) the future of immune therapies in biliary tract cancers, with the identification
of predictive biomarkers for response to these therapies, and the ongoing therapeutic trials.

Abstract: Biliary tract cancers are rare tumors with a poor prognosis. Two-thirds of these pri-
mary liver malignancies are diagnosed at advanced stages where therapeutic options are limited.
Whereas several molecular targeted therapies emerge in biliary tract cancers, immunotherapy is
still investigational, the only approved immunotherapy to date being the immune checkpoint in-
hibitor pembrolizumab for the small fraction of patients with microsatellite-instable tumors. In
microsatellite-stable, pre-treated biliary tract cancers, single-agent immune checkpoint blockade
has a limited albeit often long-lasting clinical activity in a still ill-defined subgroup of patients. The
identification of predictive biomarkers will allow a better selection of patients that may benefit from
immunotherapy. Combinations of immunotherapies with each other, with chemotherapy or targeted
molecular therapies are being investigated in early lines of therapy, including first-line.

Keywords: biliary tract cancers; cholangiocarcinoma; immune checkpoint inhibitor; drug combina-
tion; immunotherapy; vaccine

1. Introduction

Biliary tract cancers (BTC) are a heterogeneous group of uncommon epithelial tumors
arising from the biliary duct cells. They represent the second most common primary
liver malignancy after hepatocellular carcinoma, accounting for 15% of all primary liver
tumors and 3% of gastrointestinal cancers [1,2]. Incidence amounts to some 10,000 new
cases/year in Europe (0.5 to 3 cases per 100,000 people) and 12,000 new cases/year in
the United States (1.6 cases per 100,000 people) [3,4]. Incidence is higher in Asia, with 5.7
to 85 cases per 100,000 people [5,6]. Based on anatomical location, BTCs are subdivided
into: (i) intrahepatic cholangiocarcinoma, extrahepatic cholangiocarcinoma that comprises
perihilar cholangiocarcinoma and distal cholangiocarcinoma, and gallbladder carcinoma [7].
This anatomical classification parallels with distinct biological and molecular features.

The incidence of BTCs is increasing, mainly for intrahepatic cholangiocarcinomas but
also for extrahepatic cholangiocarcinomas [5], probably because of metabolic and infectious
risk factors. The main described etiologic factors associated with cholangiocarcinomas are
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chronic viral infections (hepatitis virus B and hepatitis virus C), cirrhosis or nonalcoholic
fatty liver disease, obesity, alcohol consumption, tobacco consumption, diabetes but also
chronic inflammation of the biliary tract and bile stasis (mainly due to sclerosing cholangitis
or liver fluke infections in endemic areas (Asia)) [8,9].

Surgery is the only potential curative treatment for BTCs, but approximately 70% of
patients are diagnosed at advanced stages due to absence of specific symptoms [10,11]. More-
over, tumor relapse is frequent after curative-intent surgical resection [12–14]. Therapeutic
options for non-resectable disease are scarce and treatment is only palliative [7]. Based on
the results of the ABC-02 trial, the combination of cisplatin plus gemcitabine [CISGEM
regimen] is the standard first-line treatment in this setting, with median overall survival
(OS) and progression-free survival (PFS) in the CISGEM group of 11.7 and 8.0 months, re-
spectively [15]. The proposed second-line chemotherapy is the combination of fluorouracil
and oxaliplatin (FOLFOX regimen), based on the results of the ABC-06 trial—the only
phase 3 trial reported to date in this setting—albeit efficacy results were modest (median
OS, 6.2 vs. 5.3 months; overall response rate, ~5%) [16]. Beyond second line, there is no
validated standard treatment.

In the last decade, immune therapies have greatly improved the treatment and out-
comes of solid tumors, as illustrated with melanoma [17], lung cancers [18,19] or renal
cancers [20]. Main targets are the immune checkpoints cytotoxic T lymphocyte antigen
4 (CTLA-4) and programmed cell death 1 (PD-1), receptors located on T-cells that regu-
late immune responses at the priming phase in lymph nodes and at the effector phase
in the tumor, respectively [21]. Immune checkpoint inhibitors are mainly represented by
monoclonal antibodies directed against CTLA-4 or PD-1 or its ligand (programmed cell
death ligand-1, PD-L1), restoring the immune function of ‘exhausted’ T cells and depleting
immunosuppressive regulatory T lymphocytes (Treg) [22]. While treatment landscape of
several solid tumors has been deeply changed by novel immune therapies, their role is still
unclear in advanced BTC [23] and combination of immune therapies could be valuable in
BTC [24].

Here, we review: (i) the molecular and immune characterization of BTCs, paving
the rationale for immune therapies in these tumors, (ii) the existing results and trials of
immune therapies in BTCs, and (iii) the future of immune therapies in BTCs, with the
identification of predictive biomarkers for response to these therapies and the ongoing
therapeutic trials.

2. Molecular and Immune Characterization of Biliary Tract Cancers
2.1. Molecular Landscape of Biliary Tract Cancers

The heterogeneity and complexity of cholangiocarcinomas have been unraveled
by next-generation sequencing. Besides cancers with prevalent oncogenic mutations
(e.g., BRAF mutation in melanoma, c-kit or PDGFR mutations in gastrointestinal stromal
tumors), BTCs are now known to present one of the highest frequencies of targetable
molecular alterations across cancer types [25–30]. Notably, molecular patterns can be
paralleled with the anatomical and histological classification of BTCs [31,32]. Isocitrate
dehydrogenase gene (IDH) mutations and fibroblast growth factor receptor 2 (FGFR2)
fusions are found almost exclusively in intrahepatic cholangiocarcinomas, with frequencies
of approximately 15% and 20% respectively [33–37], whereas human epidermal growth
factor receptor-2 gene (HER2) aberrations are observed in approximately 15% of cases
of extrahepatic cholangiocarcinomas and gallbladder carcinomas [38]. Several targeted
therapies have been or are currently tested in BTCs, leading notably to the FDA accelerated
approval of pemigatinib, an oral and selective inhibitor of FGFR1, 2 and 3, for the treatment
of patients with previously treated, unresectable, locally advanced or metastatic cholan-
giocarcinoma that exhibits a FGFR2 rearrangement or fusion [39]. Phase 3 results are also
positive for ivosidenib (AG120), an oral inhibitor of IDH1 in patients with IDH1-mutated
cholangiocarcinoma who have failed one or two prior treatment lines [40].
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2.2. Immune Microenvironment

Although the role of the immune microenvironment in BTC progression and ther-
apy resistance is well established [41], a better understanding of its specific functions is
needed [42]. According to The Cancer Genome Atlas (TCGA) initiative, BTCs seem to
be rich in immune cells in 70% of cases and depleted in lymphocytes in 30% with a bal-
anced macrophage to lymphocyte ratio in most cases [43]. Immunohistochemistry studies
showed that the type of immune infiltrate relates to different prognostic values. Prolonged
survival is associated with CD8-positive tumor-infiltrating lymphocytes (TIL), natural
killer lymphocytes, and major histocompatibility complex (MHC) class I expression [28–30].
At the opposite, M2-macrophages and neutrophils are associated with poor survival while
Treg cells showed inconsistent prognostic value [44,45]. Furthermore, between 10% to 30%
of BTCs express PD-L1 in tumor cells [46] and have a higher density of TIL, both of which
are associated with a better response to immune checkpoint inhibitors [47] (Figure 1).
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Figure 1. Biological rationale for use of immune therapies in BTC. Left panel: Approximately 70% of BTC are highly
infiltrated in immune cells with a strong expression of the immune checkpoints such as PD-L1 in 10–20% of cases, whereas
about 30% of BTC are depleted in cytotoxic lymphocytes (T cells). Right panel: Immune BTC microenvironment and
potential therapeutic implications. CTLA-4: cytotoxic T-lymphocyte antigen-4; MHC: major histocompatibility complex;
PD-1: programmed cell death 1; PD-L1: programmed cell death-ligand 1; TAM: Tumor-associated macrophages.

Molecular studies in BTCs identified a subgroup of tumors that may be good candi-
dates for immune checkpoint inhibitors. Nakamura et al. [28] described four subtypes of
BTC according to the gene expression of 260 tumors. Almost 40% of patients were classified
in Cluster 4 with higher mutation load and higher expression of immune checkpoint genes
(LAG3, CTLA4, PDCD1, TNFRSF9, BTLA, IDO1, HAVCR2, and TNFRSF4). This subgroup
favorable to immune checkpoint inhibitors was also associated with a poor prognosis.
Similarly, Jusakul et al. [25] defined four subtypes of BTC based on the liver fluke status.
Cluster 3 included intrahepatic cholangiocarcinomas which were mostly fluke-negative
and overexpressed immune checkpoint genes (PD-1, PD-L2, and BTLA). These immuno-
genic intrahepatic cholangiocarcinomas were mutually exclusive with IDH/FGFR-driven
intrahepatic cholangiocarcinomas (Cluster 4).

In addition, between 5% and 10% of BTCs display DNA mismatch repair deficiency
and/or microsatellite instability (MSI) [48]. This phenotype is characterized by a high load
of neoantigens that activate antitumor T-cell response and has been associated with durable
responses to immune checkpoint inhibitors in several solid tumors including BTCs [49].
Wardell et al. [50] analyzed 412 BTCs and found that 11% harbored deleterious germline
mutations of cancer-predisposing genes increasing the tumor mutational burden (TMB)
(RAD51D, MLH1, MSH2, POLD1, POLE, and ATM). Somatic or germline mutations in DNA
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mismatch repair genes (e.g., MLH1, MSH2) or DNA polymerases (e.g., POLD1, POLE) were
displayed in all hypermutated tumors.

Overall, a subset of patients with BTCs are theoretically good candidates for immune
checkpoint inhibitors based on their high TMB, level of expression of PD-L1 and TIL [51].
There is currently no immune checkpoint inhibitor development in selected subpopulations
associated with an immune signature in BTCs. Translational studies on biological samples
from ongoing trials are mandatory to correctly identify patients with BTCs sensitive to
immune checkpoint inhibitors.

3. Current Results of Immune Therapies in Biliary Tract Cancers
3.1. Immune Checkpoint Inhibitor Monotherapy

Microsatellite instability (MSI) is observed in up to 10% of intrahepatic cholangiocar-
cinomas, 5–13% of extrahepatic cholangiocarcinomas and 5% of gallbladder carcinomas.
Immune checkpoint inhibitors were shown to be highly active in patients with MSI tu-
mors including some patients with BTCs, with objective response rate (ORR) of ~40% [52],
making immune checkpoint inhibitors a good option for MSI BTCs.

Activity of immune checkpoint inhibitors was also tested in early studies in BTCs
regardless of MSI status (Table 1). Safety and activity of the anti-PD1 monoclonal antibodies
nivolumab was studied in a phase 2 study that included 54 refractory, microsatellite-
stable BTC patients [53]. Overall, 10 out of 45 (22%) evaluable patients achieved a partial
tumor response, with a disease control rate (DCR) of 60%. Median OS was 14.2 months
(95% CI: 6.6-not reached) and median PFS was 4.0 months (95% CI: 2.3–6.0). Toxicity
profile was favorable with 20% of grade 3/4 treatment-related adverse events. However, a
lower efficacy of nivolumab alone was reported in a Japanese phase 1 study [54]. Among
30 patients with pre-treated BTCs, only one patient (with a MSI tumor) had an objective
response. Median OS was 5.2 months (90% CI: 4.5–8.7) and median PFS was 1.4 months
(90% CI: 1.4–1.4). Grade 3–4 treatment-related adverse events were reported by three (10%)
patients (rash, maculopapular rash, and amylase increase).

Table 1. Selected published trials with immunotherapies in advanced biliary tract cancer.

Study Ref Molecule(s) Target(s) Phase Patients Population mOS
(mo)

mPFS
(mo)

ORR
(%)

Immune checkpoint inhibitors in monotherapy

NCT02829918 [55] Nivolumab PD-1 2 54 2nd line and
beyond 14.2 4.0 22

JapicCTI-
153098 [54] Nivolumab PD-1 1 30 2nd line and

beyond 5.2 1.4 3

KEYNOTE-
028 [56,57] Pembrolizumab PD-1 1 24

2nd line and
beyond

(PDL1 > 1%)
5.7 1.8 13

KEYNOTE-
158 [56,57] Pembrolizumab PD-1 2 104 2nd line and

beyond 7.4 2.0 5.8

NCT01938612 [58] Durvalumab PD-L1 1 42 2nd line and
beyond 8.1 2.0 4.8

NCT02699515 [59,60] Bintrafusp
alpha (M7824)

PD-L1/TGF-
B 1 30 2nd line and

beyond 12.7 - 23.3

NCT03833661 [61] Bintrafusp
alpha (M7824)

PD-L1/TGF-
B 2 159 2nd line and

beyond - - 10.1
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Table 1. Cont.

Study Ref Molecule(s) Target(s) Phase Patients Population mOS
(mo)

mPFS
(mo)

ORR
(%)

Immune checkpoint inhibitors in combination

NCT01938612 [58] Durvalumab-
tremelimumab

PD-L1,
CTLA-4 1 65 2nd line and

beyond 10.1 - 7.7

NCT03046862 [62] Durvalumab +
CISGEM PD-L1 2 45 First-line 18.1 11.0 73.3

NCT03046862 [62]

Durvalumab-
tremelimumab

+ CISGEM
(biomarker

cohort)

PD-L1,
CTLA-4 2 30 First-line 15.0 13.0 50.0

NCT03046862 [62]
Durvalumab-

tremelimumab
+ CISGEM

PD-L1,
CTLA-4 2 46 First-line 20.7 11.9 73.4

JapicCTI-
153098 [54] Nivolumab +

CISGEM PD-1 2 30 First-line 15.4 4.2 36.7

CA209-
538 [24] Nivolumab +

Ipilimumab
PD-1,

CTLA-4 2 39 2nd line and
beyond 5.7 2.9 23

NCT03796429 [63] Toripalimab +
gemcitabine-S1 PD-1 2 39 First-line - 6.7 20.6

NCT03892577 [64]
Pembrolizumab
or nivolumab +

lenvatinib

PD-1,
multiple TK 1 32 2nd line and

beyond 11.0 4.9 25

NCT03482102 [65]
Durvalumab-

tremelimumab
+ radiotherapy

PD-L1,
CTLA-4 1 15 2nd line and

beyond - 1.8 20

Other types of immunotherapy

Yamamoto
et al. [66] One-peptide

vaccine MUC-1 1 3 2nd line and
beyond - - 0

Kaida
et al. [67] One-peptide

vaccine WT-1 1 16 2nd line and
beyond 9.6 - 0

Aruga
et al. [68] Three-peptide

vaccine Multiple * 1 9 2nd line and
beyond 9.7 3.4 0

Aruga
et al. [69] Four-peptide

vaccine Multiple ** 1 9 2nd line and
beyond 12.7 5.2 66

Shirahama
et al. [70]

Vaccine +
cyclophos-
phamide

HLA-
matched
peptides

2R 25 2nd line and
beyond 12.1 6.1 8.0

Shirahama
et al. [70] Vaccine

HLA-
matched
peptides

2R 24 2nd line and
beyond 5.9 2.9 4.2

NCT01935843 [71] CAR-T cells HER2 1 9 2nd line and
beyond - - 11

NCT01869166 [71] CAR-T cells EGFR 1 19 2nd line and
beyond - 4.0 6 (CR)

* Peptide-cell division cycle associated 1 (CDCA1), cadherin 3 (CDH3) and kinesin family member 20A (KIF20A). ** Lymphocyte antigen
6 complex locus K, TTK protein kinase, insulin-like growth factor-II mRNA-binding protein 3 and DEP domain containing 1. CISGEM,
cisplatin plus gemcitabine. CR, complete response. CTLA-4, cytotoxic T-lymphocyte–associated antigen 4. EGFR, epidermal growth factor
receptor. HER2, human epidermal growth factor receptor 2. HLA, human leukocyte antigen. mo, month. mOS, median, overall survival.
mPFS, median progression-free survival. ORR, overall response rate. PD-1, programmed death 1. PD-L1, programmed death ligand-1. R,
randomized. TGF-B, transforming growth factor beta. TK, tyrosine kinase.
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In a phase 1b study (KEYNOTE-028) including pre-treated patients with PD-L1-
positive BTC (≥1% PD-L1-positive cells), 24 patients received pembrolizumab monother-
apy [56,57]. ORR was 13% (3/23, all partial responses) and median duration of response
(DOR) was not reached (range, 21.5 to 53.2+ months). Median OS and PFS were 5.7 months
(95% CI, 3.1-9.8) and 1.8 months (95% CI, 1.4-3.1), respectively, and 12-months OS rate was
27.6%. Overall, the safety profile was manageable with only 16.7% of patients with grade
3 treatment-related adverse events (no grade 4/5). In a phase 2 study (KEYNOTE-158)
of pembrolizumab in pre-treated BTC patients, ORR was 5.8% (6/104 partial responses,
95% CI, 2.1%–12.1%) and median DOR was not reached (range, 6.2–26.6+ months) [57].
Median OS and PFS were 7.4 (95% CI: 5.5–9.6) and 2.0 (95% CI: 1.9–2.1) months, respec-
tively. Among PD-L1-positive patients (n = 61) and PD-L1-negative patients (n = 34), ORR
was 6.6% (4/61) and 2.9% (1/34), respectively. Grade 3 to 5 treatment-related adverse
events were seen in 13.5% of patients (no grade 4; grade 5 renal failure, n = 1). None of
the patients in these two studies had MSI tumors [57]. Complete response of extrahep-
atic cholangiocarcinoma or gallbladder carcinoma after pembrolizumab alone has been
reported occasionally [72].

Durvalumab was also tested in 42 pre-treated Asian patients with BTC (59% PD-
L1 ≥ 1%, 14% PD-L1 ≥ 25%) [58]. Grade ≥3 treatment-related adverse events occurred
in 19% of patients. Two patients (4.8%) had a partial response and DCR at 12 weeks was
16.7%. Median DOR was 9.7 months. Median OS was 8.1 months (95% CI, 5.6–10.1) and
median PFS was 2.0 months.

Bintrafusp alpha (M7824), a bifunctional fusion protein that targets PD-L1 and trans-
forming growth factor beta (TGF-β), gave interesting results in 30 pre-treated BTC patients
(53% PD-L1 > 1%) [59,60]. Ten patients (33%) experienced grade ≥3 treatment-related
adverse events and three deaths due to adverse events were reported (1 death was due
to septic shock, and two deaths due to interstitial lung disease). Seven patients (23.3%)
had an objective response with long-lasting responses in 8 of 30 patients (27%). ORR
was 25% in PD-L1-positive group and 15.4% in PD-L1-negative group. Median OS was
12.7 months (95% CI: 6.7–15.8). Recently, primary results from the Phase II INTR@PID BTC
047 study were released [61]. This study evaluated bintrafusp alpha as a monotherapy in
the second-line treatment in 159 patients with locally advanced or metastatic BTC who
have failed or were intolerant to first-line platinum-based chemotherapy. ORR was 10.1%
(95% CI: 5.9% to 15.8%) per Response Evaluation Criteria in Solid Tumors (RECIST) criteria,
version 1.1. More results should be available soon for this study.

Overall, all of these studies reported a favorable safety profile, albeit on a limited
number of patients. Single-agent immune checkpoint inhibitors may benefit in a small, but
important patient subset, in which long-lasting objective responses or disease stabilizations
may be observed even after multiple prior treatment lines. Whether these encouraging
results are obtained more frequently in PD-L1-positive patients needs to be confirmed, and
results from phase 3 studies are pending (see Section 4.2).

3.2. Combinations with Immune Checkpoint Inhibitors

Several trials have studied combinations of immune checkpoint inhibitors with each
other or with chemotherapy (Table 1). The abovementioned phase 1 study of single-agent
durvalumab also tested durvalumab combined with tremelimumab (n = 65) [58]. Grade
3–5 adverse events occurred in 23% of patients (compared with 19% for durvalumab
alone), with five patients who discontinued treatment for treatment-related adverse events,
and one treatment-related death (drug-induced liver injury). ORR was 7.7% and DCR
at 12 weeks was 32.2%. Median DOR was 8.5 months and median OS was 10.1 months
(95% CI: 6.2–11.4). Durvalumab and tremelimumab were also tested in combination
with CISGEM in a phase 2 study that included 121 BTC patients in first-line, 45 treated
with CISGEM and durvalumab and 46 with CISGEM, durvalumab and tremelimumab
(30 patients also received this quadruplet therapy in a biomarker cohort) [62]. Median ORR
was 50.0%, 73.3% and 73.4% in the biomarker, triplet and quadruplet cohort, respectively,
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with DCR of 96.7%, 100% and 97.8% and median DOR of 11.0, 9.8, and 9.1 months. Median
PFS was 13.0 months (95% CI: 10.1–15.9), 11.0 months (95% CI: 7.0–15.0) and 11.9 months
(95% CI: 10.1–13.7), respectively, and median OS was 15.0 months (95% CI: 10.7–19.3),
18.1 months (95% CI: 11.3–24.9) and 20.7 months (95% CI: 13.8–27.6). The most frequent
grade 3/4 adverse events were neutropenia (50.4%), anemia (35.5%) and thrombocytopenia
(16.5%). The combination of CISGEM and durvalumab is currently investigated in the
TOPAZ-1 phase 3 trial (ClinicalTrials.gov Identifier: NCT03875235). The combination of
durvalumab and tremelimumab with weekly paclitaxel is currently investigated in the
IMMUNOBIL PRODIGE 57 trial (ClinicalTrials.gov Identifier: NCT03704480). A safety
run-in was performed after inclusion of 20 patients and led to discontinuation of the triplet
arm (durvalumab, tremelimumab and paclitaxel) due to dose-limiting toxicities in six
patients including an unexpected increase in anaphylactic adverse events [73]. The study
continues as a single-arm phase 2 study of durvalumab and tremelimumab.

Nivolumab was also tested in combination with CISGEM in the abovementioned
Japanese phase 1 study of single-agent nivolumab [54]. In the combined therapy cohort,
the commonest treatment-related adverse events were neutropenia (grade 3–4 in 23 (77%)
patients) and thrombocytopenia (grade 3–4 in 15 (50%) patients). Median OS and PFS were
15.4 (90% CI 11.8-not estimable) and 4.2 months (90% CI 2.8–5.6), respectively. Eleven of
the 30 patients had an objective response (ORR 36.7%).

Toripalimab, an anti-PD-1 antibody, was combined to gemcitabine and the oral fluo-
ropyrimidine S-1 in a phase 2 study of 39 patients with advanced BTCs [63]. Of 34 evaluable
patients, ORR was 20.6% and DCR was 85.3%. Median PFS was 6.7 months (OS was imma-
ture). Grade 3–4 hematological and non-hematological adverse events were observed in
69.2% and 20.5% of patients, respectively.

Nivolumab or pembrolizumab were also tested in association with the oral, antiangio-
genic, tyrosine kinase inhibitor lenvatinib in 32 patients with pre-treated intrahepatic cholan-
giocarcinomas [64,74,75]. ORR was 25% and DCR was 78.1%. Median PFS was 4.9 months
(95% CI: 4.7–5.2 months) and median OS was 11.0 months (95% CI: 9.6–12.3 months). Grade
3 adverse events occurred in 59.3% of patients (one grade 4 adverse event). Recently,
results of the combination of durvalumab and tremelimumab with radiotherapy were
presented [65]. The rationale is based on the observation of systemic tumor responses
(abscopal effect) in metastatic, MSS pancreatic or colon cancer—i.e., tumors notoriously
resistant to immune checkpoint inhibitors—when combining PD-1/CTLA-4 inhibitors
with radiotherapy [76]. Fifteen pre-treated BTC patients were included and received dur-
valumab and tremelimumab along with radiotherapy to a single metastatic site (three
fractions of 8 Gy at cycle 2 every other day). Dose-limiting toxicities occurred in 3 patients
during the safety run-in, and three patients did not reach radiotherapy. DCR was 33%
with a 17% partial response and 8% complete response for the patients who received
radiotherapy. DOR was 26, 52, 122 and 254+ days for four patients with disease control.
Grade 3-4 toxicities were observed in nine out of 15 patients (60%).

3.3. Other Types of Immunotherapy
3.3.1. Vaccines

Other types of immune therapies have been tested in phase 1/2 studies, such as vac-
cines and cellular therapies. Vaccination studies have yielded modest results in advanced
BTCs (Table 1). Several targets for vaccines have been developed. A vaccine targeting four
different peptides (HLA-A*2402-restricted epitope peptides, lymphocyte antigen 6 complex
locus K, TTK protein kinase, insulin-like growth factor-II mRNA-binding protein 3 and
DEP domain containing 1) was explored in nine patients with refractory, advanced BTC,
who were vaccinated subcutaneously once a week at doses of 0.5, 1, or 2 mg and continued
until disease progression [69]. The treatment was well tolerated with no grade 3-adverse
events. Peptide-specific T-cell immune responses were observed in seven patients and clini-
cal responses were observed in six patients (66%). The median PFS and OS were 5.2 months

ClinicalTrials.gov
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and 12.7 months. The injection site reaction and cytotoxic T lymphocyte induction seemed
to be prognostic factors for both PFS and OS.

The same team produced a vaccine targeting three HLA-A*2402 restricted epitopes:
peptides-cell division cycle associated 1 (CDCA1), cadherin 3 (CDH3) and kinesin family
member 20A (KIF20A) [68]. It was also well-tolerated with no grade 3–4 adverse events.
All patients exhibited peptide-specific T cell immune responses. Five out of nine patients
had a stable disease. Median PFS and OS were 3.4 and 9.7 months. Reaction injection site
appeared to be prognostic of OS.

A randomized phase 2 study tested whether low-dose cyclophosphamide improved
antigen-specific immune responses and clinical efficacy of personalized peptide vaccination
in 49 advanced, pre-treated BTC patients [70]. Median PFS was significantly higher in the
doublet arm (median time: 6.1 vs 2.9 months) as well as median OS (median time: 12.1 vs
5.9 months).

Other vaccine targets have been explored such as Wilm’s tumor-1 (WT1) [67] and
mucin-1 (MUC1) proteins [66], with good tolerance but poor clinical responses.

Overall, vaccines targeting several antigenic peptides seem more active in BTCs that
mono-peptide ones. They appear well-tolerated but results are still limited. The best
targets, which probably differ according to BTC subtypes, and the optimization of adjuvant
agents need to be defined.

3.3.2. Cellular Therapies

Cellular therapies such as chimeric antigen receptor (CAR)-engineered T cells have
also been developed in phase 1/2 studies in advanced BTCs (Table 1).

A phase 1 trial evaluated the safety, feasibility, and activity of CAR-T cell therapy
in HER2-overexpressing advanced BTCs (and also in pancreatic cancers) [71]. Nine pa-
tients with BTC were included (four intrahepatic cholangiocarcinomas, four extrahepatic
cholangiocarcinomas, and one gallbladder carcinoma). One patient with poorly differenti-
ated perihilar cholangiocarcinoma obtained a good partial response for 4.5 months and
3 exhibited stable disease (of less than 5.0 months).

CAR-T cell therapy was also explored in EGFR-overexpressing advanced BTCs with
19 included patients [77]. Overall, CAR-T-EGFR cell infusion was correctly tolerated, except
three patients with grade ≥3 acute fever/chills and several grade ≥3 events of lymphopenia
and thrombocytopenia. Seventeen patients were evaluable, with one complete remission
response and 10 stable diseases. Median PFS was 4 months (range, 2.5–22 months). More
data and studies are needed regarding cellular therapies in BTCs, since results are still
limited. Tolerability seems nevertheless correct.

4. The Future of Immune Therapies in Biliary Tract Cancers
4.1. Identification of Predictive Markers of Response

Current benefits of immunotherapy in BTCs are still limited to a small subset of
patients. Several steps will be required to establish immunotherapy as a standard of care
in BTCs. First of all, it is necessary to establish the immune and cellular mechanisms
specific to BTCs that can lead to the primary response to immunotherapy. The recognition
of a cancer antigen is usually considered as a key step in the initiation of the response to
immunotherapy [47,78].

4.1.1. Tumor Mutational Burden

Genomic instability provides one mechanism for creating unique antigenicity for a
cancer cell. Consequently, tumors with high TMB respond favorably to immune checkpoint
inhibitors. In the KEYNOTE-158 study, ORR were significantly improved in patients with
a TMB >10 mutations per megabase (Mut/Mb) compared to those with a lower TMB [79].
Unfortunately, data for TMB in BTCs is limited. In a series of 309 patients with BTC,
TMB ≥ 6 Mut/Mb accounted for 19.4% of cases whereas TMB > 20 Mut/Mb was found
in only 2.9% of cases [80]. In the KEYNOTE-158 trial, none of the 63 BTC patients had
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a TMB > 10 Mut/Mb [79]. Of note, TMB is significantly higher in extrahepatic cholan-
giocarcinomas (18%) and gallbladder carcinomas (22%) in comparison with intrahepatic
cholangiocarcinomas (13%) [81]. Nevertheless, in a recent retrospective study aiming at ex-
amining the performance of a universal definition of high TMB in an independent cohort of
patients with solid tumors treated with immune checkpoint inhibitors, of 57 patients with
hepatobiliary tumors (without distinction between BTC and hepatocellular carcinoma),
four (8%) had a high TMB ≥10 Mut/Mb; none responded to immunotherapy [82]. On the
contrary, six patients (12%) responded in the low TMB group. This does not mean that
BTCs are precluded from the list of cancers that may benefit from immunotherapy, but it is
probably crucial to develop strategies increasing antigenic presentation in BTCs such as
combination of immune checkpoint inhibitors with chemotherapy or radiotherapy. The
role of TMB as a biomarker of response to immune therapies is also still to be specified, as
well as the optimal cut-off for TMB.

4.1.2. Human Endogenous Retroviruses

Genomic instability is not the only source of cancer antigens in tumors. Clear-cell
renal cell carcinoma and a subset of prostate cancers have a high prevalence of human
endogenous retroviruses (HERv) [83]. HERv integrated into the human genome are largely
silenced in normal cells but can become dysregulated and re-expressed in cancer and may
serve as the tumor antigen signal, a potential internal trigger to sensitize tumor cells to
immunotherapies. The role of HERv as a potential target in BTCs should be evaluated,
but they could be used as targets for monoclonal antibody therapy, or as chimeric antigen
receptor T-cell therapy or as vaccination targets [84]. Interestingly, DNA hypomethylating
agents (that can increase HERv transcription, leading to increased antigen expression and
up-regulation of CTLA-4 and PD-L1) and immunotherapy combinatory treatments are
being tested in a phase I trial (ClinicalTrials.gov Identifier: NCT03257761), studying the
combination of guadecitabine and durvalumab in patients with advanced liver, pancreatic,
or biliary tract cancers.

4.1.3. Synthetic Immune Responses

Not all cancers may present appropriately immunogenic antigens that endogenous
T cells can effectively recognize. In those cases, new strategies of synthetic immune
responses should be developed. Synthetic immune responses are the result of therapeutics
that artificially bind T cells to cancer cells based on their cognate binding of a T-cell
receptor to a specific-MHC complex. Examples include engineered CAR-T cells and CD3
bispecific antibody approaches [85]. A better understanding of the potential targets and
a personalized approach that incorporates target expression level may be required for
maximizing benefit.

4.1.4. Identification of the Organ-Specific Immune Contexture

It is also important to identify the organ-specific immune contexture and to develop
preclinical models specific to BTCs. Indeed, the liver is well known to provide numerous
mechanisms of immunotolerance [86,87]. Myeloid-derived suppressor cells, Kupffer cells
and dendritic cells promote an immunosuppressive network limiting the activation of
CD8 and CD4 T cells. For instance, melanoma or lung cancer with liver metastases have
reduced tumor responses, shorter PFS and a worse prognosis compared to patients without
liver metastasis [88]. The liver is also a richly vascularized organ with numerous myeloid
and stellate cells that make up the liver architecture. These cells, associated with cancer
fibroblasts, may limit the activity of T lymphocytes [89]. The role of antiangiogenic agents
in liver tumors has been demonstrated in hepatocellular carcinomas [90]. The identification
of the immune contexture of BTCs would probably allow a better personalization of
immunotherapy in BTC patients.

ClinicalTrials.gov
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4.1.5. PD-L1 Expression

In parallel with the development of specific models of BTCs, reliable and predictive
biomarkers should also be developed. PD-L1 expression does not seem particularly accurate in
BTCs. In the KEYNOTE-158 study, 58% of patients had PD-L1 expression >1% while only 6%
of patients had a response [57]. In the PD-L1-expressing and PD-L1 non-expressing subgroups,
ORR was 6.6% (4/61) and 2.9% (1/34) and median PFS was 1.9 and 2.1 months, respectively.

4.1.6. DNA Damage Repair

Another exploratory strategy in BTCs could be the use of mutations in DNA damage
repair (DDR) genes (germline or somatic) [91]. Indeed, cells are constantly exposed to DNA
damage including base modifications, single- and double-strand breaks, base-free sites
and DNA cross-links. There are several DDR pathways such as base excision repair (BER),
mismatch repair (MMR), nucleotide excision repair (NER), homologous recombination
(HR) and non-homologous end-joining (NHEJ). If a repair pathway is deficient, alternative
repair mechanisms can be activated instead.

The tumorigenesis of BTC has been associated to DNA damage, due to inflammatory
cytokines and nitric oxide-dependent mechanisms [92]. Some types of DDR deficiency are
found in up to 25% of patients with BTC [91]. This is of importance since alterations in
DDR genes can increase sensitivity to anti-cancer chemotherapy and radiation treatments.

Since DDR defects induce genomic instability, increasing tumor immunogenicity, a
sensitization to immune therapies could be obtained by inducing DNA damage (with
chemotherapy or radiotherapy), by inhibiting DDR pathways or directly by using immune
therapies in patients with a known DDR deficiency.

4.1.7. Microsatellite Instable Tumors

MSI tumors are tumors in which the DNA mismatch repair pathway is defective
(dMMR). They arise from germline mutations in MMR genes (i.e., MLH1, MSH2, MSH6
or PMS2), called Lynch syndrome, or following silencing of the MLH1 promoter by hy-
permethylation, mostly due to aging. In MSI tumors, as mentioned above, neoepitopes
are created that favor efficient immune responses. Patients with MSI tumors are good
candidates for immune therapies [52]. Data from the KEYNOTE-158 phase II study of
pembrolizumab in patients with advanced, pre-treated, non-colorectal MSI/dMMR tumors
has been reported [93]. Of 22 patients with BTC, 2 had a complete response and 7 a partial
response (ORR 40.9%). Median PFS was 4.2 months (95%CI: 2.1-not reached) and median
OS of 24.3 months (95%CI: 6.5-not reached).

Despite being a reliable biomarker with strong evidence, MSI phenotype is rare (less
than 2%) in BTC [94]. Moreover, not all MSI patients respond to immune therapies. More
data is then needed to evaluate immune therapies in patients with MSI BTC, especially
whether a combination (anti PD-1 and anti-CTLA4) could be more effective in these patients.

4.1.8. Genetic Alterations

As previously said, BTCs are known to harbor one of the highest frequencies of
targetable molecular alterations across cancer types, including FGFR2 fusions or IDH1/2
mutations. Recently, some genetic alterations (BRAF, BRCA2, RNF43, TP53) were found to
be statistically associated with PD-L1 expression in BTCs [95]. Moreover, FGFR inhibitors
could also modulate tumor microenvironment [96]. Interestingly, a recent study evaluated
the co-occurrence of NTRK gene fusions with other therapy molecular markers in cancer
patients and found an increased frequency of TMB high ≥20 Mut/Mb and MSI-H in
tumors with NTRK fusion [97]. Whether this is confirmed in BTC is unknown. In the future,
therapeutic trials should evaluate the combination of FGFR inhibitors or other targeted
therapies with immune checkpoint inhibitors. More data is needed to fully understand
the role of genetic alterations as predictive biomarkers of response to immune therapies
in BTC.
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4.2. Ongoing Trials

The limited response to immune checkpoint inhibitor monotherapy in unselected
patients with advanced BTC emphasizes the need for biomarkers (to identify patients likely
to respond) and treatment combinations (to overcome limited antitumor responses).

Several phase 2 and 3 trials are ongoing evaluating immune checkpoint inhibitors
alone or in combination in BTCs (Table 2). Immune checkpoint inhibitors targeting PD-1,
PD-L1 or CTLA-4 are combined with each other or with cytotoxic chemotherapy, radio-
therapy of ablative therapies. Interestingly, the potential interest of combining immune
checkpoint inhibitors with tyrosine kinase inhibitors is emerging in several types of cancers.
In BTCs, combinations that are currently tested involve the antiangiogenic agents lenva-
tinib and axitinib, the MEK inhibitor cobimetinib and the PARP inhibitors olaparib and
rucaparib. Novel therapies such as DKN-01 (dickkopf WNT signalling pathway inhibitor
1 (DKK1) inhibitor), sargramostim (GM-CSF) and entinostat (HDAC inhibitor) are also
tested in combination with immune checkpoint inhibitors.

Table 2. Main ongoing phase 2 or 3 trials of immunotherapies in biliary tract cancer.

Molecule(s) Target(s) Phase Setting Reference

Immune checkpoint inhibitors in monotherapy or combined

Pembrolizumab PD-1 2 2nd line NCT03110328

Pembrolizumab PD-1 2 2nd line and beyond NCT02628067
(KEYNOTE-158)

Pembrolizumab PD-1 2 2nd line and beyond NCT03695952

Nivolumab PD-1 2 2nd line and beyond NCT02829918

STI-3031 PD-L1 2 2nd line and beyond NCT03999658

Bintrafusp alpha (M7824) PD-L1, TGF-B 2 2nd line and beyond NCT03833661

Nivolumab + ipilimumab PD-1, CTLA-4 2 2nd line and beyond NCT02834013

Durvalumab + tremelimumab PD-L1, CTLA-4 2 2nd line
NCT03704480
(PRODIGE57

IMMUNOBIL)

Immune checkpoint inhibitors plus chemotherapy

Pembrolizumab + CISGEM PD-1 2 1st line and beyond NCT03260712
(EORTC-1607ABC-09)

Pembrolizumab (or placebo) +
CISGEM PD-1 3 1st line NCT04003636

(KEYNOTE-966)

Pembrolizumab +
capecitabine-oxaliplatin PD-1 2 2nd line and beyond NCT03111732

Toripalimab + Gemcitabine-S1 PD-1 2 1st line NCT03796429

Toripalimab +
Gemcitabine-fluorouracil PD-1 2 1st line NCT03982680

Toripalimab + S1-Nab-paclitaxel PD-1 2 1st line NCT04027764

KN035 + gemcitabine-oxaliplatin PD-L1 3 1st line NCT03478488

Durvalumab (or placebo) +
CISGEM PD-L1 3 1st line NCT03875235

(TOPAZ-1)

CISGEM ± durvalumab PD-L1 2R Neo-adjuvant NCT04308174
(DEBATE)

Nivolumab + ipilimumab or
CISGEM PD-1, CTLA-4 2R 1st line and beyond NCT03101566

Durvalumab ± tremelimumab +
gemcitabine or CISGEM PD-L1, CTLA-4 2R 1st line and beyond NCT03473574 (AIO

HEP-0117)
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Table 2. Cont.

Molecule(s) Target(s) Phase Setting Reference

Immune checkpoint inhibitors plus chemotherapy

Durvalumab + tremelimumab +
CISGEM PD-L1, CTLA-4 2 1st line NCT03046862

Bintrafusp alpha (or placebo) +
CISGEM PD-L1, TGF-B 3 1st line NCT04066491

(INTR@PID)

Camrelizumab +
gemcitabine-oxaliplatin PD-1 2 1st line and beyond NCT03486678

Immune checkpoint inhibitors plus locoregional therapies

Radiotherapy + nivolumab ±
ipilimumab PD-1, CTLA-4 2R 2nd line and beyond NCT02866383

Durvalumab + tremelimumab +
radiotherapy PD-L1, CTLA-4 2 2nd line and beyond NCT03482102

Durvalumab + tremelimumab +
TACE/RFA/ablation PD-L1, CTLA-4 2 2nd line and beyond NCT02821754

SIRT + durvalumab ±
tremelimumab PD-L1, CTLA-4 2R 1st line NCT04238637

(IMMUWHY)

Camrelizumab + radiotherapy PD-1 2 1st line NCT03898895

Immune checkpoint inhibitors plus other therapies

Atezolizumab ± cobimetinib PD-L1, MEK 2R 2nd line and beyond NCT03201458

CISGEM + atezolizumab ±
bevacizumab PD-L1, VEGF 2R 1st line NCT04677504

(GO42661)

Pembrolizumab + lenvatinib PD-1, multiple TK 2 2nd line and beyond NCT03797326

Pembrolizumab + lenvatinib PD-1, multiple TK 2 2nd line and beyond NCT03895970
(LEAP-005)

Pembrolizumab + sargramostim
(GM-CSF) PD-1 2 2nd line and beyond NCT02703714

Pembrolizumab + Peg-interferon
α-2b PD-1 2 2nd line and beyond NCT02982720

Pembrolizumab + allogeneic
natural killer cells PD-1 2 2nd line and beyond NCT03937895

Durvalumab + olaparib PD-L1, PARP 2 IDH1/2 mutation, 2nd
line and beyond NCT03991832

Durvalumab + AZD6738 PD-L1, ATR kinase 2 2nd line and beyond NCT04298008

Nivolumab + rucaparib PD-1 2 2nd line and beyond NCT03639935

Nivolumab + DKN-01 PD-1, DDK1 2 2nd line and beyond NCT04057365

Nivolumab + entinostat PD-1, HDAC 2 2nd line and beyond NCT03250273

Toripalimab + axitinib PD-1, multiple TK 2 2nd line NCT04010071

Durvalumab + guadecitabine PD-L1; DNMTi 1b 2nd or 3rd line NCT03257761

JS001 + lenvatinib +
gemcitabine-oxaliplatin PD-1, multiple TK 2 1st line and beyond NCT03951597

CISGEM, cisplatin plus gemcitabine. CTLA-4, cytotoxic T-lymphocyte–associated antigen 4. DKK1, dickkopf WNT signalling pathway
inhibitor 1. DNMTi: DNA methyltransferase inhibitor; GM-CSF, granulocyte-macrophage colony stimulating factor. HDAC, histone
deacetylase. PARP, polyADP ribose polymerase. PD-1, programmed death 1. PD-L1, programmed death ligand-1. R, randomized. RFA,
radiofrequency ablation. SIRT, selective internal radiation therapy. TACE, transarterial chemoembolization. TK, tyrosine kinase. VEGFR2,
vascular endothelial growth factor receptor type 2.
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4.3. Unsolved Questions

Immune therapies remain investigational in BTCs. In fact, the trials conducted to date
were small-sized and non-randomized, involved heterogeneous patient populations and
suggested mild-to-moderate activity at most. Several questions remain unsolved to clarify
the positioning of immune therapies in the therapeutic arsenal of BTCs:

Is BTC type predictive of response? Whether the type of BTC (i.e., intrahepatic
versus extrahepatic cholangiocarcinoma versus gallbladder carcinoma) is predictive of
response to immune therapy is currently unknown. Current and ongoing trials should
include subgroup analyses in order to answering this important question.

Are the molecular subgroups of BTC predictive of response? Interestingly, among
the four BTC subtypes described by Jusakul et al. [25], cluster 3 included intrahepatic
cholangiocarcinomas which overexpress immune checkpoint genes (PD-1, PD-L2, and
BTLA). These immunogenic intrahepatic cholangiocarcinomas were mutually exclusive
with IDH/FGFR-driven intrahepatic cholangiocarcinomas (Cluster 4). Whether these
patients would respond better to immune checkpoint inhibitors has not been tested yet.

Could we find biomarkers to select patients that could benefit from immune thera-
pies? TMB is significantly higher in extrahepatic cholangiocarcinomas (18%) and gallblad-
der carcinomas (22%) in comparison with intrahepatic cholangiocarcinomas (13%) [81],
making the former potentially more sensitive to immune checkpoint blockade. However,
high TMB (i.e., >10 or >20 Mut/Mb) is rare in BTCs, and reports of efficacy of immunother-
apy in these tumors are scarce and disappointing [79,80,82]. Whether PD-L1 expression is
able to select the good candidates to PD1/PD-L1 inhibitors is currently poorly known [57].
As MSI, the only other potential biomarker to date for the use of immune therapies in BTC,
accounts for only ~2% of patients, novel biomarkers are needed to identify BTC patients
that could really benefit from immune therapies.

Could combinations of/with immune therapies increase the sensitivity of BTCs
for immune therapies? Combinations of immune therapies between themselves or with
chemotherapy, radiotherapy or targeted therapies could increase the sensitivity of BTC to
immune therapies, transforming a ‘cold’ tumor into a ‘hot’ tumor. These are interesting
approaches and are currently being tested (Table 2).

What are the potential mechanisms underlying possible resistance to checkpoint
inhibition? Basically, resistance to checkpoint inhibitors can be driven by immune desert
phenomenon (i.e., non-inflamed tumor with no immune infiltrate), an exhaustion of im-
mune response (i.e., lymphocytic infiltrate has been recruited into the tumor, but has
failed to clear the tumor) or an exclusion of immune response (i.e., immune cells are pre-
vented from infiltrating the tumor via stromal and tumor cell-secretion of extracellular
matrix proteins). Several mechanisms and pathways of resistance have been described [98],
but not specifically in BTCs. Among those, some are tumor-intrinsic factors, such as a
lack of neoantigens, epigenetic changes in cancer cells (that can alter the expression of
immune-related genes), alteration of signaling pathways, and regulation of interferon-
gamma pathway. Some are tumor-extrinsic factors, such as a decrease in intratumoral T
cell infiltration, the presence of exosomal PD-1 (associated with the suppression of im-
munity against tumor), the presence of immunosuppressive cells (regulatory T cells or
Tregs, or myeloid-derived suppressor cells), T cell exhaustion, epithelial-mesenchymal
transition, other immune checkpoint than PD-1 and CTLA-4, indoleamine 2,3-dioxygenase
(IDO, that can inhibit effector T cell functions), angiogenesis (Vascular endothelial growth
factor (VEGF) also has an immunosuppressive role) and enteric microbiome (that could
modulate immunity against tumor cells). Understanding these mechanisms, for instance by
performing sequential biopsies before and after immune therapy, could allow novel thera-
peutic targets and combinations to be tested to induce immune response and overcome
resistance mechanisms.

What will be the place of immune therapies in the treatment sequence of BTC? If
some patients are identified that could benefit from immunotherapies, it will be important
to precisely define the optimal sequence of treatment for these patients. Whether combi-
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nations with targeted therapies could be useful is not known. Moreover, some patients
may present a targetable alteration (e.g., FGFR2 fusion, IDH1/2 mutation, etc.) as well
as sensitivity to immune checkpoint inhibitors. For example, NRTK fusions seem to be
more frequent in MSI and TMB-high tumors. Should one prefer immunotherapy or NTRK
inhibitor in these cases? Comprehensive genomic profiling may help with precision-based
therapy and allow individualization of therapeutic options for patients with advanced BTC.

5. Conclusions

BTCs are a heterogeneous group of tumors of poor prognosis with specific anatomic,
molecular and biological features. To date, the only FDA-approved immunotherapy in
BTCs is pembrolizumab for the ~2% of patients with MSI/dMMR tumors; among the
vast majority of patients with MSS BTC, only a small subgroup exhibits a durable clinical
benefit from checkpoint inhibitors. This subgroup is ill-defined, as currently available
biomarkers such as TMB or PD-L1 expression are insufficient to correctly predict response
to immune therapy in BTCs. Identification of specific biomarkers will be crucial to better
select candidates to immune therapies. In the future, combinations of immune checkpoint
inhibitors with chemotherapy, targeted therapies or novel types of therapy will potentially
bring new treatment strategies. To date and besides MSI/dMMR tumors, immune therapies
remain investigational in BTCs, and inclusion of BTC patients in clinical trials is crucial.
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