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Abstract

Methyl-CpG-binding protein 2 (MeCP2) is generally considered to act as a transcriptional repressor, whereas recent studies
suggest that MeCP2 is also involved in transcription activation. To gain insight into this dual function of MeCP2, we assessed
the impact of MeCP2 on higher-order chromatin structure in living cells using mammalian cell systems harbouring a lactose
operator and reporter gene-containing chromosomal domain to assess the effect of lactose repressor-tagged MeCP2 (and
separate MeCP2 domains) binding in living cells. Our data reveal that targeted binding of MeCP2 elicits extensive chromatin
unfolding. MeCP2-induced chromatin unfolding is triggered independently of the methyl-cytosine-binding domain.
Interestingly, MeCP2 binding triggers the loss of HP1c at the chromosomal domain and an increased HP1c mobility, which is
not observed for HP1a and HP1b. Surprisingly, MeCP2-induced chromatin unfolding is not associated with transcriptional
activation. Our study suggests a novel role for MeCP2 in reorganizing chromatin to facilitate a switch in gene activity.
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Introduction

Gene activity is governed by the interplay between various

proteins that modulate the epigenetic composition of chromatin

(e.g. DNA methylation, histone modifications) [1]. Histone

modifications and DNA methylation are linked by CpG-binding

proteins such as methyl-CpG-binding protein 2 (MeCP2) [2]

through, for instance, cross-talk between MeCP2 and heterochro-

matin protein 1 (HP1) isoforms [3]. MeCP2 is ubiquitously

expressed in human tissues and particularly enriched at pericen-

tromeric heterochromatin domains in brain cells [4,5]. MeCP2

plays a role in neuronal maturation and impaired MeCP2 function

results in neurodevelopmental disorders such as Rett syndrome

[6,7]. HP1 is a chromatin-binding protein that bridges H3K9-

methylated histones with other chromatin-associated proteins

thereby advancing the ‘spreading’ of heterochromatin [8,9]. Both

the clustering of pericentromeric heterochromatin domains and

the relocalization of HP1 (in particular HP1c) occur during

myogenic differentiation when the level of methyl-CpG-binding

proteins is up-regulated [3,10].

MeCP2 was originally found to bind methylated DNA and to act

as a transcriptional repressor [11–13]. More recent work demon-

strated that MeCP2 also binds at actively transcribed genes and

promotes activation of DNA-methylated genes, suggesting a role as a

transcriptional activator [14–18]. Currently, MeCP2 is considered a

multifunctional protein [19], i.e. MeCP2 is known (i) to bind

methylated DNA [11,12,13], (ii) to recruit a wide range of proteins

(e.g. chromatin-remodeling proteins Brahma, ATRX) [20–26], (iii) to

induce the formation of repressive chromatin [5,27,28] and change

the number and size of pericentromeric heterochromatin domains

[29], (iv) to be involved in histone H1 displacement [21,30–32], (v) to

play a key role in neurological disease (e.g. Rett syndrome) involving

both gene activation and repression [30], (vi) to be implicated in the

regulation of imprinted genes [33]. To unambiguously assess how

MeCP2 contributes to epigenetic gene regulation within the context

of the mammalian genome, we targeted MeCP2, an MeCP2 Rett

mutant (R133C) or separate MeCP2 domains as EGFP-lac repressor

(lacR)-tagged fusions in cells harbouring a lac operator (lacO) and

reporter gene-containing genomic domain [34]. Using this method-

ology, we previously showed that HP1 targeting is sufficient to induce

local chromatin condensation and recruitment of histone methyl-

transferase SETDB1, concomitant with increased tri-methylation of

H3K9 [35]. Here we show that MeCP2 targeting causes extensive

chromatin decondensation of the targeted genomic domain, which

occurs independently of the MeCP2 methyl-cytosine-binding domain

(MBD) and results in eviction of the HP1c isoform without an

alteration in the transcriptional activity of the targeted chromatin.
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Materials and Methods

Construction of plasmids
The full-length rat MeCP2e2 isoform and MeCP2 containing

point mutation R133C [7] were PCR-amplified and cloned into

the AscI site of p3’SS-EGFP-dimer lac repressor [36] resulting in

C-terminally-tagged EGFP-lacR. Full-length MeCP2 or MBD,

TRD or MBD-TRD domains were PCR-amplified and cloned

into the XbaI and XhoI site of p3’SS-EGFP-dimer lac repressor,

resulting in N-terminally-tagged EGFP-lacR. mCherry-lacR and

mCherry-lacR-MeCP2 were created by excising EGFP from

EGFP-lacR or EGFP-lacR-MeCP2 with XbaI and BsrGI

followed by insertion of mCherry.

Cell culture, transfection and luciferase reporter assay
Human osteosarcoma cells (U2OS) (ATCC 40342), NIH/3T3

mouse fibroblasts (ATCC, CRL-1658), AO3_1 and RRE_B1

clones (Andrew Belmont, University of Illinois, Urbana-Cham-

paign (USA) [34]) and the U2OS 2-6-3 clone (David Spector, Cold

Figure 1. MeCP2 unfolds chromatin. The effect of MeCP2 lacR-lacO targeting on 3D chromatin folding was measured in AO3_1 and RRE_B1
clones (CHO derived, containing an amplified chromosomal region consisting of DHFR cDNA transgene, 256 lac operator repeats and flanking DNA)
and the 2-6-3 clone (U2OS derived, containing lacO repeats and a tetracycline inducible reporter gene encoding cyano fluorescent protein and 24
repeats of the MS2 bacteriophage translational operator). The images show a typical representation of cells 48 hours after transfection. We imaged at
least 100 cells per transfection and for quantitative measurents approximately 30 cells per transfection were imaged under comparable microscopical
set-up (see Figure 4). (A) The images show individual optical sections of AO3_1 cells transfected with EGFP-lacR (control), EGFP-lacR-tagged MeCP2 or
VP16, 2-6-3 cells transfected with EGFP-lacR (control), mCherry-lacR tagged MeCP2 or VP16 and RRE_B1 cells transfected with EGFP-lacR (control) or
EGFP-lacR-tagged MeCP2. (B) AO3_1 cells expressing mCherry-lacR-tagged MeCP2 (n = 138) (shown in C) contain ,25% more MeCP2 levels then
endogenous MeCP2 (in non-transfected cells, n = 249). The error bars show the standard deviation of the analyzed cells (C) The images (a thick slice
taken with open pinhole setting) to quantify endogenous/exogenous MeCP2 levels (shown in B), show AO3_1 cells transfected with mCherry-lacR
tagged MeCP2 and immunolabeled with an antibody against MeCP2. (D) The images show an individual optical section of an AO3_1 cell highly over-
expressing tagged MeCP2 (5,3 times higher than representative cells shown in (A). Representative cells are the cells that allow the Argos image
analysis programme to select the lacO array from nuclear background, i.e. the cells on which we performed our quantitative measurements (see
Figure 4 and S1). This analysis of MeCP2 over-expression illustrates that in cells exhibiting overexpressed MeCP2 levels a visually unfolded lacO
chromatin array is observed similar as in the cells expressing representative MeCP2 levels. (E) The images show AO3_1 cells transfected with EGFP-
lacR (control) and EGFP-lacR tagged MeCP2 (green signal), FISH-labeled with a fluorescent lacO probe (red signal) and DAPI-stained (blue signal). The
images represent individual optical sections. Bars = 5 mm.
doi:10.1371/journal.pone.0069347.g001
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Spring Harbor Laboratory, New York (USA) [35,37]) were used.

The AO3_1 and RRE_B1 clone are derivatives of CHO DG44

cells and contain an integrated amplified chromosomal region

consisting of the dihydrofolate reductase (DHFR) cDNA trans-

gene, 256 lac operator repeats and flanking DNA, representing a

compact chromatin structure and an unusually extended fibrillar

chromatin conformation, respectively. The 2-6-3 clone is a U2OS-

derived clone containing a multicopy inducible transgene consist-

ing of 256 lac operator repeats, a tetracycline-inducible reporter

gene encoding cyano fluorescent protein with a peroxisomal

targeting signal, 24 repeats of the MS2 bacteriophage translational

operator, a splicing cassette and the 3’ UTR from the rabbit b
globin gene [35,37]. U2OS and NIH/3T3 cells were cultured in

Dulbecco minimal essential medium containing 10% fetal bovine

serum, 1% pen/strep. (Gibco) The AO3_1 and RRE_B1 clone

were cultured in Ham’s F-12 medium without hypoxanthine or

thymidine supplemented with 10% dialyzed fetal bovine serum

(HyClone Labs, Logan, Utah), 1% pen/strep and methotrexate up

to a final concentration of 0.03 mM or 10 mM, respectively. The 2-

6-3 clone was cultured in high glucose Glutamax (Gibco) with

10% tetracycline free FBS (Clontech), 1% pen/strep and 100 mg/

ml hygromycinB (Gibco). All cells were cultured at 37uC in a 5%

CO2 atmosphere.

Transfection was performed with Lipofectamine 2000 (Invitro-

gen) or SAINT mix (Synvolux Therapeutics, Groningen, The

Netherlands) in their respective media without Pen/Strep. For

microscopy experiments cells were seeded on cover slips coated

with Alcian Blue or 35 mm glass bottom dishes (MaTek). After

24–48 hours, cells were imaged directly or fixed in 4% parafor-

maldehyde for 15 minutes at 4uC and embedded in Vectashield

(Brunschwig, Burlingame, CA) with DAPI (Vector Laboratories,

Burlingame, CA).

Transfections for luciferase reporter assays were done with 8x

lacO pGL3 luciferase vector, lacZ construct as an internal

reference reporter and EGFP-lacR-tagged effector plasmids. Cells

were harvested and lysed at 48 hours post-transfection. Luciferase

reporter gene-targeted repression assay was performed as

described previously [35]. Briefly, luciferase reporter assay

transfections were done with 500 ng of the 8x lac operator

containing pGL3 luciferase vector, 500 ng of pSV/b-Gal

Figure 2. MeCP2-induced chromatin unfolding is independent of cell-cycle stage. (A) The images show 2-6-3 cells (U2OS derived clone
containing a 200 copy chromosomal array of 256 lacO repeats and a reporter gene harboring 24 repeats of the MS2 bacteriophage) that were co-
transfected with mCherry-tagged (red signal) or EGFP-tagged (green signal) lacR-MeCP2 and EGFP-tagged (green signal) or mRFP-tagged (red signal)
PCNA. PCNA localizes at replication foci during S phase. The images represent individual optical sections of fixed cells. Bar = 5 mm. (B) The histogram
shows quantification of the number of lacR-MeCP2 transfected cells showing a condensed (grey bar) or decondensed (white bar) chromosomal array
in either S or non-S phase based on PCNA expression or immunolabeling (on X-axis noted as immunolabeling, n = 74 and cotransfection, n = 68). A x2

test was performed on PCNA immunolabeled (p = 0.25) and cotransfected cells (p = 0.81). Random variation probabilities show a high random
variation between the decondensation and the cell cycle phase.
doi:10.1371/journal.pone.0069347.g002

Chromatin Unfolding by MeCP2

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e69347



construct (Promega) as an internal reference reporter, and 500 ng

of effector plasmid (EGFP-lacR, EGFP-lacR tagged full length

MeCP2, C-terminus, DC-terminus and R133C) combined with

48 ml of FuGENE6 reagent per 25-cm2 culture flask. Cells were

harvested and lysed at 48 h post-transfection and luciferase and b-

Gal were detected.

FACS sorting and quantitative PCR
Expressing cells were sorted by flow cytometry (Mo Flo XPD Cell

sorter Beckman Coulter, Woerden, The Netherlands). Extracted

mRNA was converted to cDNA using the Fermentas RevertAidTM

First strand cDNA synthesis kit. Quantitative PCR amplifications

were performed on an ABI Prism 7900HT Sequence Detection

System. All PCR reactions were carried out in triplicate using

TaqmanH gene expression assay Mm00515662_m1 for DHFR and

Mm99999915_g1 for GapdH (Applied biosystems). Relative

quantification of gene expression was calculated based on the

comparative cycle threshold (Ct) method.

BrUTP labeling, immunolabeling and fluorescent in situ
hybridization

Nascent RNA run-on immunolabeling was performed as

described previously [38,39]. Briefly, cells were detergent

permeabilized with 0.05% TritonX-100 (Sigma, Chemical Co.),

and 10U/ml RNAsin in 20 mM Tris HCl, 0.5 mM MgCl2,

0.5 mM EGTA, 25% glycerin. For run-on transcription, the cells

were incubated for 10 minutes in synthesis buffer, containing

0.5 mM BrUTP ATP, CTP and GTP. Subsequently, the cells

were treated with 1mM PMSF and 5 U/ml RNAsin, fixed in 2%

formaldehyde diluted in PBS and immunolabeled with rat anti

BrdU (Seralab) diluted 1:500.

For immunolabeling 2% formaldehyde-fixed cells were treated

with 0.5% TritonX-100 for 5 min, 100 mM Glycin for 10 minutes

and blocked in 0.5% BSA. All treatments were buffered in 1xPBS.

The primary antibodies were diluted in 1xPBS with 0.5% BSA

and 0.05% Tween20. Primary antibodies include: rabbit anti-

H3K9me2 (1:100) (Upstate, Milton Keynes, United Kingdom),

rabbit anti-H3K9me3 (1:300) [40], rabbit anti-SETDB1 (1:200)

[41], anti-EZH2 (1:1) and anti-EED(1:100) [42], rabbit anti-

TFIIH p62 subunit (1:100) (SantaCruz Biotech), mouse anti-SC35

(1:1000) (Abcam), mouse anti-histone H1 (1:500) (Imgen), goat

anti-hBrahma (N-19) (1:100) (Santa Cruz Biotechnology), rabbit

anti-H3K4me2 (1:100) (Upstate), rabbit anti-H4K16ac (1:200),

rabbit anti-H3K27me2 (Upstate), rat anti-PCNA (1:200) [43,44],

and rabbit anti-lacR (1:200) [36] and rabbit anti-MeCP2 (1: 500)

[45]. For 5-methyl-cytosine labeling cells were fixed in 4%

formaldehyde and treated as for regular immunolabeling in PBS,

but also denatured in 2N HCl for 30 min at 37uC and blocked in

10% BSA prior to immunolabeling with mouse anti-5 mC (1:50)

Figure 3. Nuclear distribution of EGFP-lacR-tagged MeCP2 domains in mouse fibroblasts. (A) The illustration shows a schematic
representation of the tested constructs: EGFP-lacR tagged (grey boxes) full-length MeCP2, C- and N- terminally-tagged, separate MeCP2 domains
(MBD, DC-terminus, TRD, C-terminus) and R133C Rett syndrome mutation (white boxes). (B) The images show EGFP-lacR-tagged MeCP2 and separate
MeCP2 domains (green signal) that were expressed for 48 hours in NIH/3T3 cells and stained with DAPI (blue signal). MeCP2 and separate MeCP2
domains localize at DAPI dense chromocenters, except for the DC-terminus. We imaged approximately 100 cells per condition. The images represent
individual optical sections of DAPI stained cells. Bar = 5 mm.
doi:10.1371/journal.pone.0069347.g003
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Figure 4. MeCP2-induced chromatin unfolding acts independently of the methyl-cytosine-binding domain. (A) The images show
AO3_1 cells (CHO-derived clone containing an amplified chromosomal region consisting of the DHFR cDNA transgene and 256 lac operator repeats)

Chromatin Unfolding by MeCP2
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(Eurogentec) in 0.5% BSA and 0.05% Tween20, buffered in

phosphate buffer pH7.4,

For fluorescence in situ hybridization, cells were fixed in 4%

formaldehyde on ice, treated with 100 mM Glycin and 0.1N HCl,

permeabilized with 0.5% Triton X-100 and 0.5% Saponin,

buffered in 1xPBS [46]. Denaturation was buffered in SSC

(0.15 M NaCl, 0.015 M sodium citrate) and carried out at 78uC in

2xSSC containing 50% formamide and 10% dextran sulfate. The

probe was labeled following the instruction of the manufacture by

nick translation with a DIG and biotine tag (Roche) Hybridization

of the lac operator octamer probe occurred overnight at 37uC in

deionized formamide with 0.1x COT DNA and 0.05x Sonicated

Salmon sperm (Roche). The cells and probe (25 ng) were

denatured and hybridized in 50% formamide and 10% dextran

sulfate. Posthybridization washes were carried out with 26 SSC-

50% formamide at 45uC. Probe detection proceeded at room

temperature in 46 SSC containing 5% (w/v) nonfat dried milk.

Antibodies used to detect DIG and biotine tagged probes are

FITC-conjugated streptavidin, mouse anti-DIG. donkey anti-

rabbit and donkey anti-mouse labeled with Cy3 or Cy5. All slides

were stained with DAPI and embedded in vectashield.

Image acquisition
Cells were imaged using a Zeiss LSM 510 (Zeiss, Jena,

Germany) confocal laser scanning microscope equipped with a

Zeiss Plan-Apochromat 636/1.4 oil immersion objective or a

Zeiss plan neofluar 636/1.25 NA oil objective. We used

multitrack scanning, employing a UV laser (364 nm), an argon

laser (488 and 514 nm) and a helium-neon laser (543 nm) to excite

DAPI staining and green/yellow and red fluorochromes. Emitted

fluorescence was detected with BP 385-470, BP 505–550 and 560

LP filters. Three-dimensional (3D) images were scanned at 512 by

512 pixels averaging 4 times using a voxel size of 200 nm axial and

60 nm lateral.

To detect the fluorescence intensity levels of the endogenously

immunolabeled MeCP2 and exogenous transfected fluorescently

tagged MeCP2, a tile scan was made of 64 tiles of 512 by 512

pixels/tile.

Image analysis

that were transfected (green signal) with EGFP-lacR (control) or EGFP-lacR-tagged full-length MeCP2, -VP16 and -MeCP2 separate domains (i.e. MBD,
DC-terminus, TRD, C-terminus and R133C Rett syndrome mutation). The images show a typical representation of cells transfected for 48 hours. For
quantitative analysis 30 nuclei per condition were measured with comparable microscopical set-up. The images represent examples of individual
optical sections. Bar = 5 mm. (B) The figure shows the changes in lacO array large-scale chromatin structure measured with a 3D image analysis
parameter, i.e. the surface factor. The surface factor determines the surface of a given chromosomal domain/object normalized to the surface of a
sphere with an equal volume [43]. The distribution of the surface factor measurements is plotted as a box-plot. The second and third quartiles of the
observed values are within the box, the median value is shown by the white horizontal line, the whiskers show the first and fourth quartiles of the
observed values, dots are the outliers. The dotted line represents the ,20% of cells in the EGFP-lacR control population that exhibit a mildly
decondensed array (see also [69]). Considering a population (20%) of control cells exhibiting a decondensed configuration as the threshold of MeCP2-
induced decondensation, the following percentages are found for lacR control 18%, VP16 68%, MeCP2 full length 47%, MBD 23%, DC-terminus 23%,
C-terminus 47% and R133C 50%). We scored the chromatin structure based on the surface factor in the full cell population. Based on our statistical
analysis the EGFP-lacR tagged VP16, MeCP2 (full length) and the R133C population are significantly different from EGFP-lacR control, whereas EGFP-
lacR tagged MBD, TRD, C-terminus and DC-terminus, are not significantly different from EGFP-lacR (for p values see Table 1). (C) The figure shows the
intensity of the transfected constructs measured within the lacO chromsomal array and plotted versus the chromatin surface factor measurements of
the respective cells (I: Control, VP16 and MeCP2, II: MBD, TRD, C-terminus, DC-terminus and R133C). The Pearson correlation coefficient (R) of the
intensity of the transfected constructs and the determined surface factors are given.
doi:10.1371/journal.pone.0069347.g004

Table 1. Statistical evaluation of the chromatin structural
analysis.

Populations analyzed p-value

Control – VP16 p = 0.0000304522

Control – Full length MeCP2 p = 0.0000954561

Control – MeCP2R133C p = 0.000273529

Control – MeCP2 C-terminus p = 0.0125739

Control – MeCP2 TRD p = 0.0135758

Control – MeCP2 MBD p = 0.148108

Control – MeCP2DC-terminus p = 0.346096

Statistical evaluation of the differences in chromatin structure after targeting
EGFP-lacR tagged constructs. Rows 1 through 7 show the comparison between
control cells transfected with EGFP-lacR and cells transfected with EGFP-lacR-
tagged full-length MeCP2, EGFP-lacR-tagged VP16 and EGFP-lacR-tagged
separate MeCP2 domains (i.e. C-terminus, MBD, TRD, DC-terminus, R133C Rett
syndrome mutation). Since the data are not normally distributed and do not
have a shared variance, we used Wilcoxon nonparametric statistical testing
corrected for multiple testing (Bonferoni) [48]. The p-values are shown,
indicating the probabilities that two populations are different choosing a cut-
off value of p = 0.007. Based on this analysis the EGFP-lacR tagged VP16, MeCP2
(full length) and the R133C population are significantly different from EGFP-lacR
control, whereas EGFP-lacR tagged MBD, TRD, C-terminus and DC-terminus, are
not significantly different from EGFP-lacR.
doi:10.1371/journal.pone.0069347.t001

Table 2. The presence of MeCP2 associated factors at the
amplified chromosomal array upon MeCP2 targeting.

Labeling control MeCP2 Transfection control MeCP2

H3K9me2 +/2 +/2 H1 +/2 +/2

H3K9me3 +/2 +/2 RNAPII 2 2

H1 +/2 +/2 TFIIB 2 2

EZH2 +/2 +/2 CREB 2 2

EED 2 2 Dnmt1 + +

TFIIHp62 2 2 Dnmt3b 2 2

hBrahma 2 2 HP1a + +

H3K4me2 2 2 HP1b + +

H4K16ac 2 2 HP1c + 2

H3K27me2 2 2

SC35 2 2

SETDB1 2 2

mCpG + +

Various factors were assayed at light microscopical level for their presence at
the amplified chromosomal array in the AO3_1 clone (CHO derived clone
containing an amplified chromosomal region consisting of the DHFR cDNA
transgene and 256 lac operator repeats). Immunolabeling or co-transfection
were performed upon expressing EGFP-lacR (control) or EGFP-lacR-MeCP2.
Localization at the array is scored as (+) present, (+/2) infrequently present or
(2) absent.
doi:10.1371/journal.pone.0069347.t002
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For quantitative analyses approximately 30 nuclei were imaged

with comparable microscopical set-up. To quantitatively analyze

changes in large-scale chromatin structure, we applied 3D image

analysis tools (the Huygens system 2 software package; Scientific

Volume Imaging, Hilversum, The Netherlands) as described

previously [35,47]. Briefly, 3D images of the amplified chromo-

some region are acquired after which the EGFP-lacR- labeled

chromosome region is automatically identified. Specific features of

the LacO array (3D structure, volume and intensity) are

subsequently calculated using Huygens software. To assess the

3D chromatin structure, we used a parameter termed the surface

factor, which represents the surface of a given chromosomal

domain/object normalized to the surface of a sphere with an equal

volume [43]. A surface factor of 1 therefore represents a perfectly

spherical structure, whereas a lower value represents a more

furrowed structure, such as a decondensed chromatin domain.

The distribution of the calculated surface factors (,30 nuclei per

variable) is plotted in a box-plot. The second and third quartiles of

the surface factor values are within the box, the median value is

shown by the thick horizontal line, the vertical small lines show the

first and fourth quartiles of the observed values. Since our surface

factor data is not normally distributed (as tested with Shapiro

Wilktest rejecting the null hypothesis that the data are normally

distributed with p,0.05, p values see S1) and exhibits an unequal

variance (Variance Equivalence test), we used the Wilcoxon

nonparametric test [48] corrected for multiple testing (Bonferroni,

p = 0.07) to calculate the P-value giving the probability that the

control population (cells expressing EGFP-lacR) and the test

population (cells expressing EGFP-lacR tagged MeCP2, separate

MeCP2 domains or VP16 protein) are significantly different from

each other. For the expression level measurements, the intensity of

the transfected constructs at the lacO array was detected and

normalized to the gain and offset settings of the PMT using a

standard curve for the used parameters. The Pearson correlation

coefficient was calculated to detect the correlation between the

surface factor and the relative normalized intensities.

To depict variable expression levels of fluorescently tagged

MeCP2, expression levels were measured using imageJ on both

single scanned cells as well as tile-scanned images. Cells were

masked and the nuclear counterstain intensities normalized.

Photobleaching experiments
For FLIP and FRAP experiments, microscopes were equipped

with an objective heater and cells were examined in microscopy

medium (137 mM NaCl, 5.4 mM KCl, 1,8 mM CaCl2, 0.8 mM

MgSO4, 20 mM D-glucose and 20 mM HEPES) at 37uC. FRAP

and FLIP analysis was performed as described previously [49].

FRAP was used to measure the mobility of GFP-HP1cin- and

outside of the array visualized by mCherry-LacR. Briefly, images

were taken at 5126512 pixels (0.0460.04 mm), 1.60 ms per frame,

zoom 7. After 10 images, a square of 56656 pixels was bleached

for 10 scans (total time = 1.1 s) and recovery was measured for at

least 60 images at a 2-second time interval. The data was

normalized to the original intensity before the bleach pulse by

using the equation: IFRAP = (Istrip t = t – Ibackground t = t)/(Istrip t = 0 –

Ibackground t = 0), where Istrip t = t and Istrip t = 0 represent the intensity

within the strip at t = t and the intensity before the bleach pulse

(t = 0), respectively. For graphical representation, recovery plots

were normalized between 0 and 1. FLIP analysis was used to

measure the residence times of GFP-HP1c on chromatin. Briefly,

Figure 5. MeCP2 interferes with HP1c binding. AO3_1 cells (CHO-
derived clone containing an integrated lacO array) were co-transfected
with EGFP-tagged HP1a, b or c (green signal) and mCherry-tagged lacR
or lacR-MeCP2 (red signal). (A-C) Pictures show 3D images that were
recorded of living cells. The images represent individual optical sections
and nuclei have the same scale. Bar = 5 mm. (D) The curves show
Fluorescent Recovery After Photobleaching (FRAP) data of HP1c at the
lac operator (red curve) as well as at the overall nuclear localization
(blue curve) (E) The graphs show FLIP curves of EGFP-HP1c in the
presence of mCherry-lacR-MeCP2 (red line) or mCherry-lacR (blue line).
The insets show an EGFP-HP1c and mCherry-lacR targeted cell of which
half of the nucleus is continuously bleached (only green channel is

shown). Bar = 5 mm. FLIP was measured in the bottom half of the
nucleus.
doi:10.1371/journal.pone.0069347.g005
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images of 5126512 pixels were acquired with a scan time of

1.60 ms (1x average/frame) at zoom 7 (1 pixel is 0.0460.04 mm).

After 10 images, a region of 2756150 pixels, occupying an area of

1/3 of the nucleus (excluding the lac operator array), was

continuously bleached with maximal 488 nm and 514 nm laser

intensity (AOTF 100%). EGFP-HP1c fluorescence was monitored

with low laser intensity for at least 80 images with a 2-second time

interval between images. The loss of fluorescence in the

unbleached part of the nucleus was quantified. All values were

background corrected and normalized to 1 by using the equation:

IFLIP = (Ispot t = t - Ibackground t = t)/(Ispot t = 0 - Ibackground t = 0). Curve

fitting was performed according to N1*e(l1*t)+N2*e(l
?
2*t).

Results

MeCP2 targeting causes local chromatin unfolding
To investigate the effect of MeCP2 targeting on chromatin

folding we used cell lines that enable targeting of (EGFP-lacR-

tagged) MeCP2 and separate MeCP2 domains to an integrated

lacO genomic region, that is present in a highly amplified

chromosomal domain in hamster cells (the AO3_1 and RRE_B1

clones) or as a multicopy genomic integration in human cells (the

2-6-3 clone). While the AO3_1, RRE_B1 as well as the 2-6-3 cells

allow measurements of visual changes in 3-D chromatin folding

upon targeting to the lacO array, it should be noted that the

AO3_1 and RRE_B1 cells harbor a much larger array (80 Mpb)

[35,36,50,51] compared to the 2-6-3 cells (4 Mbp). Therefore, the

impact of induced chromatin changes in 3-D folding are more

striking in the AO3_1 and RRE_B1 cells. Importantly, the 2-6-3

clone exhibits less genomic instability then the AO3_1 and

RRE_B1 clones, which makes it more suitable to study cell-cycle-

dependent chromatin folding. Moreover, the 2-6-3 clone harbors a

reporter gene containing 24 tandem MS2 repeats allowing

visualization and measurement of changes in the transcript levels

using YFP-tagged MS2 coat protein.

We generated EGFP-lacR-tagged full-length MeCP2 or sepa-

rate MeCP2 domain fusion proteins and expressed these fusions in

the different cell lines harboring lacO arrays. Analysis of 3-D

confocal images revealed that MeCP2 targeting induced extensive

unfolding of the lacO array compared to targeting lacR in AO3_1,

RRE_B1 and 2-6-3 cells (Figure 1A). MeCP2 targeting induced

unfolding of the lacO array in AO3_1 and 2-6-3 cells to the same

Figure 6. Interference with the binding of HP1c and separate HP1c domains. 2-6-3 clone (U2OS-derived clone containing a 200 copy
chromosomal array of 256 lacO repeats and a reporter gene harboring 24 repeats of the MS2 bacteriophage) were co-transfected with YFP-tagged
HP1c, HP1c CD (1–75) or HP1c CSD (92–173) (green signal) and mCherry-tagged lacR, lacR-MeCP2 or lacR-VP16 (red signal). (A–C) Pictures show 3D
images that were recorded of living cells (A–C). The images represent individual optical sections and nuclei have the same scale. Bar = 5 mm. (D) The
graphs show FLIP (Fluorescent loss after photobleaching) curves of YFP-HP1c in the presence of mCherry-lacR (control, blue line), mCherry-lacR-
MeCP2 (green line) or mCherry-lacR-VP16 (red line). (E) The graphs show FLIP curves of YFP-HP1c CSD in the presence of mCherry-lacR (control, blue
line) or mCherry-lacR-MeCP2 (red line).
doi:10.1371/journal.pone.0069347.g006
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extent as targeting of the viral activator VP16, which is known to

cause extensive chromatin unfolding (Figure 1A) [35,36,50,51].

We measured the expression level of exogenously expressed

MeCP2 compared to endogenous MeCP2 to verify the effect of

that physiological levels of MeCP2 can induce chromatin

unfolding. Fluorescent immunolabeling using MeCP2 specific

antibodies that recognize both exogenous and endogenous MeCP2

showed that mCherry-lacR tagged MeCP2 contained a ,25%

higher MeCP2 level compared to the endogenous MeCP2 level in

non-transfected cells (Figure 1B, C). Moreover, we determined

the effect of over-expression of exogenous MeCP2 on chromatin

folding. This analysis shows that cells with highly over-expressed

MeCP2 levels visually exhibit a comparable level of chromatin

unfolding (Figure 1D) compared with cells that express interme-

diate levels of lacR-MeCP2 ((Figure 1B, C).

FISH labeling of the lacO array in AO3_1 cells using lacO

probes confirmed that the MeCP2-induced unfolded structure

overlapped completely with the unfolded lacO array (Figure 1E),

showing that the EGFP-lacR visualized unfolded structure

resembles the decondensed lacO array. Since the lacO chromo-

Figure 7. Reporter gene activity upon MeCP2-induced chromatin unfolding. (A) The histogram shows luciferase activity that was measured
48h after transfecting U2OS cells with b-Gal plasmid, an 8x lacO luciferase construct and the plasmids EGFP-lacR (control) and EGFP-lacR-tagged full
length MeCP2 and separate MeCP2 domains (i.e. R133C Rett syndrome mutation, C-terminus and DC-terminus). Values are the mean 6 standard error
of 3 independent measurements. (B) AO3_1 cells (CHO-derived clone containing an amplified chromosomal region consisting of the DHFR cDNA
transgene and 256 lac operator repeats) were transfected with mCherry-lacR, mCherry-lacR-MeCP2 or mCherry-lacR-VP16 (red signal) and nascent
RNA was labeled by incorporation of BrUTP in permeabilized cells (green signal). Bar = 5 mm. (C) The histogram shows DHFR transcriptional activity of
AO3_1 cells that were transfected with EGFP-lacR (control), EGFP-lacR-MeCP2 or EGFP-lacR-VP16. Cells were sorted with the FACS and RT-qPCR was
performed on both the EGFP-positive (+) as well as on the negative (2) cell population. Data was normalized to non-transfected samples and a
transfection control was included (SAINT mix), which were both not FACS sorted. (D) The images show the 2-6-3 clone (U2OS-derived clone
containing a 200 copy chromosomal array of 256 lacO repeats and a reporter gene harboring 24 repeats of the MS2 bacteriophage) that was
transfected with MS2-YFP to visualize transcribed RNA (green signal) together with mCherry-LacR-tagged MeCP2 or VP16 (red signal detecting the
lacO array). The images represent individual optical sections and nuclei are on the same scale. Bar = 5 mm.
doi:10.1371/journal.pone.0069347.g007
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somal domain exhibits an extended fibrillar chromatin conforma-

tion in RRE_B1 cells and a compact chromatin (heterochromatic)

structure in the AO3_1 and 2-6-3 cells, we used the AO3_1 and 2-

6-3 cells for investigation of the effect of MeCP2 on epigenetic

regulation [35,47].

To study whether MeCP2-induced chromatin unfolding is cell-

cycle dependent, we analyzed cells in S-phase based on the known

accumulation of proliferating cell nuclear antigen (PCNA) into foci

in replicating cells. These experiments were performed in human

U2OS 2-6-3 cells containing a 200-copy lacO array [37]. Our data

show that MeCP2-induced unfolding occurred as frequently in S-

phase cells as it did in non S-phase cells based on transfections with

mCherry-PCNA or staining for endogenous PCNA. These results

illustrate that the MeCP2-induced chromatin structural changes are

independent of the cell-cycle stage (Figure 2A, B).[44].

MeCP2 chromatin unfolding acts independently of the
MBD domain

MeCP2 harbors a methyl-binding domain (MBD), a transcrip-

tion-repression domain (TRD) and a poorly characterized C-

terminal domain [31,52,53]. We tagged various MeCP2 sub-

domains and regions spanning the MBD, TRD, the C-terminus

and MeCP2 lacking its C-terminus (DC-terminus) or mutant

MeCP2R133C (Rett Syndrome point mutation in the MBD

domain) [54] to EGFP-lacR to identify which MeCP2 subdomain

is responsible for unfolding of the lacO chromosomal domain

upon targeting (Figure 3A). First we tested the nuclear

localization of the EGFP-lacR-tagged MeCP2 full-length and

MeCP2 separate domain constructs in mouse fibroblasts lacking a

lacO array. Similar to native full-length MeCP2, all lacR-tagged

MeCP2 fusion proteins localized to pericentromeric heterochro-

matin in the mouse fibroblasts, except for the lacR-tagged C-

terminus, which was homogeneously distributed in the nucleus

(Figure 3B). Next, we analyzed the effect of targeting EGFP-lacR

tagged MeCP2 full-length, separate MeCP2 domains or VP16

versus EGFP-lacR (control) in the lacO-containing AO3_1 cells

(Figure 4). Targeting of lacR-tagged MBD, TRD or DC-terminus

domains did not cause chromatin unfolding into an extended

fibrillar stucture as observed with full-length MeCP2 targeting,

while targeting of MeCP2R133C did result into mild chromatin

structural changes. Targeting of the lacR-tagged MeCP2 C-

terminus caused chromatin fibrillar unfolding but also to a much

lesser extent than targeting of full-length MeCP2. Figure 4A
shows typical representations of cells transfected for 48 hours with

the respective constructs. For quantitative analysis approximately

30 nuclei per condition were imaged with a comparable

microscopical set-up (Figure 4B, C, Table S1). We quantita-

tively assessed the change in chromatin structure by measuring the

surface of the lacO chromatin domain relative to surface of a

sphere with equal volume. A perfectly spherical structure, has a

designated surface factor of 1, whereas a fibrillar unfolded

chromatin structure will have a lower surface factor, due to its

furrowed surface with equal volume. The quantitative measure-

ments mirrored our visual observations: the degree of chromatin

unfolding as observed in full-length MeCP2 (and VP16) was most

pronounced in the cells targeted by separate MeCP2 domains

containing the MeCP2 domains downstream of the MBD (i.e.

MeCP2R133C , C-terminus and TRD), while the MBD and DC-

terminus show almost a similar chromatin structure as observed

upon EGFP-lacR control targeting (Figure 4B, Table 1, Table
S1). To verify whether the amount of expressed MeCP2 has an

impact on chromatin unfolding we measured the fluorescence

intensity of the transfected constructs in the lacO chromosomal

array and we compared them with the surface factor measure-

ments. Our intensity measurements show that there is no

significant correlation between the amount of transfected construct

and the extent of chromatin unfolding as measured by the surface

factor (Figure 4C, Table S1). Our findings reveal that the

MeCP2 regions downstream of the MBD are involved in MeCP2-

induced chromatin unfolding whereas the MBD itself is dispens-

able for this phenomenon.

MeCP2-associated factors: MeCP2 targeting interferes
with HP1c binding

Through targeting to the lacO array in AO3_1 cells, we

subsequently analyzed the accumulation or displacement of a

variety of previously reported MeCP2-associated factors including

proteins and epigenetic marks related to a transcriptionally active

chromatin state (i.e. the Brahma subunit of the SWI/SNF complex

[22,24,55], TFIIB, CREB1 [15,56], RNA polymerase II, RNA

splicing factor SC35 [57], H3K4 di-methylation and H4K16

acetylation and CpG methylation) (Table 2). While the distribu-

tion of most of these factors or epigenetic marks was not altered by

targeting MeCP2, we confirmed that MeCP2 targeting interferes

with chromatin binding of linker histone H1 (FRAP data not

shown), which is compatible with the observed chromatin

unfolding [19,30–32]. Strikingly, we detected MeCP2-induced

changes in the distribution of HP1c and decided to study this in

more detail.

We recently identified an interaction between MeCP2 and the

HP1 proteins in mouse myoblast cells [3]. Co-transfection of

mCherry-lacR and EGFP-tagged HP1a, b or c in A03_1 cells

showed enrichment of all HP1 isoforms at the lacO array

(Figure 5A–C). Indeed, FRAP measurements on the mobility of

HP1c at the lacO array (visualized by mCherry-LacR) or

elsewhere in the nucleus showed that HP1c has a slower exchange

rate at the array (Figure 5D). The measured binding kinetics of

HP1c at the lacO array is in accordance with previous findings on

the binding dynamics of HP1 at pericentromeric heterochromatin

[58]. Therefore, our findings imply that HP1c binding at the lacO

array in the AO3_1 cells reflects binding at heterochromatin,

which is in agreement with the heterochromatic nature of the

array (Figure 5A–D). Strikingly, while HP1a and b remained

bound (Figure 5A, B), HP1c accumulation at the lacO array was

lost upon MeCP2 targeting (Figure 5C). We determined the

HP1c exchange rates using fluorescence loss in photobleaching

(FLIP) (Figure 5E), which identified two dynamic HP1c pools

corresponding to a freely diffusing (t1/2,3 s) or a transiently

chromatin-bound population (t1/2,50 s) (Figure 5E). LacR-

transfected cells displayed reduced HP1c mobility at the array

(37%, t1/2 = 52 s), indicating efficient retention of HP1c at the

array. Strikingly, the proportion of the freely diffusing HP1c
population went up to 97% (t1/2 = 1.5 s) after targeting of lacR-

tagged MeCP2. These results confirm that MeCP2 effectively

antagonizes binding of HP1c to chromatin.

To verify our observations that MeCP2 induces HP1c
dissociation from the lacO array in AO3_1 cells, we also analyzed

this phenomenon in U2OS 2-6-3 cells (Figure 6A–E). Although

the 200 copy lacO array in the 2-6-3 clone is smaller compared to

the large amplified domain in the AO3_1 clone, we were able to

confirm the MeCP2-induced HP1c loss from the 200 copy lacO

array in the 2-6-3 clone (Figure 6A). Similar to our analysis in

AO3 cells, FLIP analysis in the 2-6-3 cells also revealed two

dynamic HP1c pools corresponding to freely diffusing (78% t1/2,
12.6 s) and chromatin-bound (22%, t1/2,86.6 s) HP1c pools. As

in AO3 cells, MeCP2 targeting markedly shifted the proportion of

freely diffusing HP1c molecules towards 99.9 % in 2-6-3 cells,

while 0.1% remained chromatin bound (Figure 6D). Similar to
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MeCP2 targeting, we found that the viral activator VP16 induced

a comparable shift in HP1c mobility in 2-6-3 cells (i.e. 98% freely

diffusing and 2% chromatin-bound; Figure 6A, D).

To gain more insight into the MeCP2-induced HP1cdissocia-

tion from the lacO array upon chromatin unfolding, we analyzed

the ability of MeCP2 to displace two separate HP1c domains, the

chromodomain, CD (1–75), which mediates HP1 binding to

H3K9 tri-methylation, and the chromoshadow domain, CSD (92–

173), which mediates HP1 dimerization and binding to a number

of other proteins [59]. The HP1c CSD domain localized at the

lacO array upon targeting mCherry-tagged lacR whereas MeCP2

targeting triggered the displacement of the HP1c CSD from the

lacO array (Figure 6B, C). The distribution of the HP1c CD was

not affected upon MeCP2 targeting. FLIP analysis confirmed these

findings and revealed that the mobility of the HP1c CSD at the

lacO array in control cells was similar to the full-length HP1c as

freely diffusing (73% t1/2, 8.77 s) and chromatin-bound (27%, t1/

2,57.8 s) pools could be detected. Upon targeting mCherry-lacR

tagged MeCP2, a striking shift towards freely diffusing HP1c CSD

molecules (92%) could be measured, while only a small fraction

remained chromatin bound (8%; Figure 6E). These experiments

suggest that MeCP2-induced displacement of HP1c is mediated

through its CSD.

MeCP2 targeting does not change the genomic
transcriptional state

To test whether lacR-tagged MeCP2 and MeCP2 subdomains

modulate gene activity at the promoter level, we measured gene

expression levels of a transfected plasmid containing a luciferase

reporter gene fused to 8 lacO copies [35]. Targeting LacR-tagged

MeCP2, MeCP2R133C and DC-terminus to a transiently expressed

lacO-containing luciferase reporter gene in U2OS cells signifi-

cantly repressed luciferase expression (60–70%) compared to

targeting only lacR (Figure 7A). In contrast, targeting the C-

terminal domain of MeCP2 caused repression to a moderate

extent (,25%) (Figure 7A). Taken together, these results

demonstrate that the lacR-tagged MeCP2 protein is able to

repress gene activity of a transiently expressed luciferase reporter

gene plasmid. To address the effect of MeCP2 on gene activity at

an integrated genomic locus, we assessed whether MeCP2

influences transcription of genes embedded in the lacO array

integrated in the genome of AO3_1 cells. The MeCP2-induced

unfolded chromatin structure in AO3_1 cells did not show

enrichment of BrUTP-labeled transcripts from the DHFR

selection gene compared to lacR-targeted control cells

(Figure 7B). In contrast, a considerable increase in BrUTP-

labeled transcripts was observed at the VP16-induced unfolded

chromatin structure of the lacO chromosomal domain [50,51]

(Figure 7B). Corroborating these findings, we performed RT-

qPCR analysis of the DHFR reporter gene upon MeCP2 targeting

and subsequent FACS sorting of the transfected AO3_1 cells. Our

results show that the DHFR reporter gene expression was not

significantly altered compared to lacR-targeted control cells,

whereas VP16 targeting resulted in significantly enhanced

expression levels of the reporter gene (Figure 7C). In addition,

we employed the 2-6-3 clone to visualize MeCP2-induced changes

in transcript levels [37]. Expression of MS2-YFP to visualize

nascent transcripts showed that MeCP2 targeting did not activate

transcription at the locus although significant unfolding of the

chromosomal array was observed. Conversely, VP16 targeting

induced significant accumulation of MS2-YFP-bound transcripts

at the chromosomal array compared with MeCP2 targeting or

lacR control targeting (Figure 7D). Taken together, we show that

decondensation of the amplified chromosomal array upon MeCP2

targeting does not coincide with a change in gene activation.

Discussion

Regulation of mammalian gene expression is a tightly controlled

process. Mistakes in gene expression control can have far-reaching

consequences, such as the manifestation of various developmental

disorders or cancer. Mutations in the epigenetic regulatory protein

MeCP2 underlies the developmental disorder known as Rett

Syndrome [60]. Still, the molecular mechanisms underlying

MeCP2-induced context-dependent functioning are largely unre-

solved. Post-translational MeCP2 modifications, changes in the

MeCP2 genomic binding sites or regulation through MeCP2 co-

factors likely influences whether MeCP2 acts as a transcriptional

repressor or activator [60].

Here we provide evidence that direct targeting of MeCP2 as an

EGFP-lacR tagged protein to a lacO-containing chromosomal

domain induces extensive chromatin unfolding. Previous studies

have shown that the lacR-lacO targeting system is a very powerful

method to define the induced effect of (epigenetic) regulatory

proteins on genomic behavior [35–38]. Engineered targeting

systems allow to systematically unravel the cause-effect chain of the

epigenetic state, chromatin folding, nuclear location and gene

activity advancing our understanding of the principles of

functional genome organization. We show that MeCP2 binding

to native chromatin in intact cells triggers extensive chromatin

unfolding and that the MBD is not required for this effect. In

contrast to our findings, previous in vitro studies showed that

binding of the C-terminal domain of MeCP2 to reconstituted

nucleosomal arrays results in chromatin compaction [20,28]. It

should be noted that reconstituted nucleosomal arrays lack higher-

order chromatin structure and could therefore respond differently

to MeCP2 binding than chromatin embedded in the nucleus. In

intact mouse myoblasts, overexpression of MeCP2 is shown to

induce the MBD-dependent clustering of chromocenters during

myogenic differentiation [10]. MeCP2 is a striking example of an

intrinsically unstructured protein having a large number of regions

predicted to acquire structure when complexed with binding

partners [61]. The C-terminal portion of MeCP2 is known to be

required for chromatin interactions, it harbors the Group II WW

domain-binding motif required for splicing factor binding and the

SPxK DNA-binding motif found in histone H1 [19]. Most likely,

MeCP2 functioning depends on the type of chromatin and the

MeCP2 domain involved. MeCP2 and histone H1 have been

shown to compete for chromatin binding sites in vitro and in vivo

[19,32]. It has been suggested that a complex competitive

equilibrium between MeCP2 and histone H1 for nucleosome

and chromatin binding exists and that other competing chromatin

binding proteins can affect this histone H1-MeCP2 binding

equilibrium [21]. Such context-dependent in vivo functioning of

MeCP2 is further underscored by a recent study demonstrating

the unique physical properties and interaction domains of MeCP2

[21].

Several studies hint at a relationship between DNA methylation

levels, the presence of methyl-CpG-binding proteins and changes

in chromatin structure. For instance, a genome-wide loss of H3K9

di-methylation and a progressive increase in H3K9 acetylation, as

well as increased chromocenter clustering was observed in mouse

embryonic stem cells lacking DNA methyltransferases Dnmt3a

and Dnmt3b. Moreover, during myogenic differentiation, over-

expression of methyl-CpG-binding proteins induced increased

DNA methylation levels and chromocenter clustering, indepen-

dent of the H3K9 histone methylation pathway and requiring the

Chromatin Unfolding by MeCP2

PLOS ONE | www.plosone.org 11 July 2013 | Volume 8 | Issue 7 | e69347



MBD domain of MeCP2. We detected in situ CpG methylation

both at the MeCP2-induced unfolded chromatin and the non-

MeCP2 induced compact chromatin which is in line with our

observations indicating that the chromatin unfolding is indepen-

dent of the MeCP2 MBD domain.

Interestingly, we show that MeCP2 interferes with HP1c
chromatin binding. Our FRAP analysis shows similar kinetics of

HP1c at the lacO chromosomal domain as previously measured at

mouse heterochromatic sites [58,62]. The MeCP2-binding-

induced release of HP1c is reflected by the loss of local HP1c
accumulation at the lacO chromosomal domain. This MeCP2-

induced interference with HP1c is also observed with the HP1c
CSD but not with the HP1c CD, indicating that the local

(chromatin) protein composition influences the ability of MeCP2

to change the HP1c binding kinetics. Moreover, we show that the

transcriptional activator VP16 is also able to interfere with HP1c
binding upon chromatin unfolding and transcriptional activation,

illustrating that the chromatin unfolding and HP1c displacement

is not restricted to the changes induced by MeCP2. However,

while Janicki et al. showed that VP16-mediated unfolding

triggered displacement of the HP1a isoform [37], we find

MeCP2-induced chromatin unfolding to result in the selective

removal of the HP1c isoform. In breast cancer cells displacement

of HP1c is shown to precede transcriptional activation of an

integrated luciferase reporter gene [63]. In this study, hormonal

signaling triggered phosphorylation of H3S10, displacement of

HP1c and ATP-dependent chromatin remodeling resulting in an

open, transcriptionally competent chromatin structure. It is

tempting to speculate that the MeCP2-mediated chromatin

unfolding and eviction of HP1c are part of a similar mechanism

to render chromatin amenable to subsequent transcriptional

changes.

Our finding that MeCP2 mediates extensive chromatin

unfolding, while maintaining transcriptional silencing of genes

embedded within the unfolded chromatin structure, is quite

surprising. Recent evidence suggests that proteins that typically

accumulate at pericentromeric heterochromatin such as HP1 may

function as transcriptional activators, in addition to their role as

transcriptional silencer [18,64,65]. Such findings would argue that

the canonical view in which open chromatin is transcriptionally

active and closed chromatin is transcriptionally inert is too

simplistic. Our data might indicate that MeCP2-induced chroma-

tin unfolding prepares chromatin for subsequent transcriptional

regulation. Examples of changes in chromatin structure preceding

transcriptional activation have been reported for the HoxB and

MHC locus [66,67]. Moreover, biochemical analyses revealed that

transcriptionally inactive sites can occur both in compact and less

compact chromatin [68]. We propose that MeCP2-mediated

chromatin unfolding reflects an indeterminate state that facilitates

a switch in gene activity. In this scenario, the action of subsequent

regulatory factors determines the transcriptional fate of genes

embedded within chromatin that has been rendered permissive by

MeCP2. Such a role of MeCP2 fits well with recent observations in

neuronal cells, where MeCP2 is abundantly present and proposed

to act as a versatile global transcriptional regulator in concert with

other regulatory proteins [5]. Elucidating this global role of

MeCP2 in restructuring chromatin in vivo is intriguing and may aid

in understanding the pathophysiology of neurodevelopmental

disorders, such as Rett syndrome.

Supporting Information

Table S1 Quantitative data MeCP2-induced chromatin unfold-

ing. Our measurements of the surface factor and the testing for a

normal distribution of the surface factor data (Shapiro Wilktest),

the microscopical gain and offset settings and the measurements of

volume and intensity of the lacO chromosomal array are provided.

AO3_1 cells (CHO-derived clone containing an amplified

chromosomal region consisting of the DHFR cDNA transgene

and 256 lac operator repeats) were transfected with EGFP-lacR

(control) or EGFP-lacR-tagged full-length MeCP2, -VP16 and -

MeCP2 domains (i.e. MBD, DC-terminus, TRD, C-terminus and

R133C Rett syndrome mutation) and 30 nuclei per transfected

construct were measured with comparable microscopical set-up.

We applied a 3D image analysis parameter (the Huygens system 2

software package; Scientific Volume Imaging, Hilversum, The

Netherlands) as described previously [35,47]. Specific features of

the LacO array (3D structure, volume and intensity) are calculated

using Huygens software. The EGFP-lacR- labeled chromosome

region is automatically identified in the acquired 3D images, given

as the volume. Changes in lacO array large-scale chromatin

structure are measured with a 3D image analysis parameter, i.e.

the surface factor. The surface factor determines the surface of a

given chromosomal domain/object normalized to the surface of a

sphere with an equal volume [43]. We tested with Shapiro Wilktest

whether the surface factor data is normally distributed. The

intensity of the transfected constructs at the lacO array is detected,

i.e. total array intensity and normalized to the gain and offset

settings of the PMT using a standard curve for the used

parameters thereby providing the relative normalized intensity of

the transfected constructs.
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