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Retrospective lineage tracing harnesses naturally occurring mutations in cells to elucidate single cell development. Common

single-cell phylogenetic fate mapping methods have utilized highly mutable microsatellite loci found within the human

genome. Such methods were limited by the introduction of in vitro noise through polymerase slippage inherent in DNA

amplification, which we characterized to be approximately 10–100× higher than the in vivo replication mutation rate.

Here, we present RETrace, a method for simultaneously capturing both microsatellites and methylation-informative cyto-

sines to characterize both lineage and cell type, respectively, from the same single cell. An important unique feature of

RETrace was the introduction of linear amplification of microsatellites in order to reduce in vitro amplification noise.

We further coupled microsatellite capture with single-cell reduced representation bisulfite sequencing (scRRBS), to measure

the CpGmethylation status on the same cell for cell type inference. When compared to existing retrospective lineage tracing

methods, RETrace achieved higher accuracy (88% triplet accuracy from an ex vivo HCT116 tree) at a higher cell division

resolution (lowering the required number of cell division difference between single cells by approximately 100 divisions).

Simultaneously, RETrace demonstrated the ability to capture on average 150,000 unique CpGs per single cell in order to

accurately determine cell type. We further formulated additional developments that would allow high-resolution mapping

on microsatellite-stable cells or tissues with RETrace. Overall, we present RETrace as a foundation for multi-omics lineage

mapping and cell typing of single cells.

[Supplemental material is available for this article.]

Long-outstandingquestionshave remained indevelopmentalbiol-
ogy regarding single-cell lineage.Manymethods have been recent-
lydeveloped to study theheterogeneityof cell populations through
single cell RNA, DNA, and epigenetic sequencing (Sos et al. 2016;
Cao et al. 2017; Mulqueen et al. 2018). However, a high-resolution
single-cell method for simultaneous phylogenetic fate mapping
has yet to be established. In general, there are two broad paradigms
of studying development: prospective and retrospective lineage
tracing (Woodworth et al. 2017). Methods developed for prospec-
tive lineage tracing have relied upon inducing mutations early in
development and tracing such mutations through the lifetime of
the cells or organism. Recent prospective lineage tracing methods
utilize CRISPR-Cas9-induced molecular barcodes to determine
developmental lineage of whole mice (Raj et al. 2018; Spanjaard
et al. 2018). While these methods allowed for highly multiplexed
simultaneous study of single-cell lineage and cell type, they were
limited to use in model organisms or cultured cells.

In contrast, retrospective lineage tracing methods through
the analysis of naturally occurring mutations serve as a viable
means to study developmental lineage in human cells and tissues.
The principle behind retrospective lineage tracing contends that,
by analyzing naturally occurring somatic mutations within cells,
one can determine the development of single cells without the ne-
cessity of inducing mutations. Somatic mutations of interest in-
clude single nucleotide variations (SNVs), LINE transposable
elements, and microsatellites (Evrony et al. 2015; Lodato et al.
2015; Ludwig et al. 2019). Here, we present RETrace, a method
for simultaneous retrospective lineage tracing and cell type deter-

mination for single cells through the capture of bothmicrosatellite
and DNAmethylation status from the same cells. We demonstrat-
ed that this approach successfully achieved higher resolution line-
age trees than other published methods and allows for reliable
identification of cell type.

RETrace relies upon the capture of mutations across thou-
sands of microsatellite loci for retrospective lineage tracing. The
main advantage of targeting microsatellite loci was that these gen-
erally selectively neutral sitesmutate at a high rate during cell divi-
sion through a process known as polymerase slippage (Ellegren
2004). Estimates of microsatellite mutation rates range from 10−3

mutations per locus per cell division in mismatch repair-deficient
cells, such as in some cancers, to 10−5 mutations per locus per cell
division in microsatellite-stable cell types (Sun et al. 2012). These
mutation rates are ∼10,000× higher than the estimated 10−9 muta-
tions per SNV. However, such high in vivo mutability of microsat-
ellites has meant that the in vitro capture and sequencing of
microsatellites was likewise highly error-prone. Polymerases uti-
lized for prerequisite DNA amplification have a significant chance
of introducing erroneous noise that can mask naturally occurring
microsatellite mutations. Consequently, existing methods that re-
lied upon exponential whole genome amplification (WGA) were
limited to low cell division resolutions when capturingmicrosatel-
lite loci for retrospective lineage tracing (Biezuner et al. 2016).
Here, we overcame such technical limitations of capturing micro-
satellite mutation information by implementing a linear amplifi-
cation approach to avoid exponential accumulation of errors.
Linear accumulation of replication errors can be computationally
corrected by deriving the consensus of multiple sequencing reads.
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Likewise, previous methods of microsatellite capture lacked
the capability of identifying cell types, whichwould be vital for fu-
ture phylogenetic fate mapping efforts in heterogeneous tissues.
Through selective restriction enzyme fragmentation of the ge-
nome, we have developed a means to capture the original methyl-
ation signal identifying cell type post linear amplification of
microsatellite loci. Here, we present RETrace as a method that im-
proves the current limit of cell division resolution in single-cell ret-
rospective lineage tracing and allows for simultaneous cell type
methylation study that previously has not yet been achieved.

Results

RETrace design

We developed RETrace, a novel method to capture both microsat-
ellite loci andmethylation-informative cytosines from a single cell
in order to simultaneously characterize both lineage and cell type.
Previous methods have likewise utilized microsatellites as markers
for retrospective cell lineage tracing, with increasing ability to cap-
ture several thousandmicrosatellites at a single-cell level (Frumkin
et al. 2005; Salipante and Horwitz 2006; Biezuner et al. 2016).
However, all of these single-cell methods required an initial step
of exponential multiple displacement amplification (MDA)-based
WGA in order to obtain sufficient genomic material for microsat-
ellite enrichment. We hypothesized that this initial exponential
amplification introduced noise that severely decreased the resolu-
tion of the final phylogenetic tree, as the polymerase slippage
that occurs during cell replication could just as likely introduce
noise during in vitro polymerase amplification. We designed
an experimental framework to measure the error rate of microsat-
ellite replication for five commonly utilized polymerases and
have determined that the error is approximately 10–1000× higher
per replication event than the expected in vivo microsatellite
mutation rate (see Supplemental Methods; Supplemental Fig. S1;
Supplemental Tables S1, S2). In order to limit the amount of poly-
merase slippage error introduced in vitro, we designed a strategy to
circularize DNA fragments by ligating stem–loop adapters and per-
form single-primer PCR (Fig. 1). By utilizing single-primer PCR, we
could achieve highly controlled amplification of genomic DNA as
opposed to other isothermal methods. We verified that we
achieved linear amplification through this single-primer PCR ap-
proach, as shown in Supplemental Figure S2. Thus, instead of ex-
ponential WGA, our linear amplification approach provided the
ability to prevent compounding slippage errors and improved ac-
curacy of microsatellite mutation calling.

RETrace also enables the simultaneous characterization of
single-cell epigenetic cell type through the capture of DNA meth-
ylation in the same cell. In order to capture both microsatellite
and methylation information, we utilized a dual restriction en-
zyme digestion approach for fragmenting the genome. MseI was
selected to cut near select microsatellite loci of interest, while
MspI was utilized to enrich for CpG-rich regions of the genome
similar to previously developed scRRBS methods (Guo et al.
2013). The combination of MseI and MspI restriction enzyme
dual digestion produced the greatest balance of bothmicrosatellite
and methylation-informative sites (Supplemental Table S9). In or-
der to capture the original methylation status after linear amplifi-
cation, methylated stem–loop adapters were ligated to A-tailed
DNA fragments such that only the original DNA fragments had
the proper PCR-priming sites post-bisulfite conversion.

Each single-cell reaction was divided into two postprocessing
protocols for either microsatellite or methylation capture. Enabled
by the dual restriction enzyme digestion method utilized for
RETrace, we amplified either microsatellite MseI or methylation
MspI fragments specifically using custom designed PCR primers
compatible with Illumina sequencers (Supplemental Table S3).
To enrich for microsatellites, we utilized a hybridization probe
capture approach. We designed two sets of 12,472 probes that
captured up to 11,380 microsatellite loci (Supplemental Fig. S3).
The majority of these microsatellite loci were di-nucleotide re-
peats, with 18 subunits on average according to the reference
genome, and were chosen based on expected fragment length
from the GRCh37 hg19 reference genome (International
Human Genome Sequencing Consortium 2001). There was no
appreciable difference between hg19 and newer hg38 reference
genomes, as the MAPQ score was 54.30 and 53.63, respectively,
for HCT116 target captured reads.

Ex vivo validation of retrospective lineage tracing with

microsatellite-unstable cells

In order to validate RETrace, we created an ex vivo cell culture tree
through successive single-cell expansion of anHCT116 human co-
lorectal cancer cell line (see Methods). The ex vivo tree provided a
known ground truth for determining the accuracy of RETrace ret-
rospective lineage tracing. This method of phylogenetic fate map-
ping validation was similar to those utilized previously with other
cancer cell lines that exhibited microsatellite instability, which
have an estimated 10−3 mutations per microsatellite per cell divi-
sion (Biezuner et al. 2016). Single HCT116 cells were seeded and

B

A

C

Figure 1. Overview of RETrace Method. (A) Single-cell processing in-
cludes FACS sorting single cell per well in a plate, followed by restriction
enzyme digestion, ligation of methylated hairpin loop adapters, and sin-
gle-primer PCR for linear amplification. (B) Methylation postprocessing
with bisulfite conversion followed by PCR utilizing primers specific to the
MspI cut site, which results in cell type identification. (C) Microsatellite
postprocessing with hybridization probe enrichment, which results in
building a phylogenetic tree.

Single-cell l ineage and methylation analysis
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expanded for an estimated 23 cell divisions per passage in a known
tree structure for a total of four passages from root prior to a final
sort and analysis, resulting in a tree that contained a maximum
of 184-cell division difference between single cells.

From eight different clones within the HCT116 ex vivo
tree (Fig. 2), we sorted 138 single cells through FACS, performed
RETrace processing, postprocessed with microsatellite hybridiza-
tion enrichment, and sequenced each of these for microsatellite
loci with a depth of approximately 3 million 250-bp Illumina se-
quencing reads.We performed quality filtering to select 114 single
cells that captured at least 200microsatellites (≥30 reads permicro-
satellite locus) and 30,000 unique CpG sites (≥1 read per CpG).
These cutoffs were determined empirically through analysis of
single-cell capture, nontemplate control, and bulk samples
(Supplemental Fig. S5). After filtering, 1217 microsatellites were
captured per single cell at a high sequencing depth, with approxi-
mately 388 microsatellites shared between each pair of single cells
(Supplemental Table S4).

We constructed a single-cell retrospective lineage tree (Fig.
3A) by calculating an “Equal or Not” distance between shared mi-
crosatellite allelotypes of each pair of cells (Supplemental Table S8;
Chapal-Ilani et al. 2013). In addition, we assumed that microsatel-
lite loci mutate at a similar rate across all single cells within our
HCT116 ex vivo tree and thus utilized midpoint rooting for the
neighbor-joining phylogenetic tree. We then aimed to calculate
the ex vivo tree reconstruction accuracy of RETrace by utilizing a
triplet accuracy method that had been previously developed
(Biezuner et al. 2016; Ludwig et al. 2019). Briefly, triplet accuracy
was calculated by determining whether the most recent common
ancestor was accurately identified per every possible trio of single
cells derived from at least two different clones within the phyloge-
netic tree. A baseline of 33% accuracy was expected for a complete-
ly random tree. RETrace triplet accuracy for the reconstructed
HCT116 ex vivo tree was 88% across all possible single cell triplets
derived from the eight clones analyzed.

Tree accuracy generally is controlled by twomain factors: the
inherent accuracy of the method for retrospective lineage tracing
and the number of mutations expected between single cells in
the tree, which is highly dependent on the number of cell divi-
sions between each node. High-accuracy retrospective tree recon-

struction becomes increasingly difficult with a lower number of
cell division differences between single cells, as the number of mi-
crosatellites expected to be different between the two cells drops.
We consequently aimed to determine the triplet accuracy of
RETrace based on the varying number of cell division differences
among cells. In theory, those cells that are clonally proximal
with lower cell division differences may exhibit lower triplet accu-
racy than those that are clonally distal. As shown in Figure 3B,
RETrace maintained a high lineage tracing accuracy of 74% with
single cells 92 cell divisions apart, which was the highest resolu-
tion for the clones selected from the HCT116 ex vivo tree.

When compared to existingmethods for retrospective lineage
tracing, we observed that RETrace achieved a higher accuracy with
much higher resolution (Fig. 3C). Two recent methods for retro-
spective lineage tracing utilized either single nucleotide variations
frommitochondrial DNA (mtDNA) or exponential WGA followed
by microsatellite enrichment. We hypothesized that microsatel-
lites exhibit a much higher mutation rate than single base muta-
tions in mitochondria, thus contributing to the higher triplet
accuracy of RETrace. In addition, we demonstrated that the linear
amplification method in RETrace introduced lower amounts of
noise in microsatellite measurements, allowing for a gain of ap-
proximately 100 cell divisions in resolution when compared to ex-
isting microsatellite-based lineage tracingmethods. These gains in
accuracy and resolutionwere relatively stable evenwhenwedown-
sampled the number of microsatellite loci captured per single cell
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Figure 3. Retrospective lineage tracing accuracy based onmicrosatellite
capture of single cells from the HCT116 ex vivo tree. (A) Diagram of com-
plete phylogenetic tree with colors corresponding to clones from the orig-
inal ex vivo tree. (B) Accuracy of tree calling, as determined by the rate of
topologically correct triplets reconstructed, based on the varying number
of estimated cell division differences between each clone. An overall tree
accuracy of 88% was observed by using all possible triplets from the
tree. (C ) Overall tree accuracy as a function of maximum cell divisions re-
capitulated in the ex vivo tree compared to existing methods for phyloge-
netic tree mapping. Arrow indicates optimal desired results of maximizing
accuracy at lower cell division differences.

Figure 2. HCT116 ex vivo tree for method validation. Colored clones
were utilized for RETrace validation. Important microsatellite and methyl-
ation statistics per analyzed single cell are highlighted above.

Wei and Zhang

604 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.255851.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.255851.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.255851.119/-/DC1


to 800, with the potential for improvement with further develop-
ment of largermicrosatellite probe sets (Supplemental Figs. S6, S7).

Ex vivo validation of simultaneous methylation characterization

With RETrace, we were able to simultaneously capture the DNA
methylation status for each single cell processed from the ex vivo
HCT116 single cell tree. Asmentioned above, we obtained 114 sin-
gle cells after filtering for adequate microsatellite (200 loci) and
methylation (30,000 unique CpG) coverage. On average, each sin-
gle cell contained ∼35% of the number of CpGs captured in bulk
(150,000 unique CpGs per single cell), which was similar to previ-
ously developed single-cell RRBS methods (number of captured
CpG sites versus cell input was summarized in Supplemental Fig.
S4). In order to determine whether RETrace was able to accurately
characterize cell type, we compared single cells to reference
ENCODE cell lines utilizing a pairwise dissimilarity method as pre-

viously described (Hui et al. 2018). We
demonstrated that the majority of single
cells were identified as HCT116 with the
lowest pairwise dissimilarity (Fig. 4A;
Supplemental Fig. S9A).

However, there was a clade of single
cells that did not strongly demonstrate
high similarity to any existing reference
cell line. Upon further investigation,
the misclassification of this outgroup
clade was most likely due to technical
causes, as single cells had a much higher
chance ofmisclassification if the number
of shared CpGs with reference cell lines
was less than 50,000 unique CpGs (Fig.
4B, Supplemental Fig. S8). In addition,
we utilized methylation rate across
Ensembl regulatory build windows in or-
der to demonstrate minimal batch effect
among all ex vivo single cell clones (Fig.
4C). In conclusion,wedemonstrated that
RETrace accurately characterized single
cell type through methylation profile
while simultaneously recapitulating
lineage.

Application and proposed

improvements to RETrace for

microsatellite-stable cells

As demonstrated with the HCT116
ex vivo cell culture, RETrace simultane-
ously produced highly accurate phylo-
genetic lineage and methylation cell
type characterization for microsatellite-
unstable cells. This would prove useful
for retrospective phylogenetic fate map-
ping of human tissues that exhibit high-
er rates of microsatellite mutation, such
as mismatch repair-deficient human
cancers. However, future optimizations
would be required for applying RETrace
toward the study of normal human tis-
sues, which exhibit significantly lower
rates of microsatellite mutations, around

10−4 to 10−5 mutations per locus per cell division (Ellegren 2004).
To demonstrate the potential to apply RETrace to human tissues
and propose necessary areas of improvement, we applied our
method to a microsatellite-stable U87MG ex vivo cell culture and
nuclei derived from adult human postmortem brain.

We processed and analyzed 61 single U87MG cells and 137
neuronal and nonneuronal nuclei from adult human cortex, cere-
bellum, and hippocampus. On average, we obtained 270,000
and 162,000 unique CpGs per single cell for U87MG and brain, re-
spectively, which was comparable to the HCT116 RETracemethyl-
ation coverage (Supplemental Tables S6, S7). In order to determine
the accuracy of RETrace to identify cell type, we utilized a similar
approach of calculating methylation pairwise dissimilarity with
reference data. For U87MG, single-cell methylation was compared
with shared sites in available ENCODE reference cell lines. As
expected, all of the single cells displayed the lowest pairwise dis-
similarity with U87MG reference methylation data (Fig. 5A;
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Figure 4. RETrace methylation characterization of HCT116 single cells. (A) Heat map utilizing z-scores
of pairwise dissimilarity against ENCODE reference cell lines for each single cell. Column colors above the
heat map denote the clone from which each single cell was derived. (B) Plot of pairwise dissimilarity be-
tween single cells and HCT116 versus the number of shared CpG sites. Colors correspond to the out-
group identified in the pairwise dissimilarity heat map. Higher pairwise dissimilarity from HCT116 was
most likely due to lower coverage of informative CpG sites. (C) UMAP of all CpGs within the Ensembl reg-
ulatory build windows for all analyzed single cells (colors indicate ex vivo cell clone).
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Supplemental Fig. S9B). To evaluate RETrace for methylation
profiling in heterogeneous tissues, we then analyzed postmortem
brain nuclei derived from cortex, hippocampus, and cerebellum
from a single individual. Ground truth was established by
utilizing NeuN antibody staining and FACS sorting, followed by
processing all nuclei in a single RETrace experiment to eliminate
batch effect. By comparing cortical nuclei to previously published
neuronal methylation data, we verified that NeuN− nuclei dis-
played high pairwise dissimilarity from both excitatory and inhib-
itory neuronal subtypes as expected (Fig. 5B; Luo et al. 2017). Our
ability to separate methylation profiles of heterogeneous tissue
types was also supported by UMAP clustering demonstrating clear
separation that follows the ground truth neuronal nuclei labeling
(Fig. 5C).

However, further work will be required to improve the
ability of RETrace to recapitulate single-cell lineage in microsatel-
lite-stable cells. The need for improvement was apparent when
we attempted to recreate the ex vivo cell culture phylogenetic
structure of U87MG, as overall triplet accuracy was at the 33%
baseline for a random tree (Supplemental Fig. S10). This was antic-

ipated due to the lower microsatellite
mutation rate of approximately 10−5mu-
tations per locus per cell division, as
compared to a 10−3 mutation rate in
microsatellite-unstable cells. On average,
829 microsatellite loci were captured
per single U87MG cell, with 144 shared
per pair of cells. Even at the maximum
184-cell division difference between sin-
gle cells, we would expect less than a sin-
gle mutation to naturally occur between
a pair of microsatellite-stable U87MG
cells. Consequently, for lineagemapping
of microsatellite-stable cell lines or hu-
man tissues, further developments of
RETrace are necessary to improve the
counting of informative mutational
events by ∼100-fold.

There are clear paths to achieve this
goal, through covering more microsatel-
lites and mononucleotide repeats that
mutate more frequently, as well as reduc-
ing dropouts from single-cell amplifi-
cations. The current hybridization panel
targeted 11,380 microsatellite loci with
subunit lengths ranging from 2 to 6
base pairs. A straightforward strategy for
increasing mutation signal detection
would be to target a greater proportion
of the 33,560 potential MseI-fragmented
di- to hexa-nucleotide subunit microsat-
ellites, or a ∼3× improvement. Secondly,
mononucleotide single base repeats have
been previously shown to exhibit ap-
proximately a 20× higher mutation rate
in microsatellite-stable mismatch repair-
sufficient cells (Boyer 2002). Covering
an additional 66,870 mononucleotide
microsatellites found in MseI fragments
would lead to a potential 120× improve-
ment. Finally, due to the amplification
bias, the current capture efficiency is

∼10% on a single cell, such that only ∼1% of the targeted loci
would have overlap between any two cells and be informative.
One factor affecting bias in capture was the efficiency of linear
amplification, which for the current RETrace single-primer PCR
process was ∼60% (Supplemental Fig. S2). One simple strategy is
to increase the number of linear amplification single-primer PCR
cycles prior to exponential amplification. Another, more drastic
approach to improve linear amplification would be to introduce
a T7 promoter sequence in the current adapter design (Chen
et al. 2017), thus allowing for in vitro transcription to linearly am-
plify the genome to achieve an additional 100–1000× amplifica-
tion of single-cell DNA prior to PCR. Such proposed methods
would decrease amplification bias by providing a higher amount
of input template copies into library preparation PCR. A modest
3.3× improvement on the capture efficiency would translate to
10× more informative sites shared by any pair of cells. A combina-
tion of these three options would lead to 1000–3000× more infor-
mative events detected between any pair of cells and a sensitivity
of separating two cells 10–20 cell divisions apart in any human
tissues.

B

A

C

Figure 5. RETrace methylation analysis of U87MG and brain single cells. (A) Pairwise dissimilarity be-
tween each U87MG ex vivo single cells and ENCODE reference cell line data. (B) Comparison of
RETrace-processed cortical neuronal and nonneuronal nuclei and previously published excitatory and in-
hibitory neuronal subtypes accurately separate NeuN+ andNeuN− nuclei. (C) Similar separation between
neuronal and nonneuronal nuclei when analyzing the whole RETrace brain data set.
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Discussion

We present for the first time a method for simultaneous retrospec-
tive lineage tracing and methylation profiling of single cells. The
majority of previous single-cell phylogenetic fate mapping meth-
ods have relied upon exponential DNA amplification, which we
quantified to introduce error that is at least 100× higher than nat-
ural in vivomutations per DNA replication. In order to mitigate in
vitromicrosatellite slippage error, RETrace utilizes linear amplifica-
tion along with dual restriction enzyme digestion to simultane-
ously enrich for both microsatellite and CpG-rich regions. This
allowed us to perform highly accurate lineage tracing at much
higher cell division resolution with the additional ability to deter-
mine cell type. Utilizing an ex vivo microsatellite-unstable phylo-
genetic tree, we have validated that our method achieved >90%
lineage reconstruction accuracy with single cells that were at least
161 cell divisions apart. Accuracy remained above 70%when sam-
pling single cells that were only approximately 92 cell divisions
apart. This greatly improves upon any existing method for retro-
spective lineage tracing in terms of accuracy and, perhapsmore im-
portantly, resolution. At the same time, we have also verified that
RETrace simultaneously identified the correct cultured cell type,
suggesting that ourmethod can provide accuratemethylation pro-
filing in human tissues.

With the utilization of HCT116 for validation, we demon-
strated that RETrace has immediate applicability to study the
developmental history of microsatellite-unstable human cancers.
In addition, we demonstrated our ability to separate broad cellular
subtypes such as neuronal and nonneuronal nuclei in heteroge-
neous human brain tissue. However, further work is needed in or-
der to apply RETrace for retrospective lineage tracing in normal
human tissues, which feature lowermutation rates per cell division
that would impact tree reconstruction resolution.We have formu-
lated additional modifications of the RETrace method that would
lead to an improvement of >1000-fold, through expanding the hy-
bridization capture panel and increasing the yield of linear ampli-
fication. RETrace represents a major advance over previous single
cell retrospective lineage tracing methods as it provides epigenetic
information on top of lineage information. With the additional
proposed optimizations, RETrace will provide the framework for
reconstructing highly accurate single-cell retrospective lineage
trees and simultaneous epigenetic profiling on broadhuman tissue
types beyond microsatellite-unstable cells.

Methods

Ex vivo single-cell culture and neuronal nuclei collection

The goal of single-cell culture was to create a phylogenetic tree
with known structure. In order to build the ex vivo single-cell cul-
ture tree, we obtained HCT116 colorectal carcinoma cell line from
Coriell Institute and initially cultured cells in McCoy’s 5A media
(ATCC) with 1% penicillin-streptomycin (Thermo Fisher
Scientific) and 15% FBS (Thermo Fisher Scientific). Once the
HCT116 cells reached ∼75% confluency in a T-75 flask, we utilized
FACS to identify (utilizing forward and side scatter) and sort single
cells into individual wells of Nunclon Delta coated 96-well culture
plates (Thermo Fisher Scientific). These single cells were cultured
for ∼2 wk in the 96-well culture plates containing 100 µL of 75%
complete media and 25% conditioned media. Conditioned media
was prepared prior to use from another flask of HCT116 grown in
complete McCoy’s 5A media and filtered with a 0.22-µM filter.
Cells were trypsinized once confluent and transferred into a single

well of a 24-well plate containing 1 mL complete media and al-
lowed to grow for 3 d. After 3 d, the cells were again trypsinized
and transferred to a singlewell in a six-well plate. Finally, after hav-
ing grown for an additional 3 d, all cells from a single well of the
six-well plate were trypsinized and transferred into a T-75 flask.
This process of culturing from single cell to a T-75 flask was repeat-
ed three times in order to create an ex vivo tree of three generations
with approximately 23 cell divisions between each generation.
This 23-cell division estimation was derived from the approximate
number of cells in a T-75 flask at 100% confluency, or 8.4 million
cells at the time of harvest and RETrace processing.

In order to further verify accurate characterization of methyl-
ation profiles of cell types, we also processed cells derived from an
ex vivo culture of U87MG and human neuronal nuclei. A U87MG
human glioblastoma cell line was cultured using a similar ex vivo
tree method as described above with HCT116. However, one im-
portant difference between the two cell lines was that HCT116 fea-
tured a significantly higher microsatellite mutation rate (an
approximated 10−3 mutations per locus per cell division), due to
mismatch repair deficiencies, than microsatellite-stable U87MG
cells (which have approximately 10−5 mutations per locus per
cell division). The U87MG ex vivo tree was grown for a maximum
of 184-cell divisions different between single cells. Likewise, we
harvested single nuclei from cells derived from normal post-
mortem human male cortex, hippocampus, and cerebellum.
Neuronal and nonneuronal cell types were determined using
NeuN antibody (Millipore MABN140) labeling and FACS sorting.

Cell lysis, fragmentation, ligation, and amplification

Single cells were isolated and sorted directly into individual wells
of a 96-well reaction plate containing 5.34 µL of 1× lysis buffer
(10× concentration: 10× NEBuffer 2.1 [New England Biolabs],
0.703% SDS [Sigma-Aldrich], 60 fg/µL unmethylated lambda
DNA [Promega]). These cells were immediately lysed at 42°C for
30 min. Following lysis, SDS was quenched by adding 1 µL of
12.68% Triton X-100 (Sigma-Aldrich), which was incubated at
42°C for another 30 min. These cells were processed immediately
after lysis but could be stored at −80°C for long-term storage.
SDS within the cell lysis buffer disrupted the nuclear membrane
and DNA-binding proteins; this process resulted in accessibilized
single-cell DNA within each single well, which would be used for
downstream processing. All subsequent reactions up through am-
plification were performed by sequentially adding various enzyme
master mixes without the need for buffer or tube changes.

After cell lysis, DNA was fragmented and A-tailed by adding
3.32 µL of restriction enzyme cocktail containing MseI and MspI
(1× Thermo Tango Buffer, 4.7 U Thermo MseI, 47 U NEB MspI,
4.7 U Thermo Klenow exo−, 1 mM dATP, 0.1 mM dCTP, 0.1 mM
dGTP, 0.1 mM dTTP [New England Biolabs]). DNA fragmentation
and A-tailing was performed at 37°C for 3 h, followed by a 20-
min 80°C heat-inactivation. MseI was chosen to digest DNA near
select microsatellite sites, while MspI was selected for digestion of
CpG-rich genomic regions. Methylated hairpin loop adapters
were ligated onto A-tailed DNA fragments by adding 6.79 µL of li-
gation mix (1× Thermo Tango Buffer, 1 mM NEB ATP, 5% PEG
4000, 4 µM NEBNext methylated adapter, and 30 Weiss units of
Thermo T4 DNA ligase). The ligation reaction was incubated at
16°C for 30 min, followed by 10°C incubation for 18 h and 65°C
heat-inactivation for 20 min.

In order to reduce in vitro slippage noise introduced byWGA,
we performed single-primer PCR utilizing KAPA_RCA_Primer cus-
tom ordered from IDT (Supplemental Table S3) that was designed
to initiate amplification at the loop portion of the hairpin adapt-
ers. Single-primer PCR was performed by adding 8.56 µL of master
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mix (1× KAPA High Fidelity buffer, 0.3 µM KAPA_RCA_Primer, 0.3
mM NEB dNTP cocktail, and 0.5U KAPA High Fidelity polymer-
ase). Ten cycles of single-primer PCR was performed in a thermo-
cycler: 95°C for 3 min; followed by 10 cycles, each consisting of
98°C for 20 sec, 60°C for 15 sec, and 72°C for 30 sec; and finished
with a 72°C 1-min final extension. The resulting reaction (total
volume of 25 µL) was then separated into downstreammicrosatel-
lite or methylation processing.

Microsatellite enrichment

Microsatellite postprocessing was performed by taking a 5-µL ali-
quot of the single-primer PCR-amplified single-cell DNA. The pre-
processed DNA was first amplified utilizing barcoded primers
designed to specifically anneal to MseI-digested microsatellite
DNA fragments (Supplemental Table S3). Each single cell was am-
plified with a specific dual-indexed PCR primer in order to multi-
plex for sequencing. PCR was performed on the single-cell DNA
utilizing 1× KAPA High Fidelity master mix, 0.5 µM MseI-i5 PCR
primer, 0.5 µM MseI-i7 PCR primer, and 0.4× SYBR Green
(Thermo Fisher Scientific). PCR cycling consisted of 95°C for 3
min initial denaturation, followed by 25 cycles, each consisting
of 98°C for 20 sec, 60°C for 15 sec, and 72°C for 30 sec, and finished
with a 72°C 1-min final extension. PCRproduct was purified utiliz-
ing AMPure XP bead PCR cleanup by adding 0.8× SPRI beads
(Beckman Coulter) and performing two 80% ethanol washes.
Washed PCR amplicons were eluted in 20 µL water.

In order to enrich for microsatellite sequences, we designed
and produced single-stranded DNA probes that targeted 11,380
microsatellite sequences (Supplemental Fig. S3) with ∼2× tiling.
These probeswere labeledwith biotin to allow for amagnetic strep-
tavidin-coated bead pulldown for enrichment. We enriched for
the selected microsatellite sequences by utilizing the designed
DNA probes and commercially available IDT xGen hybridization
and wash kit. We performed a two-stage capture as previously de-
scribed (Schmitt et al. 2015). Briefly, all single cells for the experi-
mentwere pooled equally to a totalmass of 500 ng. A first round of
DNA hybridization was performed with 3 pmol of the biotinylated
probes, followed by xGen hybridization and washing, and 16 cy-
cles of PCR utilizing primers designed to target universal
Illumina P5 and P7 adapter regions. A second round of DNA hy-
bridization was performed with 1.5 pmol of biotinylated probes,
followed by xGen hybridization and washing, and 10 cycles of
PCR. The final PCR product was purified with 1.2× volume of
AMPure XP beads and eluted in 22 µL of water. Enrichedmicrosat-
ellite DNAwas sequenced utilizing an Illumina HiSeq 2500 paired-
end flowcell (read 1: 250 base pairs, read 2: 75 bp, index 1: 8 bp,
and index2: 8 bp) at a targeted depth of approximately 3 million
reads per single cell. Because reads were required to span the entire
microsatellite sequence, we only utilized the 250-bp read 1 se-
quences for microsatellite calling.

Bisulfite conversion and methylation sequencing

Methylation postprocessing was performed by taking the remain-
ing 20 µL of the single-primer PCR-amplified amplified single-cell
DNA. In order to determine methylation status, we first bisulfite-
converted the DNA fragments by adding the PCR amplicons
directly into Zymo EZ DNA Methylation-Direct conversion re-
agent. Each single cell was converted in individual tubes such
that samples were not cross-contaminated. Bisulfite conversion
was performed according to the manufacturer’s specifications
and eluted in 26 µL of water.

Because of the use of methylated hairpin loop adapters for li-
gation, the primer binding sites for the adapter regions were con-

served in the original DNA fragments and not the single-primer
PCR fragments post-bisulfite conversion. This allowed us to distin-
guish and amplify the original methylation signal from MspI-di-
gested fragments. PCR was performed on the bisulfite-converted
DNA utilizing 1× KAPA High Fidelity master mix, 0.5 µM MspI-
i5 PCR primer, 0.5 µM MspI-i7 PCR primer, and 0.4× SYBR
Green. PCR cycling consisted of 95°C for 3 min initial denatura-
tion, followed by 32 cycles of 98°C for 20 sec, 60°C for 15 sec,
and 72°C for 30 sec, and finished with a 72°C 1-min final exten-
sion. PCR products were purified utilizing AMPure XP bead PCR
cleanup by adding 0.8× SPRI beads and performing two 80% eth-
anol washes. Purified PCR amplicons were eluted in 20 µL water,
pooled, and sequenced utilizing the Illumina MiSeq paired-end
platform (minimum read lengths of read 1: 75 base pairs, read 2:
75 bp, index 1: 8 bp, and index 2: 8 bp) at a targeted depth of ap-
proximately 1 million reads per single cell.

Microsatellite data processing

Microsatellite loci enriched by hybridization probe capture were
utilized for retrospective phylogenetic fate mapping. Raw HiSeq
reads were adapter-trimmed and filtered for bases with aminimum
Phred score of 20 by utilizing Cutadapt and Trim-Galore (Martin
2011). Trimmed single-end reads from each single cell were
mapped to the GRCh37 hg19 reference genome using BWA-
MEM aligner with default values (Li and Durbin 2009). Single cells
were filtered to contain a minimum of 200 microsatellites (≥30
reads per microsatellite locus) and 30,000 unique CpG sites (≥1
read per CpG).

One difficulty of microsatellite genotyping is the necessity to
separate true microsatellite allelotypes from potential polymerase
slippage noise. We aimed to limit such noise both experimentally
through several cycles of linear amplification prior to microsatel-
lite enrichment and bioinformatically by adjusting for microsatel-
lite stutter noise. In order to adjust for in vitro slippage error, we
utilized HipSTR to calculate single-cell microsatellite allelotypes
(Gymrek et al. 2017). De novo stutter modeling was performed
by running HipSTR on all single cells simultaneously using default
values. HipSTR allelotypes were filtered to require a minimum 0.7
posterior probability of the genotype call. The resulting microsat-
ellite allelotype consisted of a list of diploid microsatellite subunit
counts for each single cell (Supplemental Table S5).

In order to reduce the effect of spurious microsatellite allelo-
type calls, we calculated a pseudobulk from all single cells for each
targeted microsatellite and removed calls that were not within a
distance of one subunit from any other existing single cell within
the sample. In order to calculate the distance between each single
cell, we utilized an “Equal or Not” distancemetric as previously de-
scribed (Chapal-Ilani et al. 2013). Briefly, given cells i and j, set {L}
number of microsatellites shared between each, and set of alleles
{Allelotypel}, l∈L for each single cell, the distance between each
single cell D(i, j) was calculated as

D(i, j) = 1
L

∑

l[{L}

min
Al
i ⊖ Al

j

2

( )
,

where

Al
i = {(ali,x . . . a

l
i,x+n) | 0 ≤ x ≤ n},

Al
j = {(alj,y . . . a

l
j,y+n) | 0 ≤ y ≤ n},

n = min(length(Allelotypeli), length(Allelotypelj).

With pairwise “Equal or Not” distances calculated for each pair of
single cells, we utilized a neighbor-joining approach to build the
phylogenetic fate map for the single cells. Because the ex vivo
tree from which each single cell was derived contained a single
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cell type (HCT116), wemade a reasonable assumption that the rate
of cell division was constant. Consequently, we rooted the final
phylogenetic tree at its midpoint. Phylogenetic bootstrapping
was performed to determine the robustness of each reconstructed
tree node by resampling single cells (leaves) from the tree 1000
times. Tree reconstruction accuracy was calculated by analyzing
whether the most recent common ancestor was correctly identi-
fied for each trio of single cells as previously described (Biezuner
et al. 2016).

Methylation data processing

Bisulfite-converted product for each single cell from the HCT116
ex vivo tree was sequenced to approximately 125,000 paired-end
reads on aMiSeq. Themethylation status of all cytosineswas deter-
mined utilizingmethylpywith default settings in addition to qual-
ity trimming bases with minimum Phred quality score of 30
(Schultz et al. 2015). Single cells were filtered as previously de-
scribed by keeping cells that captured at least 200 microsatellites
(≥30 reads per microsatellite locus) and 30,000 unique CpG sites
(≥1 read per CpG).

In addition, ENCODE RRBS data for all cell lines (except for
low-coverage HUES66 and H7-mESC) were downloaded and pro-
cessed similarly with methylpy. We compared each single cell to
all ENCODE reference cell lines by calculating pairwise dissimilar-
ity for all shared cytosines in a CGN context. Briefly, pairwise dis-
similarity was a previously developed single-cell methylation
metric for determining methylation state by comparing methyla-
tion rate of shared CpGs between each single cell and reference
cell line (Hui et al. 2018). Pairwise dissimilarity was calculated as
follows given single cell i and reference cell line j, set {M} of all pair-
wise shared CpGs:

PD = 1
M

∑

m[{M}

abs(methRatei,m −methRate j,m)× 100.

Wecalculated PDbetween each pair of single cell and reference cell
line. We hypothesized that HCT116 would have the lowest pair-
wise dissimilarity with each single cell. In order to visualize this,
we plotted all pairwise dissimilarities on a Python seaborn heat
map with z-scores calculated within each single cell.

In order to determine batch effects across ex vivo single
cell clones, we also plotted a UMAP based on the rate of methyla-
tion within each Ensembl hg19 regulatory build window
(Mulqueen et al. 2018). The methylation rate was calculated by
taking the ratio of reads exhibitingCpGmethylation foundwithin
regulator buildwindows.We then utilized nonnegativematrix fac-
torization and plotted features utilizing UMAP (McInnes et al.
2018). Pairwise dissimilarity and methylation rate analysis was re-
peated for U87MG single cells and nuclei derived from adult hu-
man cortex, hippocampus, and cerebellum. This demonstrated
accurate cell type identification using methylation signal derived
from RETrace.

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE136089. The RETrace microsatellite data generated in this
study have been submitted to the NCBI BioProject database
(https://www.ncbi.nlm.nih.gov/bioproject/) under accession
number PRJNA560947.
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