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Abstract

P-bodies are cytoplasmic condensates that accumulate low-translation mRNAs for temporary 

storage before translation or degradation. P-bodies have been best characterized in yeast and 

mammalian tissue culture cells. We describe here related condensates in the germline of animal 

models. Germline P-bodies have been reported at all stages of germline development from 

primordial germ cells to gametes. The activity of the universal germ cell fate regulator, Nanos, 

is linked to the mRNA decay function of P-bodies, and spatially-regulated condensation of P-body 

like condensates in embryos is required to localize mRNA regulators to primordial germ cells. 

In most cases, however, it is not known whether P-bodies represent functional compartments or 

non-functional condensation by-products that arise when ribonucleoprotein complexes saturate 

the cytoplasm. We speculate that the ubiquity of P-body-like condensates in germ cells reflects 

the strong reliance of the germline on cytoplasmic, rather than nuclear, mechanisms of gene 

regulation.
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1. Introduction

Regulation of messenger RNAs (mRNAs) in the cytoplasm involves competition between 

two activities: translation and degradation. In a middle-ground purgatory, mRNAs are 

maintained in a silenced state, neither translated nor degraded, but stored until future 

conditions determine their fate. In eukaryotic cells, mRNAs in “purgatory” enrich in 

cytoplasmic condensates called “processing bodies” or “P-bodies” for short. P-bodies have 

traditionally been studied in cells grown in culture, such as yeast or mammalian cells, 

and are defined by the presence of a few conserved proteins (Table 1). In this review, 

we describe related condensates observed in the germline of animal models. During 

development, germ cells alternate between periods of high and low transcriptional activity 

and often rely on post-transcriptional mechanisms for gene regulation [72,90]. We first 
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survey the different types of P-body-like granules reported in gametes (oocytes and sperm), 

embryonic germline progenitors, germline stem cells, and differentiating germ cells. We 

explore the possibility that the varying “flavors” of P-bodies arose as a consequence of 

stage-specific requirements for different classes of ribonucleoprotein (RNP) complexes. We 

discuss connections between the universal germ cell fate regulator Nanos and P-body RNPs. 

Finally, we discuss whether germline P-bodies are functional compartments or “incidental 

condensates”, non-essential condensation by-products that arise when sub-soluble RNP 

complexes saturate the cytoplasm.

1.1. What are P-bodies?

P-bodies were first described in mammalian tissue culture cells as microscopic puncta 

containing enzymes that remove mRNA caps (decapping factors 1 and 2, Dcp1/2) and 

degrade mRNAs in the 5′ to 3′ direction (Xrn1 exonuclease) [111,5]. Genetic analyses, 

primarily in yeast, indicated that P-bodies assemble around translationally-repressed, 

partially deadenylated mRNAs bound by distinct protein complexes at their 5′ and 3′ ends 

[91]. The cap-associated 5′ complex includes Dcp1/2 and their regulators (e.g. the enhancer 

of decapping Edc3) [32,98]. The 3′ complex includes Xrn1 and the scaffold protein Pat1 

and the Lsm1–7 RING complex which recognizes short poly-A tails [107,14]. The 5′ 
and 3′ complexes interact with each other and with another essential P-body protein, the 

DEAD-box ATPase and translational repressor DDX6 (Dhh1p in yeast) [22,28,76], leading 

to a model in which the mRNA folds in a closed loop [27]. This configuration is thought to 

keep mRNAs out of the translational pool by blocking access to initiation factors (targeting 

the cap) and poly-A binding protein (targeting the poly-A tail), both of which are absent 

from P-bodies (reviewed in [27]). P-bodies have been proposed to form by liquid-liquid 

phase separation, a spontaneous process that causes multivalent complexes to de-mix from 

the cytoplasm to form dense condensates. In support of this view, seven P-body proteins 

have been reported to form co-condensates in vitro [23].

P-bodies were initially proposed to correspond to sites of mRNA decay [91] but subsequent 

studies showed that P-bodies are not essential for mRNA degradation, mRNA decay 

intermediates appear outside of P-bodies, and transcripts in P-bodies can exit P-bodies 

and become translated [9,16,34,44]. In a landmark study in 2017, Hubstenberger et al. 

purified P-bodies from a human epithelial cell line by fluorescence-activated particle sorting, 

and discovered that P-bodies enrich thousands of mRNAs, representing over a third of 

coding transcripts in that cell type [47]. P-body transcripts were no less abundant than other 

transcripts but were poorly translated, as evidenced by their low ribosome coverage and 

low protein yield. Remarkably, depletion of DDX6 by RNAi was sufficient to disassemble 

P-bodies and increase the translation rate of P-body-enriched transcripts in a manner 

proportional to their enrichment [47]. The prevailing hypothesis today is that P-bodies 

serve as temporary depos for translationally repressed, but translationally competent, mRNA 

molecules and their regulators. In this review, we consider related RNA granules that 

assemble in the germline of commonly studied animal models (Tables 1–3).
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2. Gametes

2.1. P-body-like granules in oocytes are potential storage sites for translationally-
repressed maternal mRNAs

Oocytes synthesize many mRNAs for use during embryogenesis. These so-called “maternal 

mRNAs” are stored in granules that have been referred to by various names depending on 

the species (Table 1). Several oocyte granules contain canonical P-body proteins including 

the DEAD-box helicase DDX6, the translational repressor 4E-T, and the LSM-domain 

protein Lsm14 (Table 1 and references therein). Whereas yeast and tissue culture cell 

P-bodies are typically small (<1 μm) and uniform in size and composition, oocyte granules 

adopt various sizes and shapes, and contain different assortments of canonical P-body 

proteins (Table 1). For example, the grP bodies of aged C. elegans oocytes grow as large 

as 10 μm in size and segregate some components, such as the P-body protein Lsm14 

(CAR-1), to distinct sub-granule domains ([13,46,52,77]; Fig. 1A). Likewise the sponge 

bodies of Drosophila oocytes vary in size and shape, from small dispersed puncta to 

larger reticulated bodies depending on developmental stage and environmental conditions 

([125,95], Fig. 1B). In the pre-meiotic oocytes of mice, P-body proteins localize to a 

“mitochondria-associated ribonucleoprotein domain” (MARDO; previously described as 

subcortical aggregates by [19,36]; Table 1; Fig. 1C). MARDO consist of irregularly shaped 

granules which reach several microns in diameter and contain translationally repressed 

maternal mRNAs. Disruption of the MARDO leads to premature loss of MARDO localized 

mRNAs [19]. Similarly, DDX6 (Xp54) in Xenopus oocytes localizes to particulate structures 

throughout the cytoplasm as well as to the Balbiani body, a large RNA-rich aggregate that 

also contains mitochondria [58,94].

The function of oocyte granules has been tested by depleting oocytes of canonical P-body 

proteins, including DDX6. In C. elegans, loss of DDX6 (CGH-1) results in abnormally 

shaped grP bodies (as visualized by Lsm14), translational activation and destabilization 

of maternal mRNAs, and stunted oocyte development [13,12,38,4,74,77] In Drosophila, 

loss of DDX6 (Me31B) disrupts the translational repression of the maternal oskar and 

bicD mRNAs [73]. Furthermore, the P-body proteins 4E-T (Cup), Dcp1 (dDcp1), and 

Edc4 (dGe-1) contribute to the proper localization and/or stability of oskar in oocytes 

[123,17,35,62]. The DDX6 ortholog DOZI in plasmodium female gametocytes, and DDX6 

and Lsm14 orthologues (Xp54 and xRAP55) in Xenopus oocytes have also been implicated 

in translational repression [105,58,65,70].

While these studies point to a requirement for P-body proteins in translational repression, 

an outstanding question is whether mRNA storage in P-bodies is required for, or merely 

a consequence of, translational repression. In C. elegans arrested oocytes, a lacZ reporter 

mRNA carrying the translationally repressed glp-1 3′UTR localized to grP-bodies and was 

not translated, while a lacZ mRNA lacking the glp-1 3′ UTR localized to the cytoplasm and 

was robustly translated [77]. In Drosophila, grk mRNA, which is translated in oocytes, 

enriches at the periphery of P-bodies along with translational activators, whereas bcd 
mRNA, which is repressed in oocytes, enriches in the interior of P-bodies. Following 

egg activation, bcd is translated and no longer colocalizes with P-bodies [119]. These 
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experiments suggest a correlation between P-body localization and translational repression 

but do not demonstrate a causal effect. We return to this question in the concluding 

paragraphs of this review.

2.2. Dynamics of P-body-like granules increase during the oocyte-to-embryo transition

P-bodies in yeast and mammalian cells behave like liquid droplets [57] and assemble or 

disassemble in response to cellular conditions. For example, P-body assembly is enhanced 

by treatments that inhibit translation initiation, such as stress, and suppressed during mitosis 

and by treatments that block translation elongation [106,130]. Similarly, P-body dynamics 

change during the transition from the cell-cycle arrested, mostly translationally silent 

oocyte to the rapidly dividing, translationally active embryo. For example, in C. elegans, 

granule-to-cytoplasm exchange of GFP::CAR-1, as measured by fluorescence recovery after 

photobleaching (FRAP), increases by two orders of magnitude in embryos compared to 

oocytes [46]. In Drosophila, DDX6 (Me31B) dynamics also increase in embryos coincident 

with the release and translation of bcd mRNA [86]. Treatment with the aliphatic alcohol 1,6-

hexanediol, which disrupts hydrophobic interactions, prematurely increases DDX6 dynamics 

and releases bcd mRNA [86].

In addition to changing dynamics, granules also change in their composition during the 

oocyte-to-embryo transition [119,13,63,67]. For instance, in stage 9 Drosophila oocytes, 

Dcp1-containing granules do not contain the Dcp1 partner and decapping enzyme Dcp2, nor 

the 5′ – 3′ exonuclease Xrn1 (Pacman) but acquire these components later in embryogenesis 

[62,63]. Biochemical and molecular evidence suggest that Drosophila DDX6 (Me31B) 

evolves from promoting translational repression in oocytes to promoting mRNA degradation 

in embryos [117]. Similarly, P-bodies recruit the decapping activators LSM-1 and LSM-3 

coincident with the onset of maternal mRNA degradation in C. elegans embryos [38]. These 

data suggest the ribonucleoprotein (RNP) complexes in P-body-like condensates evolve 

from a storage function in oocytes to promoting RNA degradation and translation to meet 

the changing needs of developing embryos. Whether the changes in condensate dynamics 

are incidental to the changes in RNP composition or are functional and necessary to liberate 

mRNAs from a stored state remains to be determined.

2.3. The chromatoid body: a hub for post-transcriptional regulation of mRNAs in haploid 
sperm?

Unlike oocytes, sperm are not thought to transmit large quantities of mRNAs to support 

embryonic development. Developing spermatids, however, stop transcribing new mRNAs 

during genome compaction and thus rely on post-transcriptional mechanisms to regulate 

transcripts required for sperm differentiation [54,61]. The chromatoid body is a single, large 

RNA-rich granule found in the haploid spermatids of several vertebrates ([79,87]; Table 3; 

Fig. 1C). In mice, the chromatoid body develops from smaller granules in late pachytene 

spermatocytes that condense to form a single large granule by the round spermatid 

stage, the last transcriptionally active stage during spermatogenesis [54,61]. Several 

canonical P-body proteins and mRNA-binding proteins localize to the chromatoid body, 

implicating the chromatoid body as a primary site for post-transcriptional regulation [56,55]. 

The chromatoid body also contains components of the piRNA and miRNA machinery 
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[56,55,68]. Interestingly, miRNA processing components have also been reported in the P-

bodies of mammalian tissue culture cells [64,82,89]. The chromatoid body may correspond 

therefore to a specialized P-body that utilizes small RNAs for post-transcriptional mRNA 

regulation during spermatogenesis [2,54].

3. Embryonic germline

3.1. P-bodies are implicated in the specification of the embryonic germline

In some organisms, specification of the germ lineage depends on maternally inherited factors 

that enrich in germ plasm, a specialized cytoplasm that segregates with the embryonic germ 

lineage. Germ granules are condensates in germ plasm that enrich maternal mRNAs required 

for germ cell fate specification. Recently, a second class of condensates that contain P-body 

proteins has been described in the germ plasm of Drosophila and C. elegans ([18,33,42]; 

Table 2; Fig. 1D,E).

The germ granules of Drosophila, called polar granules, are assembled by the germ plasm 

organizer Oskar and contain several maternal mRNAs, including Nanos, that is translated 

and required in embryos for the development of “pole cells”, the progenitors of the germline 

[109]. In 2020, Eichler et al. described a second granule type in Drosophila germ plasm, 

called “founder granules”, that contain the P-body proteins DCP1, DDX6 (Me31B), and 

Xrn1 (Pacman) [33]. Founder granules accumulate and degrade maternal osk mRNA before 

pole cell budding to prevent it from interfering with pole cell development and migration to 

the gonad [33]. After pole cell budding, the polar granules themselves begin to accumulate 

mRNA degradation factors and degrade a subset of polar granule mRNAs, including Nanos 
[42]. Inactivation by RNAi of the decapping activators EDC3 and PATR-1 resulted in an 

increased number of pole cells that failed to migrate to the gonad [42]. These observations 

suggest that P-body-related activities are regulated in germ plasm to target specific maternal 

mRNAs at different developmental stages.

Similar observations were made recently in the germ plasm of C. elegans embryos. There, 

the germ granules that contain mRNAs essential for germline development, such as the 

Nanos homolog nos-2, are called P granules [99,101]. The canonical P-body proteins 

DDX6 (CGH-1) and EDC-3 assemble into distinct condensates (“germline P-bodies”) that 

exist either as independent granules in the cytoplasm or enriched on the surface of P 

granules ([18,38]; Table 2). Germline P-bodies exhibit complex patterns of localization 

before partially merging with P granules in the germline founder cell P4, coincident with 

activation of Nanos translation and turn-over of other maternal mRNAs. Two pairs of 

redundant, intrinsically-disordered proteins stabilize P granules (MEG-3 and MEG-4) and 

germline P-bodies (MEG-1 and MEG-2) in germ plasm [116,18]. Destabilization of P 

granules in meg-3 meg-4 mutants prevents nos-2 RNA assembly in granules and enrichment 

in P4, but surprisingly does not affect nos-2 regulation. meg-3 meg-4 embryos still repress 

nos-2 translation early and activate nos-2 translation in P4 and grow up into mostly fertile 

worms [60]. In contrast, failure to stabilize germline P-bodies in meg-1 meg-2 mutants 

interferes with translation activation of nos-2 and degradation of other maternal mRNAs, 

and leads to 100% sterile worms, where P4 descendants adopt mixed soma-like fates [18]. 

These observations suggest that, in C. elegans embryos, germ plasm condensates function 
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primarily to concentrate mRNAs (P granules) and their regulators (germline P-bodies) for 

efficient delivery to the germline founder cell where they can operate in the cytoplasm. 

Localization of mRNAs inside the condensates, however, is not essential for mRNA 

regulation, nor is it sufficient to specify mRNA fate, since some germ granule mRNAs, 

such as Nanos, are translated and others are degraded in the germline founder cell.

3.2. Nanos, a P-body protein for the germline?

The broadly conserved Nanos family has been linked to germline development in a wide-

range of organisms [26]. Animals typically have one or more Nanos homologs expressed at 

different stages of development, starting from the primordial germ cell stage. Nanos proteins 

contain tandem CCHC zinc fingers predicted to bind RNA and an N-terminal domain 

that recruits effector complexes that silence and/or degrade mRNAs [26]. The N-terminus 

of Nanos has been shown to interact with components of the CCR4-NOT deadenylase 

complex in mouse and Drosophila [103,53,85,8]. Deletion of the N-terminus prevents 

RNA degradation in vitro and prevents turnover of Nanos mRNA targets and germline 

development in mice [103,85,8].

Examination of NANOS2 in male germ cell progenitors (gonocytes) in mice was first 

to reveal Nanos enrichment in P-bodies ([102]; Table 2). DDX6 mutant germ cells in 

mouse chimeric embryos do not assemble P-bodies in gonocytes and maintain NANOS2 

dispersed in the cytoplasm [93]. The NANOS 2 N-terminus is required for localization to 

P-bodies and recruitment of the CCR4-NOT complex member CNOT1 [103]. NANOS2 

also interacts via its zinc finger domain with the RNA-binding protein Dead end (DND1), 

which also localizes to P-bodies and links NANOS2 to its mRNA targets [104,75]. Loss 

of DDX6 or DND1 phenocopies Nanos2 mutants, including upregulation of target mRNAs. 

These observations suggest that NANOS2 requires P-body components to promote male 

germ cell development [93]. NANOS3, another mouse Nanos homolog required earlier 

in development in both sexes for primordial germ cell survival (Tsuda et al., 2003), also 

colocalizes with P-body components and interacts with the CCR4-NOT complex [129].

So far, localization of Nanos homologs in relation to P-bodies has not been extensively 

characterized in organisms outside of mice. The Drosophila CCR4 deadenylase colocalizes 

with Nanos in some foci in female germline stem cells [51], but Nanos localization with 

P-body components in other tissues has not been reported yet. Interestingly, loss of DND in 

zebrafish prevents efficient translation of Nanos on the surface of germ granules and causes 

germ cells to adopt somatic-like fates [121,41]. These phenotypes are reminiscent of those 

observed in C. elegans mutants that do not assemble germline P-bodies [18]. Transcriptional 

profiling of mutants that lack the redundant Nanos homologs nos-1 and nos-2 revealed 

that Nanos activity promote the degradation of hundreds of maternal mRNAs in C. 
elegans primordial germ cells [59]. Remarkably, lowering the maternal dose of lin-15B, 

a transcription factor that promotes somatic development, almost completely rescued the 

sterility of nos-1 nos-2 mutants [59], suggesting that the primary role of Nanos in primordial 

germ cells is to eliminate mRNAs coding for soma-promoting factors. The emerging view is 

that Nanos activity throughout germ cell development is intimately linked to RNA silencing 
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and decay promoted by factors associated with P-bodies. It will be important to investigate 

whether Nanos localization to P-bodies is conserved beyond mammals.

4. Stem cells and differentiating germ cells

4.1. A potential role for P-bodies in germline stem cell maintenance

In male gonads, the continuous production of gametes depends on spermatogonial stem cells 

(SSCs) that continually divide to both self-renew and produce cells that will differentiate 

into sperm. In mouse SSCs, NANOS2 colocalizes with DDX6 in P-body-like foci ([133], 

Table 3). Loss of NANOS2 or DDX6 in cultured germline stem cells lead to a stem cell 

maintenance defect and upregulation of differentiation genes, suggesting a defect in self-

renewal [133]. NANOS2 co-immunoprecipitates with transcripts linked to differentiation 

and is required for their translational repression, association with DDX6, and enrichment in 

P-bodies [133].

Recently, DDX6 (Me31B) was reported to also contribute to stem cell homeostasis in the 

Drosophila testis but via a different mechanism [49]. In the Drosophila testis, stem cells 

are maintained by extracellular signals in the stem cell niche and also by dedifferentiation 

of spermatogonia called back by niche signals to replenish the stem cell pool [112,15]. 

Depletion of DDX6 caused an increased number of spermatogonia to dedifferentiate 

back into GSCs, likely due to a failure to repress Nanos translation in differentiating 

spermatogonia [49]. DDX6 had also been shown to contribute to Nanos translational 

repression in embryos [40,50].

Together, these studies suggest that DDX6 maintains tissue homeostasis using different 

mechanisms depending on cell context. In Drosophila spermatogonia, DDX6 promotes 

differentiation by inhibiting translation of Nanos mRNA, whereas in mouse germline 

stem cells, DDX6 and NANOS2 work together to maintain stem cell fate by preventing 

expression of transcripts involved in differentiation [133,49].

4.2. P-body connections to nuage and biosynthesis of small RNAs

Differentiating germ cells assemble perinuclear condensates (nuage) that enrich components 

of the small RNA amplification machinery that silence transposons and other foreign 

sequences [30]. Remarkably, P-body like condensates have been reported to associate 

with nuage in several systems. In mouse embryonic gonocytes, components of the piRNA 

pathway are segregated into two granules: Pi-bodies, which contain MILI and TDRD1, and 

piP-bodies, which contain MIWI2, TDRD9, and Maelstrom (MAEL), as well as canonical 

P-body proteins, some of which enrich at the surface of the granule ([3]; Table 2; Fig. 1F). 

MAEL is required for piRNA biogenesis and silencing of L1 transposons. In Mael mutants, 

P-bodies no longer associate with MIWI2 or TDRD9, suggesting that compartmentalization 

of piRNA pathway components into P-body like condensates is required for their activity 

[3]. piRNA pathway components were also recently reported to associate with P-bodies 

in adult mouse spermatocytes. At that stage, the piRNA ping pong amplification cycle 

is repressed, in part by the Tudor domain containing protein RNF17 and its interacting 

protein ADAD2 [118,127]. RNF17 and ADAD2 localize to P-bodies (identified by the 
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P-body markers EDC3 and DCP1a). Upon knockout of rnf17 or adad2, aberrant ping-

pong occurs, leading to spermatogenesis arrest, and interestingly, a failure of P-bodies to 

assemble in diplotene spermatocytes [127]. In C. elegans, a recent preprint reports that 

P-body like condensates assemble at the periphery of nuage in meiotic germ cells and are 

required for small RNA homeostasis and transgenerational inheritance [31]. Together, these 

findings suggest a potential role for P-bodies in small RNA biogenesis and/or function in 

differentiating germ cells.

5. Conclusions and perspectives

As summarized in this review, studies in several animal models, from nematodes to 

vertebrates, have revealed that P-body like condensates are common in germ cells at all 

stages of development. Their varied appearance and composition suggest that germline P-

bodies are flexible assemblies that accommodate a variety of RNP complexes with activities 

ranging from mRNA storage, translation and degradation to small RNA biogenesis and/or 

function. We suggest that the abundance of P-body-like condensates in germ cells reflects 

the heavy reliance of these cells on post-transcriptional mechanisms for gene regulation. 

Whereas somatic lineages depend on transcription factors for cell fate specification and 

differentiation, many key transitions in germline development are mediated by RNA-binding 

proteins that regulate mRNAs in the cytoplasm [90]. Most notably, as best described in mice, 

the universal germ cell fate regulator Nanos appears to function primarily by promoting 

mRNA degradation in cooperation with P-bodies.

An important question for the future will be to determine how P-body activities are 

modulated during developmental time to effect different outcomes, such as mRNA stability 

in oocytes and mRNA degradation in primordial germ cells, for example. Another question 

is whether germline P-bodies constitute functional compartments whose material properties 

facilitate RNA-focused activities not possible in the cytoplasm. For example, there is good 

evidence that localized condensation of germ granules and germline P-bodies in germ 

plasm has evolved as a mechanism to deliver high concentrations of mRNAs and their 

regulators to germline founder cells. It is also tempting to speculate that the low dynamics of 

oocyte granules may have evolved to protect mRNAs for long term storage away from 

the translational machinery, but this hypothesis remains untested. An alternative view 

is that some germline P-bodies may simply correspond to “incidental condensates”, non-

essential condensation by-products of ribonucleoprotein complexes (RNPs) that saturate, 

and are active, in the cytoplasm [83]. Addressing this question will require quantitative 

and mutational analyses to distinguish a possible requirement for P-body assembly from 

a requirement for the RNPs that enrich in P-bodies. These types of analyses in yeast 

revealed that P-body proteins are more abundant in the cytoplasm than in P-bodies [126] 

and that mutants that suppress P-body condensation and maintain RNPs diffuse in the 

cytoplasm are still competent for RNA regulation [20,28,34], consistent with the incidental 

condensate hypothesis. Even if some germline P-bodies also turn out to correspond to 

incidental condensates rather than functional compartments, analysis of their assembly and 

composition may provide useful information as to the types of RNP complexes that support 

different stages of germ cell fate specification and differentiation. An important challenge 

for the future will be to understand how the two central enzymatic activities associated 
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with P-bodies, RNA decapping and de-adenylation, cooperate to localize, silence, translate 

and degrade specific mRNAs throughout the life cycle of the germline. Single-molecule 

technologies that enable the visualization of RNA biochemistry in cells hold great promise 

to move the field forward [11,25].
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Fig. 1. 
P-body like granules in gametes and embryonic germ cells. A) In C. elegans, oogenesis 

occurs in a syncytium, where germ cells progress through meiosis in an assembly-line 

like fashion. A large fraction of germ cells function as nurse cells and undergo apoptosis 

to provide RNA and protein to the surviving developing oocytes [80]. Large, stable grP 

bodies assemble in C. elegans oocytes that arrest when sperm is absent. These granules 

contain P granule components (green) and canonical P-body proteins (pink) that occupy 

distinct subdomains within the granule [46,52]. B) In Drosophila, oogenesis occurs in 

ovarioles, which consist of progressively developing egg chambers that are produced from 

the germarium, that contain the germline stem cells. Each egg chamber consists of 16 cells, 

including one oocyte and 15 nurse cells that provide RNA and protein for the oocyte [6]. 

In Drosophila egg chambers, sponge bodies/P-bodies (pink) form in the cytoplasm of nurse 

cells and the oocyte. Polar granules (green) localize to the posterior pole of the oocyte where 

the embryonic germline will form. C) MARDO (pink) assemble in mouse germinal vesicle 

(GV) stage oocytes and cluster around mitochondria (green). In round spermatids, the 

chromatid body (pink) associates with the nuclear membrane. Oocyte and round spermatid 

are not drawn to scale. D) In C. elegans early germline blastomeres, germline P-bodies 

(pink) enrich on the surface of P granules (green). E) In early Drosophila embryos, founder 

granules (pink) degrade oskar mRNA prior to pole cell formation. Polar granules (green) 

localize mRNAs required for pole cell development, such as Nanos, in the posterior. F) 

In mouse gonocytes, perinuclear foci termed piP-bodies (green) contain piRNA pathway 

proteins and canonical P-body components, which localize to the surface of the granule 

(pink). Pi-bodies (blue) containing MILI are distinct perinuclear granules that frequently 
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localize adjacent to the piP-bodies. P-bodies containing Nanos2 and dead end1 also localize 

in the cytoplasm.
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Table 1

P-body-like granules during oogenesis.

Species Protein components citation

grP bodies in arrested oocytes C. elegans PGL-1, GLH-1, GLH-2, MEX-1 (TTP), MEX-3 [88]

PUF-5, MEX-5 (TTP) [77]

DCAP-2 [52,77]

CGH-1 (DDX6) [13,52,77]

CAR-1 (Lsm14) [52,77]

PAB-1, TIA-1 [52]

DCR-1 [7]

MEG-3, PGL-3 [84]

sponge bodies/P-bodies Drosophila Exuperantia [125]

Yps [124]

Me31B (DDX6) [73]

Gus [100]

Cup (4E-T), eIf4E, Btz [123]

Trailerhitch (Lsm14) [122]

Dcp1, Dcp2 [62]

Dhc, BicD, Egl, Sqd [29]

Pacman (Xrn1) [63]

Hrb27C, Bru, Orb (CPEB), Staufen [96,95]

BicC [96]

dGe-1 (EDC4) [35]

subcortical aggregates/MARDO mouse DDX6, CPEB, YBX2, EIF4A3 [36]

ZAR1, LSM14B, 4E-T [19]

Proteins in bold are homologs of human P-body proteins
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Table 2

P-body-like granules in the embryonic germline.

Species Protein components citation

founder granules Drosophila Staufen, DCP1, Me31B (DDX6), Pacman (Xrn1) [33]

germline P-bodies C. elegans PATR-1, DCAP-1/2, CCF-1 (CNOT7)*, POS-1 (TTP), PAB-1, CGH-1 (DDX6) [38]

MEG-1, MEG-2, EDC-3 [18]

piP-bodies (male gonocytes) mouse MIWI2, TDRD9, MAEL, GW182, DCP1a, DDX6, XRN1 [3]

P-bodies (PGCs/male gonocytes) mouse Nanos2, DCP1a, XRN1, CNOT3*, DDX6 [102]

Nanos3, TIAL1, p-EIF2A [129]

Dead end1 [104]

Proteins in bold are homologs of human P-body proteins

*
Although some CCR4-NOT complex members enrich in P-bodies, others are cytoplasmic or their localization has not yet been described
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Table 3

P-body-like granules during spermatogenesis.

Species Protein components citation

P-body (spermatogonia) Drosophila Pacman (Xrn1), Dcp1, Me31B (DDX6) [131]

P-body (spermatogonial stem cells) mouse Nanos2, DDX6, Dcp1a [133]

chromatoid body (sperm) † mouse/rat/human Actin [113]

snRNP Sm proteins [10,71]

Cytochrome c [43]

Histone H4 [120]

p48, p52 [78]

MVH [108]

MTR-1 [21]

GRTH/Ddx25 [110]

RanBPM [92]

MIWI, Dicer, GW182, DCP1a, Ago2, Ago3 [55]a

KIF17b [55]b

TDRD1, TDRD6, TDRD7 [45]

MAEL [97]

Mili [115]

GEMIN3, NANOS1, PUMILIO2 [39]

TDRD5 [128]

CLOCK, BMAL1 [81]

SCaMC-1 L [1]

SAM68 [69]

NSun2 [48]

eIF4A3, RBM8A, UPF1, SMG1, SMG6 [68]

CaMKIV [114]

FYCO1 [24]

β-tubulin [37]

KSRP [132]

IP6K1 [66]

Proteins in bold are homologs of human P-body proteins

†
88 chromatoid body components identified by mass spectrometery [68] are not included in this table

Semin Cell Dev Biol. Author manuscript; available in PMC 2024 April 01.


	Abstract
	Introduction
	What are P-bodies?

	Gametes
	P-body-like granules in oocytes are potential storage sites for translationally-repressed maternal mRNAs
	Dynamics of P-body-like granules increase during the oocyte-to-embryo transition
	The chromatoid body: a hub for post-transcriptional regulation of mRNAs in haploid sperm?

	Embryonic germline
	P-bodies are implicated in the specification of the embryonic germline
	Nanos, a P-body protein for the germline?

	Stem cells and differentiating germ cells
	A potential role for P-bodies in germline stem cell maintenance
	P-body connections to nuage and biosynthesis of small RNAs

	Conclusions and perspectives
	References
	Fig. 1.
	Table 1
	Table 2
	Table 3

