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Abstract: In this study, we present results of a detailed topological analysis of electron density (ED)
of 145 halogen-bonded complexes formed by various fluorine-, chlorine-, bromine-, and iodine-
containing compounds with trimethylphosphine oxide, Me3PO. To characterize the halogen bond
(XB) strength, we used the complexation enthalpy, the interatomic distance between oxygen and
halogen, as well as the typical set of electron density properties at the bond critical points calculated
at B3LYP/jorge-ATZP level of theory. We show for the first time that it is possible to predict the XB
strength based on the distance between the minima of ED and molecular electrostatic potential (ESP)
along the XB path. The gap between ED and ESP minima exponentially depends on local electronic
kinetic energy density at the bond critical point and tends to be a common limiting value for the
strongest halogen bond.

Keywords: halogen bond; QTAIM; electron density; electrostatic potential; interaction energy; bond
strength; density functional theory; phosphine oxide; 31P NMR

1. Introduction

Among various types of σ-hole interactions, halogen bonds (XBs) are among the
most known and widely investigated [1–4]. XBs were shown to play a significant role in
organocatalysis [5–8], crystal engineering and supramolecular chemistry [9–13], materials
science [14–17], stabilization of explosives [18], drug design [19,20], etc. XBs R–X· · ·A
(X—halogen) are formed between an electron-depleted region on the continuation of the
R–X bond and an electron-rich region of another atom or molecule A (Figure 1, bottom).
Main geometric criteria of a XB formation are the short X· · ·A distance, smaller than the
sum of X and A van der Waals radii, and the proximity of the halogen bond angle to the
linear [21]. As an electronic criterion, the presence of a critical point of type (3; −1) (bond
critical point, BCP) for calculated [22–24] or experimentally measured electron density
(ED) [25–28] along the X· · ·A bond path in QTAIM analysis (Quantum Theory of Atoms in
Molecules [29]) is often used.

The philicity of halogen bonding participants can be determined using geometric
criterion (the angle around electrophilic site is close to 180◦) [21], spectral manifestations
(for instance, in ultraviolet–visible (UV–vis) spectra [30–33] or using calculated parameters
(electron density deformation (EDD) [34–40], electron localization function (ELF) distri-
bution [41–44], natural bond orbital charge transfer [45,46], sums of atomic charges [47],
and molecular electrostatic potential (ESP) distribution on the van der Waals surface with
ρ(r) = 0.001 e/Bohr3, in representative planes or along the bond path [48–55]).

In [54], it was mentioned for the first time for a series of hydrogen-bonded complexes
that the relative arrangement of ED and ESP minima positions along the hydrogen bond
path is the same for all complexes. Moreover, the superposition of gradient fields of ED
and ESP as discussed for different intermolecular interactions is solids, including the
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studies based on experimental charge density [56,57]. These observations formed the basis
of electronic criterion proposed in Ref. [24], which makes it possible to unambiguously
determine the type of electrostatically driven noncovalent bonds. In accordance with
electronic criterion, the minimum of ESP along the bond path is located closer to the atom
that donates electrons, whereas the minimum of ED is located closer to the atom that
delivers its electrophilic site for noncovalent bonding (Figure 1). The latter atom prescribes
the name of “-ogen bonds” (e.g., hydrogen, halogen, chalcogen, pnictogen, etc.).
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Figure 1. Schematic representation of a halogen bond (X—halogen atom, A—nucleophilic site), ED
(blue) and ESP (red) distributions along the bond path. The graphical definition of d(EDmin) (blue),
d(ESPmin) (red), and ∆d (black) are given.

While for R–X· · ·A XBs it is often clear which atom acts as an electrophile and which
one acts as a nucleophile, the information value of the relative positions of ED and ESP
minima seems to hold for less trivial cases of halogen-halogen contacts [58–60] and also
beyond the halogen bonding in general [61,62].

Up to now, it is not known if there is an information value in the distance between ED
and ESP minima, ∆d, defined as

∆d = d(EDmin)− d(ESPmin) (1)

(see also the graphical definition in Figure 1). A question arises: does a robust correlation
exist between ∆d and such XB properties as its strength or the X· · ·A distance? To the
best of our knowledge, it is an original question, not yet discussed in the QTAIM-related
literature. t Of fundamental interest, we expect that this sort of information could be
useful for studying XBs in solids, where ED and ESP distributions could in principle be
measured experimentally [63], whereas the direct experimental evaluation of XB energy is
very difficult or even not possible.

In this study, we checked the information value of ∆d for a series of 145 halogen-
bonded complexes formed by various halogen donors with trimethylphosphine oxide, Me3PO
(Figure 2) at the B3LYP/jorge-ATZP level of theory. The Me3PO molecule was chosen as a
“standard” halogen acceptor, in a sense following the approach started many years ago by
Gutmann and Beckett [64,65] and explored in recent years by a number of authors [66–68].
In order to reduce the number of internal degrees of freedom in the electron donor, we
have selected Me3PO instead of Et3PO, which was originally used in the Gutmann–Beckett
method. As halogen donors the molecules belonging to the following classes of F-, Cl-, Br- and
I-containing compounds were considered: halogens, interhalides, oxohalides, pseudohalides,
halogenated methane, ethylene, acetylene, benzene, phosgene and their derivatives, as well as
thionyl- and sulfurylhalides, sulfur halides and sulfur hypohalites, and several halogenated
nitrogen-containing inorganic compounds and some others. This choice of model systems
makes it possible to track how a change in the halogen bond acceptor (i.e., its electronic prop-
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erties as well as belonging to a certain class of chemical compounds) changes the properties of
the halogen bond when the halogen bond acceptor Me3PO is fixed. The full list of halogen
donors is given in Figure S1 in Supplementary Materials.
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Figure 2. Schematic representation of halogen-bonded complexes formed between R–X (X = F,
Cl, Br and I) and Me3PO. In blue are given geometric (interatomic distance R(X· · ·O)), energetic
(complexation enthalpy ∆H), and electronic (ρ stands for electron density, ∇2ρ for its Laplacian, V, G
and K stand for local electron potential, kinetic and total energy densities at the bond critical point,
BCP) parameters that were correlated with ∆d in this work (see Figure 1 for the definition of ∆d).

Previously, we have considered a similar but somewhat smaller set of complexes
in order to build a correlation between the XB strength/geometry and the changes of
two spectral parameters upon complexation: the 31P NMR chemical shift and the ν(P=O)
stretching frequency [69] (similar correlations for hydrogen-bonded complexes with Me3PO
were recently published as well [70]). We have shown that decent correlations of this kind
do exist, and they could be fitted by simple analytical functions. Now, we turn our attention
to electronic properties, such as ∆d, which is experimentally accessible—if the conditions
are right—for single crystal samples. Several XB parameters were considered in this work
and correlated with ∆d: the complexation enthalpy ∆H, the X· · ·O interatomic distance
R(X· · ·O), and various parameters at XB electron density critical point of type (3; −1):
(molecular electrostatic potential ESP(rBCP), electron density ρ(rBCP), Laplacian of electron
density ∇2ρ(rBCP), local electron kinetic G(rBCP) and potential V(rBCP) energy densities
and total electron energy density K(rBCP)). We also checked if 31P NMR chemical shifts of
Me3PO correlate with ∆d.

2. Results and Discussion

The optimized geometries of some representative examples of halogen-bonded com-
plexes belonging to different classes of inorganic and organic compounds are shown in
Figure 3 and all 145 halogen-bonded complexes are shown in Supplementary Materials
(Figure S1). The majority of XBs are linear (or close to linear) and formed along the direction
of expected oxygen lone pair localization. The numerical values of relevant parameters
are listed in Supplementary Materials: geometric, energetic and spectroscopic parameters
(Table S1), and QTAIM electronic parameters (Table S2).

Figure 4a shows the dependence of distances from oxygen to ESP and ED minima—
d(ESPmin) and d(EDmin), respectively—along the XB path as a function of the local electron
kinetic energy density at critical point of type (3; −1), G(rBCP) (in kJ/(mol·Å3)), taken
as a measure of XB strength. In Figure S2 (Supplementary Materials) we show several
examples of ED and ESP profiles along the bond path for weak, medium, and strong R–
Cl· · ·OPMe3 complexes. The d(ESPmin) distance is among the largest ones for free Me3PO
(see the black dot in Figure 4a) and falls upon the increase in the XB strength. The d(EDmin)
is obviously infinite for free Me3PO, but rapidly—quasi-exponentially—decreases when
the XB gets stronger. The d(ESPmin) and d(EDmin) values appear to be almost halogen-
independent, except for complexes with F-donors, the d(ESPmin) data points for which
deviate consistently from the other sets.
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Figure 3. Some examples of optimized geometries of halogen-bonded complexes formed between (a)
F2; (b) I2; (c) ClF; (d) BrF; (e) IF; (f) FCN; (g) ClCN; (h) BrCN; (i) ICN; (j) CF3Cl; (k) CF3Br; (l) CF3I;
(m) C6F5Cl; (n) C6F5Br; (o) C6F5I and Me3PO considered in this work. Blue dot marks the position of
the X· · ·O bond critical point.

However, a closer look at the ∆d = d(ESPmin) − d(EDmin) values (Figure 4b) reveals
that there are some systematic differences between complexes with Cl-, Br-, and I-donors
as well. The general trend is the same for all halogens: the stronger is the XB, the closer
are the ESP and ED minima. The ∆d values within each series seem to approach a limiting
(asymptotic) value for the strongest XBs. A question arises, what are the limiting ∆d values
for hypothetical strongest possible bonds? As models for such X· · ·O bonds, we took cations
Me3POX+, the optimized geometries of which together with the X· · ·O bond parameters are
shown in Figure S3. For these cations, the “asymptotic” G(rBCP) values are the largest and ∆d
values are the smallest within the respective series of complexes (except for complexes with
iodine, where there is a significant scattering of data points for strong XBs). We have added
∆d asymptotes as horizontal bold lines in Figure 4b. For F-donors, the ∆d even gets slightly
negative, suggesting that the electrophile/nucleophile roles are practically swapped for the
F–O bond in Me3POF+, as compared to non-covalent R–X· · ·OPMe3 complexes (i.e., the F–O
bond in Me3POF+ cannot be classified as a halogen bond).
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Figure 4. (a) Distances from oxygen atom to minima of molecular electrostatic potential d(ESPmin)
(lighter colors) and electron density d(EDmin) (darker colors) along the X· · ·O (X = F, Cl, Br and
I) bond path; (b) distances between ED and ESP minima ∆d as a function of G(rBCP) for a series
of halogen-bonded complexes formed between R–X and Me3PO. The solid curves correspond to
Equation (2) with fitted parameters listed in Table 1.

Table 1. Fitting parameters aX, ∆d0 and b for Equation (2) and proportionality coefficient k between
G(rBCP) and complexation energy ∆E (Equation (4) [69]) for the data sets plotted in Figure 4b.

Halogen Donor aX, Å ∆d0, Å b, kJ/(mol·Å3) k, Å3

F 0.09 0.47 240 0.18
Cl 0.15 0.47 240 0.47
Br 0.18 0.47 240 0.57
I 0.19 0.47 240 0.74

The data sets in the ∆d plot versus G(rBCP) for the studied sets of halogen-bonded
complexes could be reasonably well fitted, assuming an overall exponential behavior:

∆d = aX + (∆d0 − aX)· exp(−G(rBCP)/b). (2)

Interestingly, only one fitting parameter in Equation (2), aX, is halogen-dependent (see
Table 1). The rate of exponential fall b = 240 kJ/(mol·Å3) and the limiting ∆d value for
G(rBCP) = 0 kJ/(mol·Å3), ∆d0 = 0.47 Å, seem to be virtually the same for all halogens. At
the moment, it is not clear if these values for ∆d0 and b reflect some property of Me3PO
or a property of XBs in general. The result of the fitting is added to Figure 4b as solid
lines. Another noteworthy thing is that the fitting with Equation (2) does not reproduce
the asymptotic values for Me3POX+ at G(rBCP)→ ∞, though the relative position of the
fitting asymptotes for F, Cl, Br and I is the same as for the corresponding cations Me3POX+.
Solving Equation (2) for G(rBCP) one obtains

G(rBCP) = b· ln
(

∆d0 − aX

∆d− aX

)
. (3)
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It should be noted that Equation (3) makes sense only when the logarithm is defined
(∆d > aX) and positive (∆d < ∆d0). This means that Equation (3) might become inapplicable
for extremely weak and extremely strong XBs. Subsequently, the G(rBCP) values could
be converted into the XB “complexation energies” ∆E (the difference of total electronic
energies of the complex and its isolated relaxed constituents) using previously published
halogen-dependent proportionality coefficients k (see the last column in Table 1; the values
were taken from Table 2 in Ref. [69]),

∆E = k·G(rBCP). (4)

At this point, it is worth making a brief comment concerning various quantitative
models based on the properties of electron density at the bond critical points, which
were previously successfully used for characterization of the energy for various types of
noncovalent bonds [70–75]. Figure S4 shows the correlation between the complexation
enthalpy ∆H and G(rBCP). Note that there is a significant scattering of the data points due
to the fact that a number of complexes within the studied series are held not only by an
XB, but also by other noncovalent interactions, most prominently weak hydrogen bonds
between electronegative atoms of the halogen donor (including the halogen itself) and the
methyl protons of the Me3PO moiety (Figure 5). For completeness of the subject, in Figures
S5–S8 we show also correlations of electron density ρ(rBCP), Laplacian of electron density
∇2ρ(rBCP) and total electron energy density K(rBCP) = G(rBCP) + V(rBCP) with d(ESPmin),
d(EDmin), ∆d, and Rnorm, as well as G(rBCP) correlation with V(rBCP), ρ(rBCP), ∇2ρ(rBCP)
and ESP(rBCP). In turn, Figure S9 shows ∆H, ρ(rBCP), ∇2ρ(rBCP) and ESP(rBCP) dependence
on ∆d.
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Figure 5. Examples of additional non-covalent interactions (red dashed lines) present in some
halogen-bonded (black dashed line) R–X· · ·OPMe3 complexes: hydrogen bonds between methyl
protons of the Me3PO moiety and electronegative atoms of the halogen donor; (a) two H-bonds with
two proton acceptors; (b) two H-bonds with one proton acceptor; (c) two H-bonds with the halogen
donating atom.

Finally, the ∆d values are plotted in Figure 6 as a function of Rnorm, defined as X· · ·O
interatomic distance, normalized by the sum of van der Waals radii (RvdW) of X (X = F, Cl,
Br and I) and O:

Rnorm =
R(X · · ·O)

RvdW(X) + RvdW(O)
, (5)

where the following values of the van der Waals radii were used: 1.52 Å (O), 1.47 Å (F), 1.75
Å (Cl), 1.85 Å (Br), 1.98 Å (I) [76]. The usage of normalized and unitless Rnorm, instead of
direct interatomic distances X· · ·O, allows one—at least in principle—to compare XBs with
participation of different halogens (see the dependence of absolute R(X· · ·O) distances
and Rnorm on G(rBCP) in Figure S10). The data sets plotted in Figure 6 indicate slightly
non-linear dependencies of ∆d on Rnorm for each halogen, but generally show the same
trends as Figure 4b, because the terms halogen bond strength and shortness are almost
interchangeable: stronger/shorter XBs are characterized by smaller ∆d values.
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Figure 6. Distances between ED and ESP minima ∆d as a function of normalized interatomic distances
Rnorm between X (X = F, Cl, Br and I) and O (see definition in Equation (5)).

To summarize the results so far, there is indeed a correlation between ∆d and XB energy
and length. The exponential fall of ∆d upon strengthening/shortening of the XB is dependent
on the type of halogen and most probably on the type of the electron-donating atom as
well (oxygen in our case), but for a fixed pair of atoms the correlations seem to be largely
independent on the substituents, which makes ∆d a promising tool in characterization of XBs
and—speculatively—other types of non-covalent interactions as well.

Now we turn attention to the spectroscopic manifestation of halogen bonding within
the studied series of complexes. In Ref. [69], some of us have demonstrated that isotropic
31P NMR chemical shift of Me3PO could be used as a spectroscopic marker for the halogen-
donating ability of a probed molecule or, in other words, as a measure of the XB strength
(length) in a R–X· · ·OPMe3 complex. For the data sets presented in this work, reasonable
correlations between the change of the 31P NMR chemical shift upon complexation ∆δ31P
and the complexation enthalpy ∆H exist for chlorine- and bromine-containing complexes
(Figure S11a). For fluorine- and iodine-containing ones, there is a large scattering of the
data points, which in case of complexes with iodine is likely to be—at least partially—due
to the presence of additional non-covalent interactions and, consequently, the influence of
several competing factors (e.g., presence of additional interactions) on the electron shells of
the phosphorus atom. Indeed, the ∆δ31P correlation with G(rBCP) values (Figure S11b) is
noticeably better, though with significant residual scattering still (it should be mentioned,
that the shape of ∆δ31P(∆d) remains the same upon the change of a basis set).

Figure 7 shows the correlation of ∆δ31P with ∆d, which has a similar degree of data
point scattering as Figure S11b. Because of that, we have added to Figure 7 two trend
curves for chlorine- and bromine-containing complexes only. These curves serve only as
guides for the eye, as it seems premature to propose a functional fit. Still, one could confirm
that 31P NMR chemical shift sensitively reflect the changes in the electronic structure of the
complexes—including the parameter in focus of this work, ∆d—and could serve for the
characterization of XBs with phosphine oxides.
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Figure 7. The correlation of ∆δ31P on ∆d for a series of R–X· · ·OPMe3 complexes. The solid lines are
guides for the eye added for Cl- and Br-bonded complexes.

3. Computational Methods

The full geometry optimization, harmonic vibrational frequencies and NMR calcu-
lations were performed for studied complexes in vacuum using B3LYP functional [77]
and nonrelativistic all-electron augmented triple-zeta valence quality basis set with po-
larization functions jorge-ATZP [78–80] (adopted from the Basis Set Exchange site [81])
using Gaussian16 software package [82]. Geometry optimization was performed using the
default for Gaussian16 Berny algorithm without any geometry restrictions and standard
convergence criteria (maximum/RMS forces and displacements of atoms smaller than
0.000450 a.u./0.000300 a.u. and 0.001800 a.u./0.001200 a.u., respectively). The optimized
geometries were checked for the absence of imaginary vibrational frequencies. The presence
of halogen bonds in the calculated complexes was confirmed by the criteria for halogen
bond formation, according to the IUPAC recommendation [21]. For each halogen donor,
only one optimized structure of its complex with phosphine oxide was considered. For a
subset of complexes, we have checked that variations in the initial geometries lead to the
same optimized structures. Because of this, we believe that they are true global minima.
However, even if it is not the case, any local true minimum containing a halogen bond and
satisfying the Virial theorem would be legitimate structure to perform topological analysis
of electron density and use the resulting data to construct correlations.

The complexation enthalpy ∆H was calculated at 298.15 K as the enthalpy required
to separate the interacting molecules at infinite distance (including the relaxation of
monomers). Note that in this way the ∆H values include contributions not only from
the XB, but also from any other non-covalent interactions which might be present between
monomers of Me3PO and XB donor.

Isotropic NMR shielding constants σ were calculated using the gauge-independent
atomic orbital (GIAO) approach [83] and converted into changes of chemical shifts upon
complexation as ∆δ31P = σfree − σ, where σfree is the 31P nuclear shielding constant for an
isolated Me3PO molecule.

The topological analysis of ED and ESP along the XB path was carried out within
the framework of QTAIM methodology from the wave function files using MultiWFN
software (http://sobereva.com/multiwfn/ accessed on 22 June 2022; Beijing Kein Research
Center for Natural Sciences; Beijing, China; version 3.3.8) [84]. The ED and ESP minima
positions from the oxygen atom along the XB path were determined with the following

http://sobereva.com/multiwfn/
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path searching parameters: maximum number of points of a path is 100000, with stepsize
of 0.0005 Bohr and generation stop threshold of 0.005 Bohr distance to any critical point.
This takes into account that for all studied complexes d(ESPmin) < d(EDmin), the definition
given in Equation (1) makes all ∆d values positive.

Visualization of the studied complexes was performed using the Chemcraft software
(available online at www.chemcraftprog.com accessed on 22 June 2022; version 1.8) [85].

All of the proposed correlation functions were fitted by Levenberg–Marquardt algo-
rithm and visualized using Origin software (OriginLab Corporation, Northampton, MA,
USA) [86]. The complexes with X· · ·H (X = N, O, F, Cl, Br or I; H are protons of methyl
groups) contacts shorter than the sum of Bondi’s van der Waals radii of corresponding
atoms are marked in red in the Supplementary Materials (Figure S1 and Tables S1 and S2).

4. Conclusions

The summary and the main conclusion of this work are rather concise. For a homol-
ogous series of 145 halogen-bonded complexes with the general formula R–X· · ·OPMe3
(X = F, Cl, Br, and I), we showed that the XB strength/energy correlate well with the
distance between ED and ESP minima along the X· · ·O bond path, ∆d (see Equation (2);
Figure 4b). The maximum ∆d value (for weakest XBs) as well as the exponent of the fall
of the ∆d dependence on G(rBCP) are halogen-independent, whereas the limiting values
for strongest XBs are halogen-dependent. One could expect that there is also a depen-
dence on the type of electron-donating atom (here, oxygen), though this and other limits
of applicability of the proposed correlations remain to be studied. Quite likely, the most
robust conclusion one could make is that for a pair of homologous non-covalently bound
complexes the one with larger ∆d is weaker. The numerical value of ∆d might appear to be
useful in analysis of experimental high-resolution X-ray data on ED of halogen-bonded
single crystals. We also propose ∆d as a new tool for routine QTAIM analysis of the energies
of XBs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27154848/s1. Figure S1: optimized structures of R–
X· · ·OPMe3 complexes; Table S1: normalized Rnorm and absolute R(X· · ·O) distances, valence bond
angles α(R–X· · ·O) and β(X· · ·O–P), changes of 31P NMR chemical shifts upon complexation ∆δ31P,
and complexation energies ∆H and ∆G; Table S2: minima positions of ED and ESP, d(EDmin) and
d(ESPmin), along the XB path and distance between them ∆d, and QTAIM parameters at XB critical
point of type (3; −1) (ρ(rBCP), ∇2ρ(rBCP), G(rBCP), V(rBCP), K(rBCP)); Figure S2: ED and ESP profiles
along the XB path for weak, medium, and strong R–Cl· · ·OPMe3 complexes; Figure S3: optimized
structures of Me3POX+ (X = F, Cl, Br, and I) complexes; Figure S4: ∆H as a function of G(rBCP);
Figures S5–S7: d(ESPmin), d(EDmin), ∆d, and Rnorm as functions of electron density ρ(rBCP), Laplacian
of electron density ∇2ρ(rBCP), and total electron energy density K(rBCP) at XB critical point of type
(3; –1); Figure S8: V(rBCP), ρ(rBCP), ∇2ρ(rBCP), and ESP(rBCP) as functions of G(rBCP); Figure S9: ∆H,
ρ(rBCP),∇2ρ(rBCP), and ESP(rBCP) as functions of ∆d; Figure S10: Rnorm and R(X· · ·O) as functions of
G(rBCP); Figure S11: ∆H and G(rBCP) as functions of ∆δ31P.
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