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Malignant pleural mesothelioma (MPM), predominantly caused by asbestos exposure,
is a highly aggressive cancer with poor prognosis. The staging systems currently
used in clinics is inadequate in evaluating the prognosis of MPM. In this study, a
five-gene signature was developed and enrolled into a prognostic risk score model
by LASSO Cox regression analysis based on two expression profiling datasets
(GSE2549 and GSE51024) from Gene Expression Omnibus (GEO). The five-gene
signature was further validated using the Cancer Genome Atlas (TCGA) MPM dataset.
Univariate and multivariate Cox analyses proved that the five-gene signature was an
independent prognostic factor for MPM. The signature remained statistically significant
upon stratification by Brigham stage, AJCC stage, gender, tumor size, and lymph
node status. Time-dependent receiver operating characteristic (ROC) curve indicated
good performance of our model in predicting 1- and 2-years overall survival in MPM
patients. The C-index was 0.784 for GSE2549 and 0.753 for the TCGA dataset showing
moderate predictive accuracy of our model. Furthermore, Gene Set Enrichment Analysis
suggested that the five-gene signature was related to pathways resulting in MPM tumor
progression. Together, we have established a five-gene signature significantly associated
with prognosis in MPM patients. Hence, the five-genes signature may serve as a
potentially useful prognostic tool for MPM patients.

Keywords: malignant pleural mesothelioma, gene expression, signature, overall survival, prognosis

INTRODUCTION

Malignant pleural mesothelioma (MPM), the most common form of malignant mesothelioma,
is a highly aggressive neoplasm arising from the pleural mesothelial tissues covering the lung
and is predominantly associated with occupational and environmental exposure to asbestos fibers
(Wagner et al., 1960; Walker et al., 1983). Centers for Disease Control and Prevention (CDC)
reports the annual number of malignant mesothelioma deaths increased by 4.8%, from 2479 in

Abbreviations: AJCC, American Joint Commission on Cancer; AUC, area under curve; CI, confidence interval; DEGs,
differentially expressed genes; GEO, Gene Expression Omnibus; GSEA, Gene Set Enrichment Analysis; HR, hazard ratio;
IMIG, International Mesothelioma Interest Group; MPM, malignant pleural mesothelioma; OS, overall survival; ROC,
receiver operating characteristic curve; SMRP, soluble mesothelin-related protein; TCGA, the Cancer Genome Atlas; UICC,
Union for International Cancer Control.
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1999 to 2579 in 2015, in the United States (Mazurek et al., 2017).
Though it is still considered a rare disease, as many as 3000 new
cases are diagnosed annually in United States alone (Vogelzang
et al., 2003). Considering the latency period between the first
asbestos exposure to MPM development often ranges anywhere
between 20 and 71 years, the global incidence of MPM will likely
be on the rise (Lin et al., 2019). Although the time from exposure
to onset is long, the progression from onset is rapid. MPM
patients often have non-specific symptoms at first which makes
diagnosis extremely challenging at early stage. Moreover, the lack
of an accurate and universally accepted staging system makes it
even harder for investigation and treatment of the disease, leading
to the poor prognosis of MPM (Rusch, 1995; Kindler et al., 2018).

Researchers have found several clinicopathological factors
associated with poor prognosis of MPM, such as the male
gender, elevated serum lactate dehydrogenase levels, chest pain,
thrombocytosis, non-epithelial histology, and age > 75 years
(Curran et al., 1998; Herndon et al., 1998). Simultaneously,
potent biomarkers have been studied in relation to pathogenesis,
diagnosis and prognosis of MPM. To date, non-tissue-
based biomarkers have been characterized, including soluble
mesothelin-related protein (SMRP), osteopontin and fibulin-3
(Hollevoet et al., 2012; Kindler et al., 2018). However, none
of these biomarkers being evaluated at this time for MPM
have demonstrated sufficiently rigorous prospective or blinded
validation to recommend their use (Kindler et al., 2018). Some
studies have evaluated the diagnostic value of microRNA to
differentiate MPM from normal pleural mesothelial proliferation
or other carcinomas (Busacca et al., 2010; Benjamin et al., 2010;
Balatti et al., 2011). The six-microRNA signature constructed
by Kirschner et al. (2015) was reported to predict the survival
of MPM patients. However only a small number of long and
short-term survivors were compared following extrapleural
pneumonectomy, and normal samples were not included as
a control, thereby limiting the use of this specific signature
(Kirschner et al., 2015). Furthermore, an increasing number of
studies using gene expression profiling have primarily discovered
new oncogenes or tumor suppressor genes or have simply used
MPM tumor samples without normal samples to construct
the prognostic model. For instance, Gordon et al. developed
and validated a nine-ratio (six gene) signature to differentially
diagnose MPM from adenocarcinoma, and they also defined a
molecular classification of MPM using transcriptional profiling
by microarray, however did not independently validate the
results (Gordon et al., 2002, 2005). The study took inspiration
from previous research and concerning the difficulty to apply
the MPM staging system into clinical work to make accurate
evaluation of prognosis for MPM patients (Rusch et al., 2012),
it is of great value to use bioinformatics methods to discover
prognostic genes between MPM tumor and normal tissues as
possible biomarkers and construct a risk-score model to clarify
MPM patients into high- and low-risk subgroups, leveraging an
objective approach in MPM patients’ prognosis evaluation.

In this study, based on the gene expression profiling data from
GEO and TCGA dataset, we developed and validated a reliable
five-gene signature model independent of clinicopathological
factors that improved the risk stratification for MPM patients.

MATERIALS AND METHODS

Datasets
The two gene expression arrays of human MPM datasets
GSE2549 (Gavin et al., 2005) and GSE51024 (Suraokar et al.,
2014a) were derived from the Gene Expression Omnibus
(GEO)1, which is a database repository of high throughput gene
expression data and hybridization arrays, chips, microarrays.
GSE2549 and GSE51024 sets were conducted on GPL96
(Affymetrix Human Genome U133A Array) and GPL570
(Affymetrix Human Genome U133 Plus 2.0 Array) platforms
respectively. The GSE2549 dataset includes 40 discarded human
MPM tumor specimens and 9 normal specimens in which four
are normal lung specimens and five are normal pleura. The
GSE51024 dataset includes 41 MPM tumor tissues along with
41 paired normal tissues. For the validation of TCGA set, we
downloaded the mRNA expression data (RNA-seq in FPKM
value) which includes 85 MPM patients together with the clinical
information from the Cancer Genome Atlas2.

Differential mRNA Analysis
To identify the differentially expressed genes (DEGs), GSE2549
and GSE51024 MPM datasets were employed. After annotating
the probes into gene symbols by the platform annotation files, we
used R package LIMMA (Ritchie et al., 2015) to get the DEGs
between the tumor and normal tissue following the criteria of
adjusted P-value < 0.05, |log2FoldChange| > 1 in both sets.
Finally, by overlapping the upregulated and downregulated DEGs
from the two datasets, we got the DEGs in both datasets.

Construction of the Prognostic Model by
LASSO Cox Regression
By performing the univariate Cox regression analysis on the
candidate DEGs from the two discovery sets, we calculated the
correlation between each gene and the overall survival time
of each patient and investigated the genes having strongest
association with the patients’ overall survival time following the
criteria of P < 0.05. R package “survival” was used to perform
the univariate Cox regression analysis (Gordon et al., 2020; Terry
and Therneau, 2020). The least absolute shrinkage and selection
operator (LASSO) Cox regression with 10-time cross validation
was used to choose the penalty regularization parameter λ

(Gui and Li, 2005). The coefficient of each gene was forced to
shrink to zero which eliminated the correlation between the
selected genes and prevented the model from being overfitting. By
applying the minimum deviance, lamda.min, genes were selected.
R package “glmnet” was used to perform LASSO Cox regression
analysis (Goeman, 2010; Friedman et al., 2020). Together with the
coefficient of each gene generated by multivariate Cox regression
analysis, the prognostic risk score model was constructed. R
package “survminer” was used to perform the multivariate Cox
regression analysis (Kassambara et al., 2020). Based on the
expression of each gene discovered, each patient’s risk score was

1https://www.ncbi.nlm.nih.gov/geo
2https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga
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calculated according to the risk score model. The risk score model
was then used to evaluate the prognosis of MPM patients.

Risk score =
n∑

i=1

Coeffcient i∗Expression of Gene i

Construction of the Prognostic Model by
Three Other Methods
To validate the prognostic model constructed by LASSO Cox
regression method. Forward stepwise regression, bidirectional
stepwise regression and relaxed LASSO methods were introduced
to rebuild the model. Prognosis related genes detected by
univariate Cox regression analysis were used to perform the
analyses for the three methods. In forward stepwise regression
analysis, genes were ranked by their z-score, which represented
their predictive power. The gene with the highest z-score was
first enrolled and gene was subsequently added according to the
z-score rank list from high to low. The AIC (Akaike information
criterion) for each model was calculated new gene was terminated
being added to the model if the AIC stopped decreasing which
indicated the genes already enrolled giving the best prognostic
performance. The bidirectional stepwise regression procedure
included the iterations between the “forward” and “backward”
steps. R package “My.stepwise.coxph” was used to do the analysis
(My.stepwise.coxph, 2017). We found the R package “fastcox”
was for Lasso and Elastic-Net penalized Cox’s regression in high
dimensions models and it could help realize the relaxed lasso
analysis (Yang and Zou, 2013a,b). The penalty regularization
parameter λ was chosen via 10-time cross-validation. By applying
the minimum deviance, lamda.min, genes were selected. The
genes selected by each of the three methods were then enrolled
in the multivariate Cox regression analysis respectively and
the risk score models were then established with the method
mentioned above.

Survival Analysis and ROC Analysis
According to the risk score formula, we calculated the risk score
for each patient in GSE2549 discovery set and TCGA validation
set. Patients from the two datasets were then divided into low-
risk and high-risk groups respectively with the median cutoff
of the risk score. Kaplan-Meier survival curves were performed
to evaluate whether there was significant difference between the
low-risk and high-risk groups by log-rank test with P < 0.05.
Univariate and multivariate analyses were conducted to see
whether the five-gene signature could be a prognostic factor for
MPM independent of other clinicopathological factors. P < 0.05
was considered significant. Hazard ratios and 95% confidence
interval were also calculated. Univariate and multivariate
analyses were performed using IBM SPSS version 23.0 (IBM
Corp., NY, United States). Time-dependent receiver operating
characteristic (ROC) curve analyses were conducted to evaluate
the prognostic effectiveness of the risk score model compared
with other clinicopathological factors and one literature model.
We used R package “survivalROC” to perform ROC analysis
(Heagerty et al., 2000; Patrick, 2013). C-index was calculated
by R package “survival” (Terry and Therneau, 2020). R package

“compareC” was used to perform the comparison of C-index
value (Le Le Kang, 2015). The method was for statistical
comparison of two diagnostic or predictive systems, of which they
could either be two biomarkers or two fixed algorithms, in terms
of their C indices (Kang et al., 2015). Z score test was used for
hypothesis testing.

Functional Enrichment Analysis
Gene Set Enrichment Analysis was conducted between the
low-risk and high-risk groups to predict the possible molecular
mechanisms responsible for the poor prognosis of MPM.
Molecular Signatures Database (MSigDB) C2 Canonical
pathways gene set database was used to screen the significant
pathways with the criteria of |NES| (normalized enrichment
score) > 1, NOM P < 0.05 and FDR (false discovery rate)
q < 0.05 after performing 1000 permutations (Liberzon et al.,
2011). The enrichment analysis was performed by GSEA 4.0.33.

RESULTS

Identification of Candidate DEGs
To obtain the differentially expressed genes (DEGs) between
human MPM tumor and normal tissues, two expression datasets
GSE2549 and GSE51024 were enrolled as discovery datasets
(Figure 1). We firstly screened for the DEGs between MPM
tumor and normal tissues in these two datasets using LIMMA
analysis in R (q < 0.05, |log2 Fold Change| > 1). A total of 1438
DEGs, including 837 upregulated genes and 601 downregulated
genes, were identified in GSE2549 between 40 MPM tumor
specimens and 9 normal specimens. A total of 727 DEGs,
including 211 upregulated genes and 516 downregulated genes
were screened in GSE51024 between 41 MPM tumor tissues
and 41 paired normal tissues. The volcano plots were generated
for both datasets (Figure 2A). Moreover, 92 upregulated genes
and 133 downregulated genes overlapped between GSE2549
and GSE51024 (Figure 2B). Therefore, a total of 225 candidate
DEGs were selected.

Construction and Validation of the
Prognostic Risk Score Model for MPM
By performing univariate Cox regression analysis between
these 225 candidate DEGs and survival data of discovery set
GSE2549, 36 genes were detected (P < 0.05). A LASSO Cox
regression analysis together with 10-time cross validation was
then conducted to eliminate the number of genes and select
those with non-zero coefficient (Figure 2C). Five genes were
identified and using multivariate Cox regression analysis, the
coefficient of each gene was calculated. Therefore, a five-gene
signature risk score model was developed based on the five
genes along with their coefficients and gene expression level. Risk
score = 0.1197 × expression of CDH2 + 0.6824 × expression of
CKS2 + 0.5594 × expression of KIF11 + 0.7141 × expression
of KIF18B + 0.5004 × expression of LOX. To confirm
the validity of the signature, we used three other methods,

3https://www.gsea-msigdb.org/gsea/index.jsp
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FIGURE 1 | Flowchart of the study design.

forward stepwise regression, bidirectional stepwise regression
and relaxed LASSO, to construct the prognostic models and
compare them with the five-gene signature. We found the genes
selected by the three methods overlapped with the five-gene
signature which confirmed the validity of the genes selected
by LASSO Cox regression method (Supplementary Tables 1, 2
and Supplementary Figure 1). We then used AIC, C-index and
ROC curves to evaluate and compare between the models and
found the five-gene model showed overall better performance
(Supplementary Tables 2, 3 and Supplementary Figure 2). We
further validated the differential expressions of the five genes
between tumor and normal tissues in GSE2549 and GSE51024
sets. All five genes were significantly overexpressed in tumor
tissues (Supplementary Figure 3A). At the same time, we did
the Kaplan-Meier curve to evaluate the relationship between the
gene expression and the overall survival (OS). The five genes
were strongly negatively related to the OS in GSE2549 dataset
(Supplementary Figure 4).

Each patient’s risk score was calculated according to the risk
score model in the discovery cohort GSE2549. The patients were
divided into low-risk or high-risk group by the median risk

score. Patients in high-risk group had much shorter survival
time than those in low-risk group (hazard ratio = 3.909, 95%
CI = 1.797–8.503, log-rank test P < 0.0001). Chi-square analysis
showed the death rate was significantly higher in high-risk group
than low-risk group (Figures 3A–C). Simultaneously, we used
MPM TCGA dataset (85 cases) as a validation cohort to confirm
the reproducibility of the risk score model (Figures 3D–F). The
prognostic signature was successfully validated in TCGA dataset
showing that patients in high-risk group had significantly shorter
OS than low-risk group patients (hazard ratio = 3.929, 95%
CI = 2.295–6.726, log-rank test P < 0.0001). In addition, all five
genes were validated significantly negatively related to the OS in
TCGA dataset (Supplementary Figure 5).

To evaluate whether the five-gene signature could be an
independent prognostic factor for MPM, we conducted the
univariate and multivariate Cox regression analyses in both
GSE2549 and TCGA datasets. From the univariate analysis of
GSE2549 dataset in Table 1, we observed that patients with
mixed histological subtype, lymph node positive or high risk
score were more likely to have shorter survival time and worse
prognosis compared to patients with epithelial subtype, lymph
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FIGURE 2 | Construction of the five-gene risk score model. (A) The volcano plots of GSE2549 and GSE51024 showing the DEGs between MPM tumor and normal
tissues. |log2 Fold Change| > 1, q- < 0.05 for DEGs. Blue dot represents the significant downregulated genes and red dot represents the significant upregulated
genes. (B) Venn of the DEGs in gene expression datasets GSE2549 and GSE51024. (C) Left panel: Plots of the cross-validation error rates. The two vertical dotted
line represent the largest lambda value with minimum error (left) and 1- standard error (right); Right panel: LASSO coefficient profiles of the 36 genes detected by
univariate cox regression analysis.

node negative or low-risk score. Hence, these results showed that
histological subtype, node status and risk score had a relatively
significant impact on prognosis of MPM patients. From the
univariate analysis of TCGA dataset in Table 2, risk score was the
only factor found to influence the prognosis of MPM patients.
After controlling for gender, race, histological type, Brigham
stage, AJCC stage, tumor size, lymphatic metastasis status and
organ metastasis status, the multivariate analysis results showed
the five-gene signature remained an independent prognostic

factor in both datasets (P < 0.001 in Table 1, P < 0.0001
in Table 2).

Stratified Survival Analysis of the
Five-Gene Risk Score Model
Stratified survival analysis was further conducted in subgroups
of patients with different clinical variables (gender, histological
subtype, tumor size, lymph node metastasis status, AJCC stage,
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FIGURE 3 | Risk score distribution and validation of the five-gene signature risk score model in GSE2549 and TCGA datasets. (A,D) Upper panel: Low-risk and
high-risk score distribution. Middle panel: the heatmap showing the five-gene expression profiles for each patient in low-risk and high-risk subgroups; Lower panel:
the distribution of risk score with patient survival status. (B,E) Comparison of the MPM death rate in low-risk and high-risk groups. The death rate was higher in
high-risk group than low-risk group. P-value was calculated by Chi-square test. (C,F) Kaplan-Meier survival analysis for the low-risk and high-risk patients (log-rank
test).
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TABLE 1 | Univariate and multivariate survival analysis of GSE2549.

Univariate analysis Multivariate analysis

Variable N P-value HR (95% CI) P-value HR (95% CI)

Histological subtype

Epithelial 23 0.038 2.232 (1.047–4.759) 0.717 0.834 (0.312–2.226)

Mixed 16

Node status

N0 8 0.045 2.945 (1.025–8.461) 0.089 3.060 (0.843–11.106)

N + 31

Margins

Negative 5 0.347 1.771 (0.538–5.832) 0.179 2.703 (0.634–11.529)

Positive 34

Brigham stage

Stage1 + 2 12 0.394 1.404 (0.644–3.064) 0.628 0.784 (0.292–2.101)

Stage3 + 4 27

Risk score

Low-risk 20 <0.0001 4.963 (2.190–11.247) <0.001 5.995 (2.178–16.502)

High-risk 19

N, number; HR, hazard ratio; CI, confidence interval. *One patient was not included in the univariate and multivariate analysis of the GSE2549 dataset, as the clinical
information was not available. All P values in bold were less than 0.05 which were considered statistically significant.

and Brigham stage). According to Tables 3, 4, the five-gene risk
score model was generally of statistically significant prognostic
value. The MPM patients stratified by Brigham staging system, in
either early stage or advanced stage, could be separated into the
subgroups of better prognosis and poorer prognosis by the five-
gene signature (Figures 4A,B). The model retained its prognostic
value when stratified by AJCC staging system in TCGA dataset
(Figures 4C,D). At the same time, we also found significant
prognostic value of our model in lymph node negative or positive
patients in both datasets (Figures 4E,F).

Comparison of Five-Gene Risk Model
With Other Clinicopathological Factors
and Literature Models
ROC analysis was conducted to evaluate the efficiency of our
five-gene risk score model. The AUCs (area under curve) for
the 1- and 2-years OS in GSE2549 dataset were 0.858 (95%
CI = 0.727–0.990) and 0.959 (95% CI = 0.918–1) (Figures 5A,B).
We verified the efficiency using TCGA dataset. The AUCs for 1-
and 2-years OS were 0.821 (95% CI = 0.726–0.916) and 0.852
(95% CI = 0.766–0.938) (Figures 5C,D). Except for the 5-gene
signature, we also did the ROC analyses of the clinicopathological
factors available in either dataset (Supplementary Figures 6, 7).
To further evaluate the prognostic value of the five-gene signature
model, we compared our model with a three-gene prognostic
model established by Zhou et al. (2019). The AUCs for 1- and 2-
years OS in either GSE2549 or TCGA dataset by our model were
comparable with Zhou’s model. We also used concordance index
(C-index) to evaluate our model. And R package “compareC” was
used to do the statistical comparison of the C-indices between
our model and Zhou’s model. The C-indices for GSE2549 dataset
were comparable between our model and Zhou’s model and no
statistical difference was detected (Table 5). However, our model

showed significant higher C-index value than Zhou’s model
(P < 0.05) in TCGA validation dataset (Table 6).

Functional Analysis
To obtain the potential biological function of the five-gene
signature in MPM tumorigenesis, the Gene Set Enrichment
Analysis (GSEA) was conducted to identify the associated
pathways between the high-risk and low-risk subgroups in
GSE2549 discovery dataset and TCGA validation dataset.
Here we used the canonical pathway gene set from the
Molecular Signatures database as our gene set database. The
gene sets were considered significantly enriched when the
definite value of normalized enrichment score was more
than 1, Nominal P-value was less than 0.005 and FDR
q-value was less than 0.05. From the GSEA report, we
discovered that “RHO GTPASES activate formins,” “Mitotic
spindle checkpoint,” “PLK1 pathway,” and “resolution of sister
chromatid cohesion” pathways were significantly enriched in
high-risk group patients from both discovery and validation
sets. Simultaneously, several cancer related pathways such as
“TP53 regulates transcription of cell cycle genes,” “regulation of
TP53 activity through phosphorylation,” “cell cycle checkpoints,”
“kinesins,” and “DNA double strand break repair” were also
enriched in the high-risk group of TCGA. They were all
reported to be involved in tumorigenesis and tumor progression
(Supplementary Figure 8).

DISCUSSION

Over the years, several staging systems have been proposed
for MPM (Rusch and Venkatraman, 1996). The TNM staging
system proposed by the International Mesothelioma Interest
Group (IMIG) subsequently accepted by the American Joint
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TABLE 2 | Univariate and multivariate survival analysis of TCGA.

Univariate analysis Multivariate analysis

Variable N P-value HR (95% CI) P-value HR (95% CI)

Gender

Female 11 0.302 0.690 (0.340–1.397) 0.011 0.354 (0.159–0.785)

Male 45

Race

Asian 1 0.518 0.719 (0.264–1.958) 0.924 0.948 (0.317–2.836)

White 55

AJCC stage

I + II 18 0.621 0.850 (0.447–1.617) 0.311 1.942 (0.538–7.017)

III + IV 38

T stage

T1 + T2 28 0.455 0.798 (0.441–1.444) 0.179 0.488 (0.171–1.389)

T3 + T4 28

N stage

N0 33 0.171 0.648 (0.349–1.206) 0.116 0.493 (0.204–1.190)

N + 23

M stage

M0 53 0.387 1.888 (0.447–7.983) 0.179 3.585 (0.556–23.106)

M1 3

Risk score

Low-risk 26 <0.0001 6.412 (2.806–14.625) <0.0001 9.009 (3.644–22.274)

High-risk 30

N, number; HR, hazard ratio; CI, confidence interval; AJCC, American Joint Commission on Cancer. *Nineteen patients were not enrolled in the univariate and multivariate
analysis of TCGA dataset, as some clinical information was not available. All P values in bold were less than 0.05 which were considered statistically significant.

TABLE 3 | Stratified survival analysis of GSE2549.

Variable Low risk High risk P-value HR (95% CI)

Histological subtype

Epithelial 15 8 0.0006 4.444 (1.254− 15.75)

Mixed 5 11 0.5396 1.390 (0.4759− 4.058)

N stage

N0 6 2 0.0473 5.486 (0.3636− 82.78)

N + 14 17 0.001 3.242 (1.465− 7.171)

Brigham stage

I + II 6 6 0.0138 4.529 (1.098− 18.69)

III + IV 14 13 0.0012 3.485 (1.391− 8.727)

HR, hazard ratio; CI, confidence interval. *One patient was not included in the stratified analysis of GSE2549 dataset, because the clinical information was not available.
All P values in bold were less than 0.05 which were considered statistically significant.

Commission on Cancer (AJCC) and the Union for International
Cancer Control (UICC) is the one that has been generally
accepted. Nevertheless, the current AJCC/UICC staging
classification for MPM is still difficult to apply to clinical staging
and thus may be imprecise in predicting prognosis and providing
appropriate treatment for MPM patients (Rusch et al., 2012).
Therefore, it is of great significance to explore biomarkers with
optimal prognostic value for MPM patients. Research shows that
combination of multiple biomarkers will improve the prognostic
value instead of a single biomarker (Nalejska et al., 2014). In
this study, we developed and validated a five-gene signature to
evaluate the prognosis of MPM.

First, we identified 225 candidate DEGs based on two
expression microarrays from GEO database. Aiming to eliminate
the correlation between the genes selected by univariate analysis
and improve the applicability in clinical practice, a five-gene
signature risk score model was constructed by LASSO Cox
regression. The LASSO Cox regression model has been widely
applied to the Cox proportional hazard regression model for
survival analysis with high dimensional data (Tibshirani, 1997;
Zhang and Li, 2007; Wei et al., 2015; Lin et al., 2020). By
studying Hastie et al’s research work on comparing the LASSO
with other model selection methods (Hastie et al., 2017), we
introduced three more methods to confirm the validity of the
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TABLE 4 | Stratified survival analysis of TCGA.

Variable Low-risk High-risk P-value HR (95% CI)

Gender

Female 5 6 0.0123 3.806 (0.961–15.08)

Male 21 24 0.0001 3.110 (1.559–6.204)

AJCC stage

I + II 6 12 0.0322 2.534 (0.967–6.640)

III + IV 20 18 0.0006 3.174 (1.444–6.973)

T stage

T1 + T2 12 16 0.0018 2.889 (1.268–6.582)

T3 + T4 14 14 0.0025

N stage

N0 12 21 0.0017 2.823 (1.372–5.806)

N + 14 9 0.0013 3.937 (1.163–13.33)

HR, hazard ratio; CI, confidence interval; AJCC, American Joint Commission on
Cancer. *Nineteen patients were not included in the stratified analysis of TCGA
dataset, as some clinical information was not available. All P values in bold were
less than 0.05 which were considered statistically significant.

genes selected by LASSO Cox regression. The performances of
the models were evaluated by AIC, C-index and AUC with
respect to the degree of goodness-to-fit, the prediction accuracy
and the predictive capacity. From the results, we could see the
bidirectional stepwise regression showed the worst performance
among these four methods (Supplementary Tables 2, 3 and
Supplementary Figure 2). Our five-gene model by LASSO
showed better or equivalent performance when compared with
the models constructed by forward stepwise regression or relaxed
LASSO. At the same time, we noticed four of the five genes
(KIF18B, CKS2, LOX, and CDH2) in forward stepwise regression
model and four of seven genes (CKS2, KIF11, KIF18B, and LOX)
in relaxed LASSO model were overlapped with the five genes
in LASSO model which further confirmed the validity of the
genes selected by LASSO Cox regression method. Compared
with the model constructed by relaxed LASSO method which
included seven genes, our signature only had five genes and
it showed better or equivalent prediction performance. The
general principle for model selection was that for a given level of
accuracy, a simpler or a more parsimonious model is preferable to
a more complex one (Bozdogan, 1961; Stone, 1981). Taking into
account the measurement cost to implement the model and the
complexity of the model, the five- gene signature not only had
better or equivalent prediction performance but also had higher
practicability value.

The model was validated in GSE2549 and TCGA datasets
showing that high-risk group patients always had worse clinical
outcome and shorter survival time than low-risk group patients.
In stratified analysis, our model had good performance in
predicting OS. The univariate and multivariate analyses indicate
our five-gene signature to be an independent prognostic factor
for MPM patients. Simultaneously, our results showed that
histological subtype, gender, and lymph node had relatively
significant impact on prognosis, and these results were in
agreement with many other researches for prognostic factors
(Spirtas et al., 1988; Anand, 1994; Curran et al., 1998;
Vigneswaran et al., 2017). To evaluate the accuracy and

discrimination power of our risk score model, we did the
ROC and C-index analyses. Simultaneously, we compared
our model with available clinicopathological factors. Our risk
score model exhibited stable predictive performance compared
with clinicopathological factors (Supplementary Figures 6, 7).
Considering our risk score model was using relatively objective
gene expression levels tested by microarray or RNAseq while
evaluating the prognosis of MPM patients, some of the
clinicopathological factors might be variable in evaluation of
prognosis of MPM patients. And this might also be due to lack
of the data. We also compared our model with the literature
model by Zhou et al. (2019), the AUCs for 1- and 2-years OS
were comparable in discovery GSE2549 dataset. While putting
the two models in the larger validation TCGA dataset, although
our model showed higher AUCs, but the confidence of intervals
overlapped, indicating no statistical difference. Therefore, we
could not determine yet which model was better at evaluating
the prognosis of MPM patients from the statistical perspective.
Maybe due to the lack of data, we could not detect the statistical
difference of AUCs between our model and Zhou’s model. When
we used C-index to compare our model and Zhou’s model in
the validation TCGA dataset, our model showed higher C-index
value with a P-value of 0.000649.

To gain more insights into the modulatory roles of the
five genes in the signature, GSEA analysis was performed and
showed that the “RHO GTPASES activate formins,” “mitotic
spindle checkpoint,” “PLK1 pathway,” and “resolution of sister
chromatid cohesion” pathways were significantly associated with
poor prognosis in high-risk subgroup MPM patients. The Rho
family of GTPases is a family of small signaling G protein
that regulate actin cytoskeleton organization and dynamics
(Vega and Ridley, 2008). Nearly 75% of MPM cases harbor
loss of function of core components of the Hippo pathway,
which negatively regulates YAP activity (Zhang et al., 2010;
Murakami et al., 2011). RhoA may strongly enhance YAP/TAZ
activity, thereby promoting the proliferation of MPM in the
sense that high YAP/TAZ activity is positively related to high
proliferation capacity for MPM (Dupont et al., 2011; Mizuno
et al., 2012). Zhang et al. reported a proliferation inhibitory
effect in MPM cell lines with GSK269962A, a selective inhibitor
of Rho−Kinase (Zhang et al., 2017). These studies, together
with our result, indicated that the “Rho GTPASES activate
formins” pathway is likely a significant mechanism in MPM
tumorigenesis, and might serve as a target in the treatment of
MPM patients. Additionally, the “mitotic spindle checkpoint”
and “resolution of sister chromatid cohesion” pathways are
closely related. The spindle checkpoint delays sister chromatid
separation until all chromosomes have undergone bipolar spindle
attachment. Dysfunction of this checkpoint contributes to
tumorigenesis. Moreover, certain components of the mitotic
spindle checkpoint pathway, including CHEK1, BUB1, and
MAD2L1 were found to be upregulated in MPM tumors via
microarray technology (Crispi et al., 2009). Similarly, Suraokar
et al. carried out a gene expression microarray experiment on
53 surgically resected MPMs tumors along with paired normal
tissues and found that the mitotic spindle checkpoint pathway
was the most significantly altered pathway in MPM patients

Frontiers in Genetics | www.frontiersin.org 9 August 2020 | Volume 11 | Article 899

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00899 August 6, 2020 Time: 20:26 # 10

Bai et al. Five-Gene Signature for MPM Prognosis

FIGURE 4 | Stratified survival analysis of the five-gene risk score model. Kaplan-Meier survival analysis for the patients with different clinical variables classified by the
five-gene risk score model. (A) Patients in Brigham stage I/II; (B) patients in Brigham stage III/IV; (C) patients in AJCC stage I/II. (D) Patients in AJCC stage III/IV; (E)
patients with lymph node negative; (F) patients with lymph node positive. P-values were calculated by Log-rank test.

(Suraokar et al., 2014b). They also evaluated the indicator for the
deregulated expression of the mitotic spindle checkpoint pathway
in an independent cohort of 80 MPM tumors and found higher
nuclear MAD2L1 expression associated significantly (P = 0.043)
with lower rates of OS. These findings, along with our result,
clearly demonstrate the important role of the “mitotic spindle

checkpoint” pathway in MPM that the pathway, suggesting
that it might be a possible target for MPM therapy. Lastly,
PLK1 (polo-like kinase 1), has been identified as a candidate
therapeutic target and independent prognostic marker of MPM
by an RNAi-based screening study (Linton et al., 2014). The
inhibitory effect on cell proliferation following treatment with
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FIGURE 5 | ROC curves of five-gene risk score model compared with the literature model by Zhou et al. (2019). The X axis indicates false positive rate. The Y axis
indicates true positive rate. One patient in GSE2549 dataset was not enrolled in the analysis because the clinical information was not available. (A) 1-year OS in
GSE2549; (B) 2-year OS in GSE2549; (C) 1-year OS in TCGA; (D) 2-year OS in TCGA.

the PLK1 small inhibitors BI6727, and BI2539 or the PLK1-
specific siRNA and artificial microRNA, have been validated
in multiple MPM cell lines (Linton et al., 2014; Kato et al.,
2016b). Hence, under our five-gene risk score classification,
the high-risk MPM patients may benefit from PLK1 specific
small molecule inhibitors, which are currently considered to be
attractive therapeutic strategies against specific tumor types such
as leukemia and non-small cell lung cancer (Medema et al., 2011;
Lee et al., 2015).

All five genes (CDH2, CKS2, KIF11, KIF18B, and SEMA3G) in
our model were confirmed to be significantly associated with the
OS of MPM patients. Cadherin2 (CDH2), encoding N-cadherin
protein, is closely related to the epithelial–mesenchymal
transition (EMT) process and demonstrated prognostic
significance in MPM (Schramm et al., 2010). It was reported
that there was a substantial switch from epithelial markers such
as E-cadherin and β-catenin to mesenchymal markers such as
N-cadherin through epithelium to biphasic and sarcomatoid
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TABLE 5 | C-index comparison in GSE2549 dataset.

Signature C-index Z-score P-value

Our five-gene signature 0.784 (95% CI = 0.674–0.894) −0.35839 0.720051

Three-gene signature by Zhou et al. (2019) 0.770 (95% CI = 0.725–0.815)

C-index, concordance index; CI, confidence interval.

TABLE 6 | C-index comparison in TCGA dataset.

Signature C-index Z-score P-value

Our five-gene signature 0.753 (95% CI = 0.698–0.808) −3.41016 0.000649

Three-gene signature by Zhou et al. (2019) 0.608 (95% CI = 0.567–0.649)

C-index, concordance index; CI, confidence interval. All P values in bold were less than 0.05 which were considered statistically significant.

subtypes, indicating the three histological subtypes of MPM are
the consequences of different steps in an EMT process, of which
the sarcomatoid subtype has the worst OS (Fassina et al., 2012).
Consistent with these previous studies, we found the expression
of CDH2 was higher in MPM tumor tissues than normal tissues
and the high expression level of CDH2 was associated with poor
prognosis (Supplementary Figures 3, 4A, 5A).

Cyclin-dependent kinases regulatory subunit 2 (CKS2) is the
member of cell cycle dependent protein kinase subunits family.
Although rarely reported with MPM, there is accumulating
evidence showing CKS2 is upregulated in many types of tumor
as a prognostic factor, including hepatocellular carcinoma,
colorectal cancer, bladder cancer, breast cancer, gastric cancer and
epithelium ovarian cancer (Kawakami et al., 2006; Shen et al.,
2010; Tanaka et al., 2011; Yu et al., 2015; Huang et al., 2019; Xu
et al., 2019). Our results revealed that the expression of CKS2
was elevated in MPM tumor tissues compared to normal tissues
and it was harmful for the prognosis of MPM patients, which
is in line with these previous findings of other types of tumor
(Supplementary Figures 1, 4B, 5B). Investigators also found that
CKS2 may advance tumor progression by promoting tumor cell
proliferation and regulating apoptosis (Shen et al., 2013).

Kinesin family member 11 (KIF11, also known as EG5)
and Kinesin family member 18B (KIF18B) are two kinesin
superfamily members, yet they are from two different kinesin
subfamilies and function differently (Lawrence et al., 2004).
KIF11 is essential for cell growth and proliferation, involved in
the formation of the bipolar spindle in cell mitosis. KIF11 was
found overexpressed not only in MPM human tumor samples
and MPM human cell lines, but also in blast crisis chronic
myelogenous leukemia and pancreatic cancer (Nowicki et al.,
2003; Liu et al., 2010; Kato et al., 2016a). This is consistent
with our analysis that KIF11was significantly overexpressed in
MPM tumor tissues and was confirmed as a poor prognostic
factor for MPM patients (Supplementary Figures 3, 4C, 5C).
Mitotic arrest as a result of KIF11 inhibition has been observed
in a variety of tumors (Infante et al., 2012). Several compounds
inhibiting KIF11 entered Phase I and II clinical trials (El-
Nassan, 2013). Different from KIF11, KIF18B is involved in
the regulation of microtubule dynamics (Lee et al., 2010).
KIF18B was rarely reported with MPM, but it was reported

promoting tumor progression in cervical cancer, hepatocellular
carcinoma, and pancreatic cancer (Wu et al., 2018; Yang et al.,
2020; Li et al., 2020). High levels of KIF18B were associated
with poor prognosis in lung adenocarcinoma patients (Ji et al.,
2019). Our analysis showed the high expression of KIF18B was
significantly associated with poor prognosis of MPM patients
(Supplementary Figures 4D, 5D).

Lysyl oxidase (LOX) was one of the five paralogs functioning
primarily as the crosslink of collagens or elastin in extracellular
matrix (Kim et al., 2011). Studies have shown that LOX mRNA
level was increased in various cancer types, including head and
neck squamous cell carcinoma, and breast and prostate cancers
(Kirschmann et al., 2002; Lapointe et al., 2004; Erler et al., 2006).
Recently, LOX was identified as a potential diagnostic biomarker
in MPM (Kim et al., 2020). We also note that patients with high
expression of LOX had shorter overall survival time and worse
prognosis compared with patients with low expression of LOX
(Supplementary Figures 4E, 5E).

Several limitations of our study should be pointed out. First,
the clinical information of the patients was not comprehensive.
Specifically, the clinical information of the discovery set
GSE51024 was not accessible. In addition, there was no age,
asbestos exposure history or any treatment information for
the patients in either GSE2549 or TCGA dataset. Therefore,
we could not evaluate additional possible prognostic factors.
Second, given the low incidence of MPM, and the scarcity of
available public databases, we could only adopt two datasets,
GSE2549 and GSE51024, as our discovery datasets. GSE2549
dataset had a split of 40 tumor samples and 9 normal samples,
while GSE51024 had 41 pairs of tumor and normal samples, this
may lead to result bias and potentially cause the loss of viable
DEGs. Third, only one MPM TCGA dataset was used as the
validation dataset. The model was constructed based on the DEGs
overlapping between the two discovery datasets using microarray
technology, yet it was validated in the TCGA dataset using RNA-
seq technology which might affect the performance of the model.
Compared with RNA-seq, microarray is unable to detect novel
transcripts and might cause loss of possible DEGs, particularly
genes with low expression. To test the practicality and accuracy
of our model, rigorous validation in large prospective studies
are needed. Finally, the molecular and biological mechanisms
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of these five genes in MPM need to be further investigated by
additional research.

CONCLUSION

In conclusion, we have identified a five-gene signature risk
score model as an objective and practical prognostic tool
independent of clinicopathological factors for MPM patients,
which complements the current MPM staging system. The
accuracy and stability of our model provides opportunity for
future clinical application.
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