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Abstract
Introduction  Medulloblastoma is an aggressive but potentially curable central nervous system tumor that remains a treat-
ment challenge. Analysis of therapeutic targets can provide opportunities for the selection of agents.
Methods  Using multiplatform analysis, 36 medulloblastomas were extensively profiled from 2009 to 2015. Immunohisto-
chemistry, next generation sequencing, chromogenic in situ hybridization, and fluorescence in situ hybridization were used to 
identify overexpressed proteins, immune checkpoint expression, mutations, tumor mutational load, and gene amplifications.
Results  High expression of MRP1 (89%, 8/9 tumors), TUBB3 (86%, 18/21 tumors), PTEN (85%, 28/33 tumors), TOP2A 
(84%, 26/31 tumors), thymidylate synthase (TS; 80%, 24/30 tumors), RRM1 (71%, 15/21 tumors), and TOP1 (63%, 19/30 
tumors) were found in medulloblastoma. TOP1 was found to be enriched in metastatic tumors (90%; 9/10) relative to poste-
rior fossa cases (50%; 10/20) (p = 0.0485, Fisher exact test), and there was a positive correlation between TOP2A and TOP1 
expression (p = 0.0472). PD-1 + T cell tumor infiltration was rare, PD-L1 tumor expression was uncommon, and TML was 
low, indicating that immune checkpoint inhibitors as a monotherapy should not necessarily be prioritized for therapeutic 
consideration based on biomarker expression. Gene amplifications such as those of Her2 or EGFR were not found. Several 
unique mutations were identified, but their rarity indicates large-scale screening efforts would be necessary to identify suf-
ficient patients for clinical trial inclusion.
Conclusions  Therapeutics are available for several of the frequently expressed targets, providing a justification for their 
consideration in the setting of medulloblastoma.
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Introduction

Medulloblastoma is the most common malignant central 
nervous system (CNS) pediatric tumor and also occurs 
in adults, albeit less frequently. Clinical prognosis and 
stratification are dependent on clinical variables such as 
age, presence of metastasis inside or outside the CNS, and 
extent of surgical resection [1]. Recently, in addition to 
histological classification, molecular subgroups (WNT, 
SHH, Group 3 and Group 4) with distinct clinical and 
genomic characteristics have been identified as important 
prognostic factors in larger retrospective series and are 
now being validated prospectively [2]. Current treatment 
paradigms are based on risk stratification (standard-risk 
and high-risk for recurrence) and involve multimodal 
therapeutic approaches (surgery, craniospinal radiation, 
chemotherapy). These treatment strategies have shown 
an improvement in 5-year overall survival to 85% for 
children with standard-risk disease and ~ 60% for those 
with high-risk disease [3]. However, long-term survival 
is often associated with treatment-related morbidity, and 
late relapses are still possible, particularly in adult medul-
loblastomas [4]. Targeted therapeutics with agents such as 
vismodegib and other smoothened (SMO) inhibitors are 
of potential benefit to only a single subgroup, the SHH-
subtype that has sonic hedgehog pathway activation, con-
stituting approximately 30% of medulloblastoma patients 
in children and more than 50% in adults [5, 6]. Because 
multiple alterations define these subsets, careful genomic 
and molecular classification is required to discover new 
actionable targets, particularly for groups 3 (the subtype 
with worse outcome) and 4 (the most frequent subtype in 
children and the second in adults), for which no targeted 
agents are yet available [7]. Therefore, we hypothesized 
that precision medicine profiling would be informative 
regarding applicable targeted therapeutic strategies and 
biomarker-based chemotherapies of potential benefit for 
medulloblastoma patients that pose a treatment quandary 
for the clinician.

Materials and methods

We analyzed 36 medulloblastomas (18 pediatric and 18 
adult samples) submitted to Caris Life Sciences for mul-
tiplatform analysis (e.g., sequencing, immunohistochem-
istry) (Supplementary Tables 1, 2 and 3). Prior treatment 
histories and clinical annotation are not provided by the 
referring physicians; however, one submitted pediatric 
case (1/18) and 44% of the adult cases (8/18) were desig-
nated as “recurrent” as part of their submitted diagnosis. 

IHC analysis was performed on sections on full slides 
from formalin-fixed paraffin-embedded (FFPE) tumor 
specimens. Abiding by the requirements of the Clinical 
Laboratory Improvement Amendments/Compliance Assis-
tance Office (CLIA) and International Organization for 
Standardization, staining conditions were optimized and 
validated, and staining was performed per the manufac-
turer’s instructions using automated staining techniques. 
The results were evaluated and confirmed by independ-
ent board-certified pathologists. Results were categorized 
as positive or negative by defined thresholds specific to 
each marker [8], based on published clinical literature 
that associates biomarker status with patient responses to 
therapeutic agents.

Using the Illumina MiSeq and NextSeq platforms, next 
generation sequencing (NGS) was performed on genomic 
DNA. DNA was isolated from microdissected FFPE tissue 
using QIAamp DNA FFPE DNA Extraction Kit. Specific 
regions of either 47 or 592 genes (a panel of pan-cancer 
genes of interest related to cancer genomics based on cur-
rent literature http://www.caris​molec​ulari​ntell​igenc​e.com/
tumor​-profi​ling-menu/) were amplified and enriched using 
the customized Illumina TruSeq Amplicon Cancer Hotspot 
panel and Agilent custom-designed SureSelect XT assay 
[9]. All variants reported were detected with > 99% con-
fidence based on the mutation frequency present. Tumor 
mutational load was calculated by counting all non-syn-
onymous missense mutations that had not previously been 
reported as germline alterations. The NextSEQ platform 
sequences a total of 592-cancer-related genes with a total 
sequenced length of 1.4 megabases. Even though whole 
exosome sequencing has been previously used to measure 
TML, in some cases smaller gene panels have been used 
and associated with immunotherapy response [10, 11]. 
Work previously published has also illustrated that inter-
rogating mutations at the coding regions of a targeted gene 
panel can generate TML values that are highly correlated 
with whole exome sequencing [12]. While whole exo-
some sequencing is only performed in research settings, 
using targeted sequencing allows for evaluation of TML in 
clinical settings. Copy number variation (CNV) was tested 
by NGS and was determined by comparing the depth of 
sequencing of genomic loci to a diploid control as well as 
the known performance of these genomic loci. Calculated 
gains ≥ 6 copies were considered amplified.

Gene amplifications were assessed using FISH for 
EGFR [EGFR/CEP7 probe] and CISH for Her2 [INFORM 
HER-2 Dual ISH DNA Probe Cocktail]. EGFR amplifica-
tion was defined by the presence of an EGFR/CEP7 ratio 
of ≥ 2, or ≥ 15 EGFR copies per cell in ≥ 10% of analyzed 
cells. All reported P values were two sided and corrected 
for multiple comparison. P values of less than 0.05 were 

http://www.carismolecularintelligence.com/tumor-profiling-menu/
http://www.carismolecularintelligence.com/tumor-profiling-menu/
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declared as statistically significant. All analyses were per-
formed with statistical software R v3.3.1.

Results

Patient characteristics and the number of tumor specimens 
are shown in Table 1, which are consistent with known 
demographic features, including preferential enrichment 
in males in the pediatric population. This cohort con-
tains tumors located outside the posterior fossa, which 
were recurrent or metastatic medulloblastomas. The most 
common cancer-associated biomarkers identified by IHC 
were the multidrug resistance-associated protein 1 (MRP1) 
(89%; 8/9 tumors), tubulin beta 3 class III (TUBB3) (86%; 
18/21 tumors), phosphatase and tensin homolog (PTEN) 
(85%; 28/33 tumors), topoisomerase 2A (TOP2A) (84%; 
26/31 tumors), thymidylate synthase (TS) (80%; 24/31 

tumors); ribonucleotide reductase M1 (RRM1) (71%; 
15/21 tumors), and topoisomerase 1 (TOP1) (63%; 19/30 
tumors) (Fig. 1). These findings are consistent with mRNA 
levels in the data set of medulloblastoma patients from 
the TCGA although there are some anticipated differences 
secondary to post-transcriptional and epigenetic regula-
tion (Supplementary Fig. 1). Representative IHC results 
are shown in Fig. 2. TOP1 was found to be enriched in 
metastatic tumors (90%; 9/10) relative to posterior fossa 
cases (50%; 10/20) (p = 0.0485, Fisher exact test) (Fig. 1), 
and there was a positive correlation between TOP2A and 
TOP1 expression (p = 0.0472). PD-1 + infiltrating T cells 
and tumor PD-L1 expression were low in medulloblastoma 
(Figs. 1, 2). PGP expression was only found in pediatric 
medulloblastoma cases (Fig. 1).

Mutational testing on individual samples was performed 
at the discretion of the ordering physician. Hence, not all 
samples were tested for all mutations. Nonetheless, among 
27 tumors (13 pediatric, 14 adult) sequenced for either 47 
or 592 genes, 2 had mutations in TP53 (Q167fs, H178fs), 
PIK3CA (E545G, E546K), and PDE4DIP (E243fs), and 
one mutation occurred in each of the following: APC 
(S1545fs), BRCA2 (V220fs/D2242fs), CTNNB1 (G34V), 
FBXW7 (R465H), IDH1 (R132S), PTEN (Q214X), SMO 
(L412F), FOXO3 (L382fs), and PTCH1 (Q694fs) (Fig. 3). 
TML was lower than 10 per Mb in all of 7 medulloblasto-
mas analyzed (Fig. 3). We did not detect gene amplifica-
tions in EGFR (n = 8) or Her2 (n = 16) by FISH and CISH, 
respectively; MYCN amplification was seen in one tumor 
using NGS.

Table 1   Summary of characteristics of patients with medulloblastoma

All Pediatric Adult

Number of patients 36 18 18
Age
 Mean, years (range) 19.6 (2–47) 7.7 (2–14) 31.6 (18–47)

Sex
 Male, n (%) 23 (63.9%) 14 (77.8%) 9 (50.0%)
 Female, n (%) 13 (36.1%) 4 (22.2%) 9 (50.0%)

Tumor location
 Posterior fossa, n (%) 26 (72.2%) 15 (83.3%) 11 (61.1%)
 Non-posterior fossa, n (%) 10 (27.8%) 3 (16.7%) 7 (38.9%)

Fig. 1   Percentage of medulloblastoma patients with designated protein expression. Expression frequency of all patients (a) and subgroups 
according to age (b), sex (c), and tumor location (d). *p < 0.05. Non-posterior fossa cases designate metastatic cases
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Fig. 2   Representative immunohistochemical staining of MRP1 (a), 
TUBB3 (b), PTEN (c), TOP2A (d), thymidylate synthase (e), RRM1 
(f), TOP1 (g), PD-1 on tumor infiltrating lymphocytes (h), and PD-L1 

on tumor cells (i). A representative positive (left) and a negative 
(right) samples for each marker are shown. Bar 100 µm. Arrows show 
PD-1 positive T cells
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Discussion

This study analysis was based on: (1) therapeutic biomarker 
expression in the CLIA domain necessary for patient selec-
tion and/or stratification for a treatment modality, and (2) the 
availability of an associated clinical therapeutic. Although 
molecular subgrouping for medulloblastoma is important for 
diagnosis and prognosis, this categorization strategy is insuf-
ficient for the selection of therapeutics at this time and was 
not an intent of this study. The most frequent medulloblas-
toma subgroup in children and second in adults (group 4), 
and the subgroup with worse prognosis (group 3), lack tar-
geted agents, and prior attempts to match targeted therapeu-
tics with a subgroup have not been therapeutically beneficial 
[5]. One could argue that a dogmatic requirement of medul-
loblastoma subtype alignment would be analogous to requir-
ing all “omic” data on glioblastoma be aligned with one of 
the new molecular subtypes, which have been continuously 
redefined [13]. Currently, IHC markers for medulloblastoma 
subtyping, such as WNT, GAB1 or YAP1, are not univer-
sally performed and subtyping by IHC does not always coin-
cide with subtyping by other methods (Nanostring, 450k 
array profiling),[14] indicating that these IHC markers can-
not yet be used to select therapeutics for patients. Although 

our analysis panel included genes previously identified by 
largescale profiling studies of medulloblastoma, such as 
CTNNB1 or SMO, it did not include PRDM6 and TERT 
mutations; however, there are no therapeutics targeted to 
these alterations at this time, and as such, these have not 
been included in our focused therapeutic target profiling.

Based on our current study, several identified therapeu-
tic targets have not been previously considered for medul-
loblastoma such as TS, a marker of cell proliferation and 
poor prognosis in other solid tumors [15]. Several avail-
able TS inhibitors such as raltitrexed, nolatrexed, ZD9331, 
and OSI-7904L could be considered therapeutically. Per-
haps most interesting was expression of the topoisomerase 
family. We found frequent TOP2A expression, which has 
been previously noted in medulloblastoma [16]. There are 
several inhibitors available, such as etoposide, epirubicin, 
WP744/berubicin and S16020, which could be considered 
in the context of clinical trials. We also found TOP1 expres-
sion, which may have been an unappreciated confounder 
of response to irinotecan in children with recurrent medul-
loblastoma [17]. Previously, several clinical trials using 
irinotecan have reported a signal of response in a subset 
of patients [17, 18]; however, these trials were conducted 
before the era of precision medicine, and thus the correlation 

Fig. 3   Gene mutation distribution in the medulloblastoma cohort. 
Gene mutations that have been reported as pathogenic for malig-
nancies are shown. The variants were interpreted by board-certified 
molecular geneticists and categorized as pathogenic, presumed patho-
genic, variant of unknown significance, presumed benign, or benign, 
according to American College of Medical Genetics and Genomics 

(ACMG) standards. Essentially a pathogenic variant has the high-
est confidence that it is disease causing or contributes to the disease, 
while benign has the lowest likelihood to cause disease. CNV copy 
number variant, TML tumor mutational load (per Mb). Non-posterior 
fossa cases designate metastatic cases
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between treatment response and tumor TOP1 expression was 
not evaluated. Similar comments can be made for clinical tri-
als of topotecan [19]—another prototypical TOP1 inhibitor. 
Given frequent TOP1 expression in metastatic tumors and 
association with TOP2A expression, use of a TOP1 inhibitor 
in combination with a TOP2A inhibitor may be considered 
for recurrent and metastatic medulloblastomas. Our analyses 
also include markers that have been reported to be associ-
ated with diminished effectiveness of therapeutic agents. 
For example, the frequent expression of RRMI and TUBB3 
would suggest a lack of benefit to gemcitabine-based chemo-
therapy [20] and microtubule inhibitors such as epothilones 
[21], respectively. Conversely, relatively low expression fre-
quency of the excision repair cross-complementation group 
1 (ERCC1), which a predictive biomarker of cisplatin-based 
chemotherapy resistance [22, 23] would indicate current use 
of cisplatin for medulloblastoma treatment is justifiable in 
most cases.

Although there is enthusiasm for the use of immune 
checkpoint inhibitors for treating multiple malignancies, 
and several studies showed PD-1 and PD-L1 expression in 
murine models of medulloblastoma [24, 25], the relatively 
low levels of PD-1-expressing T cells, tumor expressed 
PD-L1, and tumor mutational burden in medulloblastomas, 
consistent with a prior report [26], indicate that immune 
checkpoint inhibitors as a monotherapy should not neces-
sarily be prioritized for therapeutic considerations based on 
biomarker expression. These findings are also consistent 
with a prior report of low PD-L1 expression in pediatric 
cancers [27].

The absence of Her2 or EGFR amplification in our study 
was not surprising because largescale studies have not iden-
tified these cytogenetic abnormalities. MYCN copy num-
ber alteration (amplification) was seen in one tumor while 
CDK6 amplification was not seen. YAP1 amplification, even 
though identified as characteristic for various subgroups 
of medulloblastoma was not assessed in this study. The 
absence of identifiable mutations in many of the samples 
attest to the potential limitations of targeted strategies for 
all patients. Furthermore, the rarity of targets found in large 
data sets indicate that large-scale profiling initiatives would 
be required in order to identify select subsets of applicable 
patients. Notably, even in the setting in which a specific tar-
geted agent is used in a selected biomarker-positive popula-
tion, cellular clonotypic heterogeneity can result in the rapid 
selection and expansion of non-expressing cells.

As this is a commercial repository for molecular profil-
ing, validated clinical data regarding the treatment courses 
and patient prognoses is also not available. Hence, we are 
not able to exclude the possibilities that the expression levels 
of designated markers, especially in recurrent and metastatic 
tumors, might have been influenced by therapeutic inter-
vention. Recent studies have revealed that while recurrent 

and metastatic medulloblastomas retain the same subtype 
designation as the primary tumor [28, 29], the recurrent and 
metastatic tumors are genetically distinct from the primary 
tumor [30, 31]. This cohort includes relapsed and metastatic 
tumors, which probably influences the molecular profile; 
however the specimens are not clinically annotated to place 
biomarker expression in the context of treatment resistance. 
Notably, our analyzed cohort does reflect the composition 
of patients that pose a treatment challenge to the clinician. 
As such, the analysis provides a new perspective for iden-
tifying potential therapeutic options outside of the current 
molecular subtype designations, which may be beneficial for 
patients. In summary, therapeutics are available for several 
frequently expressed targets providing a justification for their 
consideration in future clinical trials for medulloblastoma.
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