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Background: The preoperative differentiation between benign parotid gland tumors (BPGTs) and 
malignant parotid gland tumors (MPGTs) is of great significance for therapeutic decision-making. 
Deep learning (DL), an artificial intelligence algorithm based on neural networks, can help overcome 
inconsistencies in conventional ultrasonic (CUS) examination outcomes. Therefore, as an auxiliary diagnostic 
tool, DL can support accurate diagnosis using massive ultrasonic (US) images. This current study developed 
and validated a DL-based US diagnosis for the preoperative differentiation of BPGT from MPGT.
Methods: A total of 266 patients, including 178 patients with BPGT and 88 patients with MPGT, were 
consecutively identified from a pathology database and enrolled in this study. Ultimately, considering the 
limitations of the DL model, 173 patients were selected from the 266 patients and divided into 2 groups: a 
training set, and a testing set. US images of the 173 patients were used to construct the training set (including 
66 benign and 66 malignant PGTs) and testing set (consisting of 21 benign and 20 malignant PGTs). These 
were then preprocessed by normalizing the grayscale of each image and reducing noise. Processed images 
were imported into the DL model, which was then trained to predict the images from the testing set and 
evaluated for performance. Based on the training and validation datasets, the diagnostic performance of the 
3 models was assessed and verified using receiver operating characteristic (ROC) curves. Ultimately, before 
and after combining the clinical data, we compared the area under the curve (AUC) and diagnostic accuracy 
of the DL model with the opinions of trained radiologists to evaluate the application value of the DL model 
in US diagnosis.
Results: The DL model showed a significantly higher AUC value compared to doctor 1 + clinical 
data, doctor 2 + clinical data, and doctor 3 + clinical data (AUC =0.9583 vs. 0.6250, 0.7250, and 0.8025 
respectively; all P<0.05). In addition, the sensitivity of the DL model was higher than the sensitivities of the 
doctors combined with clinical data (97.2% vs. 65%, 80%, and 90% for doctor 1 + clinical data, doctor 2 + 
clinical data, and doctor 3 + clinical data, respectively; all P<0.05).

3000

mailto:xuyushan1019@126.com
https://crossmark.crossref.org/dialog/?doi=10.21037/qims-22-950


Zhang et al. Application of deep learning in salivary gland tumors2990

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(5):2989-3000 | https://dx.doi.org/10.21037/qims-22-950

Introduction

Parotid tumors (PTs) are widely recognized as a rare group 
of tumors with heterogeneous cellular and tissue features. 
The incidence rate of salivary malignancies is estimated to be 
4–135 cases per million people annually (1). A considerable 
proportion of PTs are benign, ranging from 75% to 
85% (2,3). The World Health Organization (WHO) in 
2017 recognized 11 and 22 epithelial subtypes of benign 
parotid gland tumors (BPGTs) and malignant parotid 
gland tumors (MPGTs), respectively (4). Prognosis, 
tendency to metastasize, and therapeutic approach vary 
between these histological types. For most BPGTs, 
superficial parotidectomy (SP) is adequate (5). By 
comparison, a relatively aggressive surgical approach, 
such as total parotidectomy (TP) with radiotherapy, is 
needed for MPGTs to prevent malignant transformation 
(6,7). Therefore, a precise preoperative diagnosis that 
differentiates BPGTs from MPGTs is of great significance 
in determining the most appropriate surgical treatment. 

Fine needle aspiration cytology (FNAC) is a widely 
used cytodiagnostic method because of its relatively 
high sensitivity and specificity. However, FNAC is not 
always conclusive due to sampling disqualification and the 
substantial heterogeneity of PTs (8,9). Ultrasonography, 
computed tomography (CT), and magnetic resonance 
imaging (MRI) have been increasingly applied in the 
preoperative evaluation of PTs, including identifying the 
stage of tumor based on the tumor-node-metastasis (TNM) 
classification. However, CTs may not provide sufficient 
anatomic details and the exact delineation of the tumor 
may remain unclear due to its low soft tissue resolution. 
For these reasons, MRIs have been universally recognized 
to be superior to CTs in soft tissue differentiation and 
neural involvement, but its clinical application is limited by 
high costs, susceptibility to motion artifacts, and radiation 
exposure (8-10). Owing to its convenience, speed, cost-
effectiveness, real-time results, and dynamics, conventional 
ultrasound (CUS) has always been regarded as the first-line 

visualization method for PT imaging. Certainly, the accuracy 
of a CUS diagnosis largely depends on the experience of 
the operator, and poor coherence among characteristics and 
standardization errors can result in significant variability. 

Accumulating evidence suggests that this limitation can 
be overcome using artificial intelligence (AI) algorithms, 
particularly deep learning (DL), which is based on neural 
networks (NN) that mimic the human brain to identify 
patterns in huge datasets (11,12). Different DL architectures 
have been developed for different tasks, but convolutional 
neural networks (CNNs) are presently the most widespread 
DL architecture typology in medical imaging. CNNs are 
composed of numerous layers, including an input layer, 
an output layer, and multiple hidden layers between. 
Each layer processes a representation of the observed 
patterns based on the input data it receives from the layer 
below (13-15). Consequently, DL shows remarkable 
capability to perform more particularized analyses and 
integrate massive amounts of data at high speeds but low 
cost without explicit feature definition. In recent years, 
DL-based medical image diagnosis has gained wide 
application across multiple medical domains. For example, 
DL algorithms have been developed for the diagnosis of 
Alzheimer’s disease using flourine-18 fluorodeoxyglucose 
positron emission tomography (18F-FDG PET) of the  
brain (16), differential diagnosis of breast US lesions and 
lung CT nodules (17), acquisition of enhanced spatial detail 
from cardiac MRI data (18), and early detection of diseases 
such as skin malignancy and diabetic retinopathy (19,20). 

Moreover, DL methods have been extensively utilized in 
CT and MRI image analysis for PTs, including differential 
diagnosis of BPGTs and MPGTs, TNM classification of 
PTs, and evaluation of prognosis (21-24). However, to the 
best of our knowledge, there is a paucity of data exploring 
the application of DL-based ultrasound (US) imaging 
analysis to differentially diagnose BPGT and MPGT. 
Hence, in this investigation, we established a DL-based US 
imaging diagnostic model and evaluated its clinical value in 

Conclusions: The DL-based US imaging diagnostic model has excellent performance in differentiating 
BPGT from MPGT, supporting its value as a diagnostic tool for the clinical decision-making process.

Keywords: Parotid neoplasms; deep learning; ultrasound diagnosis; computer-assisted

Submitted Sep 11, 2022. Accepted for publication Mar 24, 2023. Published online Apr 14, 2023.

doi: 10.21037/qims-22-950

View this article at: https://dx.doi.org/10.21037/qims-22-950



Quantitative Imaging in Medicine and Surgery, Vol 13, No 5 May 2023 2991

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(5):2989-3000 | https://dx.doi.org/10.21037/qims-22-950

the preoperative differentiation of BPGT and MPGT. The 
performance of the model was compared with the results 
obtained by 3 radiologists. We present the following article 
in accordance with the Standards for Reporting Diagnostic 
accuracy studies (STARD) reporting checklist (available at 
https://qims.amegroups.com/article/view/10.21037/qims-
22-950/rc).

Methods

Patients

A total of 266 patients, including 178 patients with BPGTs 
and 88 patients with MPGTs, were consecutively identified 
from the pathology database in The Third Affiliated 
Hospital of Kunming Medical University from January 2015 
to March 2021. The inclusion criteria of the patients were 
as follows: (I) pathologically confirmed BPGT or MPGT; 
(II) having undergone preoperative US examination; (III) 
high-quality images without motion or artifacts were 
available and conducive to analysis. The exclusion criteria 
were as follows: (I) patients who had consented to medical 
treatment for the lesion before US examination, including 
surgery, transcatheter arterial chemoembolization, 
radiofrequency ablation, chemotherapy, radiotherapy, 
and targeted drug therapy; (II) inflammatory lesions; (III) 
incomplete medical records and laboratory tests related 
to the malignancy; and (IV) unsatisfactory image quality, 
including blurred images and incomplete lesion area. 

Finally, the data for 173 patients were collated from 
the complete pathology database and used to randomly 
construct a training set (including 66 benign and 66 
malignant samples) and a testing set (including 21 benign 
and 20 malignant samples). The recruitment pathway for 
patients is presented in Figure 1 and the distribution of 
tumors is detailed in Table 1.

US image acquisition and filtering

The US examinations were performed by radiologists with 
more than 5 years of experience in US diagnosis using 
various commercially available units, such as DC-8 (Mindray, 
Shenzhen, China), Logic E9 (GE), HD15 (Philips, Best, 
The Netherlands), and IU22 (Philips), equipped with a high-
frequency linear array probe (6–14 MHz). 

Image quality control

First, identifying patient information was removed from 

2-dimensional (2D) US images of the parotid gland tumor 
obtained from the Picture Archiving and Communication 
Systems (PACS). Input images were then preprocessed 
by normalizing the grayscale of each image and reducing 
noise due to interference from the US machine. The 
same preprocessing steps were applied to the testing set. 
The 2D US grayscale images of the parotid gland tumor 
were embedded in the DL model for image processing 
and analysis, and the prediction results were recorded. 
Considering memory space and training time, we set the 
resolution of images to 224×224. This resolution was pre-
trained in image net and could be performed by the default 
input resolution of network model.

DL model construction

In this paper, the stochastic gradient descent optimizer was 
used to update the parameters of the DL model, Binary 
cross-entropy loss was used as the loss function, and the 
learning rate was 0.01. We trained the model using a 
computer with a GeForce RTX 2060Ti (NVIDIA, Santa 
Clara, CA, USA) graphic processing unit and random-
access memory of 16 GB. 

To find the most suitable DL model for parotid data 
classification, we chose SqueezeNet as the model and 
compared the prediction performance of SqueezeNet 
with that of ResNet101, VGG16, and MobileNetV2. As 
can be seen in Table 2, both ResNet and VGG16 satisfied 
the needs of real-time diagnosis due to heavy calculation 
burden and long data prediction duration. In comparison, 
MobileNetV2, a lightweight network, has a shorter 
prediction time, but its prediction results were inferior 
to that of SqueezeNet (Table 2). Therefore, in this paper, 
SqueezeNet was selected as the eventual model to extract 
features from ultrasonic images and to identify BPGTs and 
MPGTs. SqueezeNet is a fully convolution network (FCN), 
without the full connection layer but with large parameters. 
Structurally, it is composed of convolutional layer, pooling 
layer, Fire module, and Softmax (Figure 2A). The Fire 
module adopts an idea similar to Inception and consists of 
2 layers (Figure 2B): the squeeze layer that compresses the 
feature map through the convolutional layer of the 1×1 
convolutional kernel and the expand layer that expands the 
feature map channel through the 1×1 and 3×3 convolutional 
layers and integrates them to generate the final feature map. 
The network involves many 1×1 convolution kernels, which 
speeds up the training rate of the model. Moreover, using 
a relevant model compression technology, a model 510 
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times smaller than AlexNet can be obtained without loss of 
accuracy.

Annotation procedures 

Among the 3 radiologists invited to annotate the images, 
there were 2 junior radiologists (doctor 1 and doctor 2) with 
2 years of diagnosis experience in US and a senior doctor 
(doctor 3) with more than 5 years of diagnosis experience in 
US. All radiologists were blinded to the pathological results 
of the parotid gland tumor. They combined the American 
College of Radiology Thyroid Imaging Reporting and 

clinical data to discriminate benign from malignant parotid 
gland tumor. A detailed workflow of the study is shown in 
Figure 3. 

Statistical analysis

The receiver operator characteristic (ROC) curve was used 
to evaluate the discriminative power of the DL model for 
parotid gland tumor, as described by the sensitivity and 
specificity levels. Furthermore, the F1-score was calculated 
to measure the performance of the DL model. All statistical 
analyses were performed with SPSS 20.0 software (IBM 

The institution

Patients with a diagnosis of BPGT or 

MPGT were consecutively identified 

from January 2015 to March 2021

Training set

n=132

Testing set

n=41

BPGT

n=66

BPGT

n=21

MPGT

n=66

MPGT

n=20

The inclusion criteria:

(I) Either BPGT or MPGT were pathologically confirmed;

(II) Underwent preoperative US examination;

(III) The quality of images was clear without motion or artifacts and was 

conducive to analyze.

The inclusion number (n=266)

The exclusion criteria:

(I) Unqualified image quality;

(II) Those with inflammatory lesions;

(III) Any missing important medical records or 

laboratory results of the malignancy individuals;

(IV) Those who had accepted treatment related to 

the lesion before US examination

The exclusion number (n=93)

Figure 1 A workflow of the patient recruitment process. A schematic diagram showing the workflow of the patient recruitment pathway, 
including the period of data collection, the inclusion and exclusion criteria for ultrasound images, and the details of the training and testing 
sets. BPGT, benign parotid gland tumor; MPGT, malignant parotid gland tumor; US, ultrasound.
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Table 2 A comparison of the prediction performance of Squeeze Net, ResNet101, VGG16, and MobileNetV2

Methods Accuracy F1 Kappa Sensitivity Specificity Time (s) Size (M)

SqueezeNet 1_1 0.9250 0.9248 0.8500 0.9666 0.8833 665 2.79

VGG 16 0.8750 0.8747 0.7499 0.8611 0.8889 795 512

MobileNet V2 0.8028 0.8018 0.6055 0.7499 0.8556 559 2.5

Resnet101 0.8117 0.8115 0.6459 0.8012 0.8229 1,005 171

M, megabyte.

Table 1 The distribution of tumors in the whole dataset confirmed 
by histological results

Distribution of tumors Number

Benign mass

Pleomorphic adenoma 41

Warthin tumor 26

Basal cell adenoma 10

Hydatoncus 10

Malignant mass

Mucoepidermoid carcinoma 26

Adenocarcinoma 25

Adenoid cystic carcinoma 12

Acinic cell carcinoma 15

Myoepithelial carcinoma 4

Undifferentiated carcinoma 4

Figure 2 Structure of the Squeeze Net. (a) SqueezeNet is composed of convolutional layers, pooling layers, Fire modules, and Softmax. (b) 
The Fire module consists of squeeze layer and expand layer. The former compresses the feature map through the convolutional layer of the 
1×1 convolutional kernel; the latter expands the feature map channel through the 1×1 and 3×3 convolutional layers and integrates them to 
obtain the final feature map.
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Corp., Armonk, NY, USA), and a P value <0.05 was 
considered statistically significant.

The calculation formulas used were as follows:

TPJaccard
TP FP FN

=
+ +  

[1]

TP TNAccuracy
TP TN FP FN

+
=

+ + +  
[2]

21
2

TPF
TP FP FN

=
+ +

 
[3]

where TP is true positive, indicating that the image is 
correctly classified by the classification algorithm; FN is 
false negative, indicating that the image is wrongly classified 
by the classification algorithm into other categories; 
TN is true negative, indicating that the classification 
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algorithm correctly classifies non-category images into 
other categories; FP is false positive, indicating that the 
classification algorithm incorrectly classifies non-category 
images into such categories.

Ethical approval

This retrospective study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) and 
approved by the Ethics Committee of Yunnan Cancer 
Hospital (No. KMMUIRB-282-21-03-R2). The data used 
in this research were collected as part of standard-of-care 
hospital routine. Written consent was provided by each 
patient before surgery or biopsy.

Results 

Baseline characteristics

From January 2015 to March 2021, 508 US images were 
acquired from our institution for the training and testing 
sets, however, 50 images were removed from the 2 datasets 
based on the inclusion and exclusion criteria (Figure 1). 
The final dataset comprised 458 US images from 173 
patients. The dataset for 41 patients was chosen as the 

testing set to evaluate our model. Baseline characteristics 
and clinicopathological information on tumor size and 
distribution are provided in Table 1.

A comparison of diagnostic accuracy between radiologists 
before and after combination with clinical data

Before combination with clinical data, the AUC of the 
senior radiologist (doctor 3, AUC =0.7500) was higher than 
that of the 2 junior radiologists (doctor 1, AUC =0.5750, 
doctor 2, AUC =0.6500; Figure 4). Furthermore, as can 
be seen in Table 3, the diagnostic accuracy of the senior 
radiologist was higher than that of the 2 junior radiologists 
(0.750 vs. 0.575 and 0.650, respectively). 

The detailed clinical data of the patients are shown in 
Table 4, including gender, age, body mass index (BMI), 
capsule, smoking history, drinking history, tumor location, 
distribution, shape, regularity, margin, density, cystic 
degeneration, and calcification. After combining the clinical 
data, the diagnostic accuracy of the senior radiologist was 
0.825, and that of the 2 junior radiologists was 0.625 and 
0.700, respectively (Table 5). These results demonstrated 
that effective combination with clinical data significantly 
improved the diagnostic results of radiologists (Figure 4). 

Figure 3 A workflow of the study design. Ultrasound images from the institution were separated into two groups, a training set and a testing 
set. Ultrasound images were processed by normalizing to grayscale and reducing noise. Processed images were imported into the DL model 
to train, then images were predicted using the testing set, and the performance of the DL model was evaluated. DL, deep learning.
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Figure 4 A comparison of the AUC of diagnosis obtain by radiologists and the DL model. (A) A comparison of the ROC curves before and 
after combination with clinical data for junior radiologist 1 (doctor 1). (B) A comparison of the ROC curves before and after combination 
with clinical data for junior radiologist 2 (doctor 2). (C) A comparison of the ROC curves before and after combination with clinical data for 
senior radiologist 3 (doctor 3). (D) The confusion matrix of predicting BPGTs and MPGTs. ROC, receiver operator characteristic; AUC, 
area under curve; DL, deep learning; BPGT, benign parotid gland tumor; MPGT, malignant parotid gland tumor.

Table 3 A comparison of the diagnostic performance of doctors and the deep learning (DL) model before combining clinical data

Methods Sensitivity Specificity Accuracy F1-score

Doctor 1 0.850 0.300 0.575 0.540

Doctor 2 0.700 0.600 0.650 0.649

Doctor 3 0.750 0.750 0.750 0.750

DL model 0.972 0.944 0.958 0.959

A comparison of diagnostic accuracy between radiologists 
and the DL model

However, whether with or without clinical data, diagnostic 
results of the 3 radiologists were significantly lower 
than that of the DL model. The model demonstrated a 
tremendously high diagnostic performance for parotid 
gland tumor, achieving specificity, sensitivity, accuracy, and 

F1-score of 94.4%, 97.2%, 95.8%, and 95.9% in the testing 
set, respectively. Furthermore, as can be seen in Table 5, 
the diagnostic accuracy of this model (accuracy =0.958) was 
higher than of the 3 radiologists (doctor 1, accuracy =0.625, 
doctor 2, accuracy =0.700, doctor 3, accuracy =0.825). 
These results demonstrated DL model can effective 
differentiate benign and malignant parotid gland tumor.

The ROC curve predicted by the DL model using 
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the testing set is illustrated in Figure 4. The model 
demonstrated a tremendously high diagnostic performance 
for parotid gland tumor, achieving specificity, sensitivity, 
accuracy, and F1-score of 94.4%, 97.2%, 95.8%, and 95.9% 
in the testing set, respectively. The 2-class confusion matrix 
is illustrated in Figure 4D. No major mistakes were observed 
in the DL model, with MPGTs rarely predicted as BPGTs.

After training, all US images in the testing set were 
predicted using the DL model for binary classification. 
As can be seen in the training process presented in  
Figure 5, with increasing steps, the accuracy of the DL 
model increased, but its loss decreased, achieving an 

accuracy of 96.5%. In this experiment, overfitting was not 
observed, and the accuracy of the training set was similar to 
that of the testing set.

Interpretability of the DL model

Surprisingly, in the gray scale US images, we found that the 
DL model could predict the parotid gland tumor state from 
2 locations: the border of the tumor and the low echo area 
in the tumor body (Figure 6). This capability significantly 
illustrates the effectiveness of the DL model. Heatmaps 
were generated using the weight file from the training 

Table 4 Clinical data of the training and testing sets

Clinical data
Training set (n=132) Testing set (n=41)

BPGT (n=66) MPGT (n=66) P1 BPGT (n=21) MPGT (n=20) P2

Gender (M/F) 41/25 35/31 0.907 9/11 11/9 0.943

Age (year) 46.17±23.83 46.62±28.38 0.848 44.86±22.86 64.35±26.65 0.019

BMI 23.48±6.97 22.80±8.34 0.507 23.75±9.4 22.84±8.39 0.510

Smoking history (present/absent) 18/48 19/47 0.682 7/14 5/15 0.883

Drinking history (present/absent) 12/54 17/49 0.848 3/18 3/17 0.203

Tumor location (deep or shallow) 64/2 58/8 0.201 19/2 15/5 0.010

Distribution (single or bilateral) 60/6 63/3 0.391 19/2 16/4 0.193

Shape (round or not) 64/2 31/35 0.050 21/0 6/14 0.036

Capsule (present/absent) 0/66 32/34 0.023 0/21 15/5 0.187

Regularity(present/absent) 60/6 27/39 0.890 17/4 5/15 0.368

Margin (clear/unclear) 65/1 35/31 0.972 21/0 6/14 0.752

Density (low/middle/high/mixture/cystic) 43/0/1/18/4 44/2/0/20/0 0.939 14/2/0/4/1 11/0/1/8/0 0.626

Cystic degeneration (present/absent) 40/20 47/19 0.911 16/5 11/9 0.908

Calcification (present/absent) 63/3 60/6 0.863 21/0 17/3 0.485

Categorical data are shown as numbers (n), numerical data are presented as mean ± standard deviation. M, male; F, female; BPGT, benign 
parotid gland tumor; MPGT, malignant parotid gland tumor; P1, the P value of comparison between benign and malignant parotid gland 
tumors in training set; P2, the P value of comparison between benign and malignant parotid gland tumors in testing set; BMI, body mass 
index.

Table 5 A comparison of the diagnostic performance of doctors and the deep learning (DL) model after combining clinical data

Methods Sensitivity Specificity Accuracy F1-score

Doctor 1 0.650 0.600 0.625 0.634

Doctor 2 0.800 0.600 0.700 0.727

Doctor 3 0.900 0.750 0.825 0.824

DL model 0.972 0.944 0.958 0.959
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Figure 5 Loss and accuracy curves.

process (Figure 6). The results in Figure 6 show that the 
regions concentrated with the highest predictive value are 
highlighted in red and yellow, whereas those with weaker 
predictive values are expressed as green and blue. This 
suggested that the DL model focuses on the most predictive 
image features of parotid gland tumors.

Discussion

The parotid gland is the largest salivary gland that is located 
in front of the ears on each side of the face. Most parotid 
gland neoplasms are benign but heterogeneous, and have 
the potential to recur and/or transform into malignant 
lesions. Therefore, accurate determination of the type of PT 
is critical for clinical diagnosis and subsequent treatment. 

In this study, we developed and validated a DL-based US 
imaging diagnostic model to provide a non-invasive tool for 
differentiating BPGT from MPGT. On testing, our transfer 
learning model exhibited good discriminative performance 
that exceeded the performance levels of 3 radiologists.

Our results showed that, after combining with clinical 
data, the DL model achieved an excellent result in the 
diagnosis of parotid gland tumor, with a significantly higher 
AUC value (AUC =0.9583) compared with that of doctor 1 
+ clinical data (AUC =0.6250), doctor 2 + clinical data (AUC 
=0.7250), and doctor 3 + clinical data (AUC =0.8250), 
respectively (all P<0.05). In addition, the sensitivity of this 
DL model was higher than that of US read by doctors in 
combination with clinical data (97.2% vs. 65%, 80%, and 
90% for doctor 1 + clinical data, doctor 2 + clinical data, and 

Figure 6 Ultrasound images and corresponding heat maps of parotid gland tumors. The heat maps show the importance of the predictive 
image features of the DL model using different colors. Red and yellow represent the most powerful predictive areas of the tumor and 
regions of blue and green show weaker predictive areas. DL, deep learning.
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doctor 3 + clinical data, respectively; all P<0.05). Similarly, 
the DL model showed higher specificity compared with 
that of doctors combined with clinical data (94.4% vs. 
60%, 60%, and 75% for doctor 1 + clinical data, doctor 
2 + clinical data, and doctor 3 + clinical data; all P<0.05). 
From these results, we concluded that the DL model can 
significantly improve a radiologist’s reading efficiency. 
Furthermore, the DL model, which can find lesions that 
are difficult to identify with the naked eye, can be a valuable 
tool to some radiologists with relatively little experience in 
diagnosis.

Based on the heatmaps generated from the DL model, 
we reasonably concluded that the DL model utilized tumor 
boundary information to efficiently discriminate benign 
from malignant tumors. However, the ability of the DL 
model to distinguish benign from malignant parotid gland 
tumors may be limited if the boundary information of the 
US image is blurred or disturbed. Meanwhile, other features 
of the US images may be ignored. In addition, although all 
the US images were collected by well-experienced doctors, 
there were still some differences in the quality of the images 
due to inconsistencies in diagnostic opinions and devices. 
Therefore, the prediction results obtained from the DL 
model should always be interpreted with caution. 

The imaging representation of the tumors could 
present valuable additional information to support clinical 
diagnosis. However, the DL model may not entirely replace 
the evaluation of biopsies in the immediate future and much 
more data is needed before it can be adopted in clinical 
environments. The comparison of diagnostic performance 
between the doctors and the DL model showed that the 
DL model could provide a correct diagnosis, supporting its 
clinical application value. 

As a novel non-invasive technique, AI exhibits superior 
pattern-recognition capabilities using imaging data and 
can provide a quantitative evaluation in an automated way. 
Several AI researchers have aimed to provide different 
AI-based strategies for obtaining valuable information to 
improve the diagnostic accuracy and early diagnosis of 
malignant tumors. Radiomics studies combined with DL 
techniques have been applied to differentiate benign and 
malignant parotid glands based on imaging data, such as 
MRI, CT, conventional US, sonoelastography, diffusion-
weighted imaging, dynamic contrast-enhanced magnetic 
resonance imaging, and susceptibility-weighted imaging 
(23,25). Our results herein demonstrated that DL combined 
with US and clinical data could differentiate between 
BPGT and MPGT. In clinical practice, this technique may 

help decrease the incidence of false negative diagnoses, 
significantly improve the efficiency of film reading, and 
play an auxiliary role in diagnosis for some doctors with 
relatively limited experience.

However, there were some shortcomings in this study. 
First, for imaging diagnosis of parotid gland tumor, only 
a limited number of eligible patients was enrolled. With a 
total of only 176 patients and 458 US images from January 
2015 to March 2021, this retrospective analysis may possess 
potential selection bias. Second, this was a single-center 
retrospective control study and the results should be verified 
in future large-scale multi-center trials. Lastly, DL analysis 
in this report was only developed with the US signature. 
Other image processing techniques, including gray-scale 
US features, pulsed doppler sonographic, contrast enhanced 
US, and sonoelastography features may improve the image 
quality and further improve the diagnosis results. Therefore, 
future studies should enroll more patients and image data 
to train the model for diagnosing different classes of parotid 
gland cancer and identify different imaging characteristics.

Conclusions

In spite of its intrinsic limitations and disadvantages, the DL 
model accurately identified and discriminated BPGT from 
MPGT. In practice, this US AI-based predictive DL model 
demonstrated superior diagnostic performance compared 
to specialized radiologists for the differential diagnosis 
of BPGT and MPGT. Interestingly, the results showed 
that the DL model had higher sensitivity and specificity 
in the diagnosis of BPGT and MPGT. Therefore, this 
model provides an ingenious method for highly accurate 
diagnosis of parotid tumors. However, a larger multi-center 
investigation is warranted to further evaluate the diagnostic 
ability of our DL model.
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