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Owing to the development of intensive care units, many patients survive their initial
insults but progress to chronic critical illness (CCI). Patients with CCI are characterized
by prolonged hospitalization, poor outcomes, and significant long-term mortality. Some
of these patients get into a state of persistent low-grade inflammation, suppressed
immunity, and ongoing catabolism, which was defined as persistent inflammation,
immunosuppression, and catabolism syndrome (PICS) in 2012. Over the past few years,
some progress has been made in the treatment of PICS. However, most of the existing
studies are about the role of persistent inflammation and suppressed immunity in PICS.
As one of the hallmarks of PICS, hypercatabolism has received little research attention.
In this review, we explore the potential pathophysiological changes and molecular
mechanisms of hypercatabolism and its role in PICS. In addition, we summarize current
therapies for improving the hypercatabolic status and recommendations for patients
with PICS.

Keywords: chronic critical illness, persistent inflammation, immunosuppression, and catabolism syndrome,
hypercatabolism, mitochondrial dysfunction, gut dysfunction, anti-catabolic therapy

INTRODUCTION

With the improvement in intensive care unit (ICU) technology in the past few decades, many
critically ill patients survive initial insults but develop chronic critical illness (CCI). These patients
experience more complications, prolonged ICU stays (>14 days), ongoing organ dysfunction,
and significant long-term mortality (1). It is estimated that 30–50% of patients with CCI
are characterized by persistent low-grade inflammation, suppressed immunity, and ongoing
catabolism despite nutritional interventions (2, 3). In 2012, Gentile et al. (4) postulated persistent
inflammation, immunosuppression, and catabolism syndrome (PICS) to describe this subset of
patients with CCI. PICS has received a lot of attention since it was proposed. PICS may be secondary
to several acute events, such as severe blunt trauma, severe burns, severe acute pancreatitis, and
sepsis in particular. Poor premorbid health conditions and an age of at least 65 years are considered
to be clinical risk factors for PICS (5–7). Several mildly different diagnostic criteria for PICS have
been reported and are summarized in Table 1.

Persistent inflammation, immunosuppression, and catabolism syndrome has been plaguing ICU
doctors and patients owing to its poor prognosis and associated treatment difficulty. Hence, it is
essential to clarify the pathophysiology of PICS. To date, most of the existing literature focuses on
persistent inflammation and suppressed immunity in PICS, and the role of hypercatabolism has not
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TABLE 1 | Diagnostic criteria for PICS.

Gentile
et al. (4)

Mira et al.
(3)

Mira et al.
(115)

Varela
et al. (116)

Nakamura
et al. (117)

ICU stay (day) >14 >14 >14 ≥10 >14

CRP (mg/dl) >0.15 >0.05 >0.05 >0.15 >3.0

Total
lymphocyte
count (× 109/L)

<0.8 <0.8 <0.8 <0.8

Serum albumin
(g/dl)

<3.0 <3.0 <3.0 <3.0 <3.0

Pre-albumin
(mg/dl)

<10 <10 <10

Creatinine
height index

<80% <80% <80% <80% <80%

Retinal binding
protein (mg/dl)

<0.01 <1 <0.01 <0.01

Weight loss >10% >10% >10% >10% >10%

BMI during
hospitalization

<18 <18 <18 <18 <18

After unifying the units, there are some differences in ICU stay, C-reactive protein
(CRP) levels, and retinal binding protein levels among these criteria.
PICS, persistent inflammation, immunosuppression, and catabolism syndrome;
ICU, intensive care unit; CRP, C-reactive protein; BMI, body mass index.

yet been reviewed. In this article, we reviewed the
pathophysiological changes of hypercatabolism and their
effects on persistent inflammation and immunosuppression
in PICS, aiming to offer a mechanistic framework for PICS.
Furthermore, we summarized current therapies aimed at
improving hypercatabolic conditions in patients with PICS.

METHODS

Data were acquired from PubMed, MEDLINE, Scopus, and
OVID using the following search terms: persistent inflammation,
immunosuppression, and catabolism syndrome, (persistent
inflammation, immunosuppression, and catabolism syndrome)
AND (metabolism OR catabolism), (chronic critical illness
OR sepsis) AND (metabolism OR catabolism), (persistent
inflammation, immunosuppression, and catabolism syndrome
OR chronic critical illness OR sepsis) AND (muscle wasting
OR muscle atrophy OR muscle mass), (persistent inflammation,
immunosuppression, and catabolism syndrome OR chronic
critical illness) AND (therapy). There was no restriction on the
type of article and the study design. Articles from all years were
considered, especially those from the last decade.

HYPERCATABOLISM AND ITS
PATHOPHYSIOLOGICAL CHANGES IN
PERSISTENT INFLAMMATION,
IMMUNOSUPPRESSION, AND
CATABOLISM SYNDROME

Critically ill patients in an overall hypercatabolic state show a
significant decomposition of macronutrients, including protein

stores, carbohydrates, and lipids (8, 9). Evident proteolysis, a
major characteristic of PICS, is best documented in skeletal
muscles (10). Patients with PICS often present with profound
muscle wasting and weight loss during their hospitalization,
despite the administration of enteral nutrition (11). Several
mechanisms related to the hypercatabolic state in patients with
PICS are summarized as follows:

Inflammation Contributes to Skeletal
Muscle Wasting
Both infectious and non-infectious insults induce a persistent
inflammatory response in patients with PICS. Elevated
inflammatory cytokine levels in the circulation have been
shown to be associated with skeletal muscle wasting in critically
ill patients (12) and also to induce muscle atrophy by activating
pro-atrophy transcription factors, signal transducer and activator
of transcription (STAT) and nuclear factor-kappa B (NF-κB)
(13). Among these cytokines, tumor necrosis factor α (TNF-α),
interleukin 1 (IL-1), and interleukin 6 (IL-6) are the most
investigated. As an important signaling molecule, IL-6 can bind
to the α-receptor and β-receptor glycoprotein 130 (gp130), after
which it activates Janus kinase (JAK) and contributes to the
phosphorylation of STAT (14). Under normal conditions, the
IL-6 in skeletal muscle cells regulates skeletal muscle energy
metabolism and promotes muscle growth and hypertrophy
(15, 16). However, persistently elevated IL-6 levels will increase
mitochondrial reactive oxygen species (ROS) production
and oxidative stress in muscle cells (17). Recent studies have
demonstrated that IL-6 induces skeletal muscle atrophy by
activating the IL-6/gp130/JAK2/STAT3 pathway (17, 18).

Inflammatory cytokines also inhibit the mammalian target of
the rapamycin (mTOR)-mediated signaling pathway to decrease
protein synthesis. mTOR is a major regulator of protein synthesis
in skeletal muscles (13). Amino acids, insulin, and insulin-
like growth factor-1 (IGF-1) can activate mTOR and upregulate
protein synthesis (9). Among these activators, the insulin
and IGF-1-mediated mTOR signaling pathway is considered
to be a key hub for protein synthesis and degradation (19).
Whether or not muscle proteins are synthesized primarily
depends on the activity of the IGF-1/phosphoinositide 3-
kinase (PI3K)/Akt/mTOR signaling pathway (20). However, the
activity of mTOR is suppressed by inflammatory cytokines,
and this decreases protein synthesis (9). Eventually, elevated
inflammatory cytokine levels in patients with PICS contribute
to skeletal muscle wasting by increasing protein degradation and
decreasing protein synthesis.

Hormonal Changes Induce the
Hypercatabolic Status
Many released pro-inflammatory cytokines cause changes in
the activities of the endocrine and automatic nervous systems
in patients with sepsis and septic shock, causing changes in
the levels of hormones (21, 22). In the chronic stage of
critical illness, the neuroendocrine system is generally inhibited,
especially the hypothalamic-pituitary axis (HPA), resulting in
decreased levels of the downstream corresponding hormones
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(23). Decreased levels of thyroid hormones, growth hormones,
and sex hormones were observed in patients with CCI (23).
These three categories of hormones are known to play important
roles in metabolism and skeletal muscle growth. Low thyroid
hormone levels were found to be negatively associated with
markers of muscle breakdown in CCI, and the administration
of exogenous thyroid hormone was found to be beneficial in
reducing hypercatabolic marker levels (24). Growth hormones
can promote body growth and metabolism, either directly
or indirectly, by stimulating the production of IGF-1. Unlike
during the acute phase of sepsis, the secretion of growth
hormones is inhibited during CCI and it also leads to low
levels of IGF-1 in the circulation (24). Reduced growth
hormone and IGF-1 levels are considered to contribute to the
development of both muscle atrophy and weakness (25). In
addition, the levels of testosterone, a strong anabolic hormone
and stimulant of skeletal muscle hypertrophy, were found
to be decreased during CCI owing to the inhibition of the
hypothalamic-pituitary-gonad axis (26). Long-term low levels of
testosterone contribute to the development of hypercatabolism in
patients with PICS.

Unlike the changes in the levels of the above hormones,
the levels of glucocorticoids were found to increase in most
patients with CCI, while adrenocorticotropic hormone (ACTH)
levels decreased (27). Elevated circulating glucocorticoid levels
are considered to be associated with the hypercatabolic state
in patients with CCI despite their potent anti-inflammatory
effect (28). Excessive glucocorticoid exposure results in insulin
resistance and hyperglycemia in patients with CCI (29),
which, consequently, increases the generation of lactate. It also
induces muscle wasting by increasing protein breakdown and
decreasing protein synthesis (28). For example, the levels of
glucagon-like peptide-1 (GLP-1), a catabolic marker produced
by intestinal cells, were found to be high from sepsis to CCI
(30). Moreover, lipolysis is also upregulated, causing increased
blood concentrations of free fatty acids and triglycerides under
the release of stress hormones such as (nor)epinephrine and
glucagon during sepsis. Both are typical pro-lipolytic hormones,
promoting lipolysis by stimulating fat cells directly (10). Hence,
endocrine disorders in patients with PICS are responsible for
their hypercatabolic status.

Mitochondrial Dysfunction Changes
Energy Metabolism
Mitochondria provide a large proportion of adenosine
triphosphate (ATP) to meet cellular energy demands through the
electron transport chain (ETC) and oxidative phosphorylation
(OXPHOS). However, critically ill patients display significant
mitochondrial dysfunction, which is characterized by the
reduced expression and activity of ETC complexes, increased
ROS generation, and autophagy (31). The expression and activity
of ETC complexes I, III, and IV were observed to be significantly
reduced in skeletal muscle biopsy specimens of critically ill
patients, and those of non-survivors showed a more profound
reduction (32, 33). The reduced expression and activity of
ETC complexes limit ATP production, consequently leading to

decreased energy generation. To meet basic energy demands, the
body has to shift metabolic pathways and intensify the catabolism
of macronutrients, leading to the hypercatabolic status in PICS.

As a result of mitochondrial dysfunction in sepsis, the levels
of lactate and pyruvate in the serum and plasma were found
to be increased (34). Pyruvate is unable to generate energy
through the OXPHOS but does so through glycolysis. Cells
prefer to use glycolysis instead of OXPHOS for generating ATP
under aerobic conditions, which is known as the Warburg effect
(35). The Warburg effect, also known as aerobic glycolysis, was
found to be intensified in septic patients and sepsis survivors
(36) due to mitochondrial dysfunction (37). This alteration in
cells makes them generate energy rapidly, increases the level
of nicotinamide adenine dinucleotide phosphate (NADPH), and
affects the generation of ROS (38); however, it also causes
pyruvate to build up and lactate levels to rise.

Mitochondrial dysfunction also decreases the level of
antioxidant defense and increases the generation of ROS, which is
also affected by the IL-6-mediated gp130/JAK2/STAT3 signaling
pathway. The excessive production of ROS is detrimental
to skeletal muscles, which contain dense mitochondria
and consume much energy. Excessive ROS production
impairs mitochondrial ETC proteins directly and causes ETC
abnormalities (31), which, in turn, aggravates mitochondrial
dysfunction and energy shortage. And oxidative stress induced by
mitochondrial dysfunction is harmful to skeletal muscle proteins,
causing further muscle wasting (39). Therefore, mitochondrial
dysfunction and the consequent oxidative stress may contribute
to changes in energy metabolism and skeletal muscle wasting in
patients with PICS (Figure 1).

Gut Dysfunction Limits Nutrient
Absorption and Affects Catabolism
Gut dysfunction is common in ICU patients and is related to
poor outcomes in critically ill patients. It has been estimated that
more than 50% of mechanically ventilated patients experience
some degree of gut dysfunction (40). The manifestations of
gut dysfunction include delayed gastric emptying, feeding
intolerance, impaired small intestinal absorption, and severe
diarrhea (41). Chronic critically ill patients who survived
initial insults experienced different degrees of gut dysfunction.
Slow gastric emptying, a common accompaniment to critical
illness, delays the delivery of food to the small intestine and
affects digestion and absorption (42). Gut hypoperfusion, which
is common in patients with severe sepsis and CCI, may
trigger a series of events. Gut hypoperfusion decreases the
intestinal blood flow, leading to reduced absorption in the small
intestine (42), and it may act as a significant initial event that
results in intestinal barrier function compromise. In addition,
the promoted gut epithelial apoptosis and inhibited crypt
proliferation also contribute to intestinal barrier dysfunction
(43), leading to an increase in gut permeability and further
hindering nutrient absorption from the small intestine (44). The
reduced absorption of nutrients then decreases anabolism. To
meet the basic energy demand, there is a consequent increase in
catabolism.
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FIGURE 1 | Mitochondrial dysfunction and its impact on catabolism. Mitochondrial dysfunction in PICS decreases the production of ATP by inhibiting the expression
and activity of some key enzymes in the ETC (complexes I, III, and IV) (130). Consequently, pyruvate is unable to generate energy through the OXPHOS but does so
through glycolysis, and the levels of lactate and pyruvate increase as a result. Mitochondrial dysfunction also contributes to the overproduction of ROS, which, in
turn, will inhibit the expression and activity of ETC complexes. Excessive ROS induces oxidative stress, which is harmful to skeletal muscle proteins. To meet
tremendous energy demands under the condition of mitochondrial dysfunction, the body has to alter metabolic pathways and intensify the catabolism of
macronutrients. These pathophysiological changes will contribute to long-term skeletal muscle wasting in patients with PICS. ROS, reactive oxygen species; CoQ,
coenzyme Q; Cyt c, cytochrome c; OXPHOS, oxidative phosphorylation; ATP, adenosine triphosphate; ADP, adenosine diphosphate; ETC, electron transport chain;
PICS, persistent inflammation, immunosuppression, and catabolism syndrome.

The presence, composition, and function of gut microbiota
significantly affect the host’s energy metabolism (45). However,
the composition and function of gut microbiota were found
to be greatly altered in patients with CCI (46). Accumulating
evidence has suggested that the disturbance of gut microbiota
is closely related to many metabolic disorders, such as
insulin resistance, dyslipidemia, skeletal muscle wasting, and
malnutrition. For example, short-chain fatty acids (SCFAs),
a category of microbiota-derived metabolites, are crucial for
glucose homeostasis, lipid metabolism, and skeletal muscle
function. They can inhibit intracellular lipolysis, contributing
to the accumulation of lipids (47). SCFAs also increase muscle
cell insulin sensitivity and glucose metabolism by stimulating
the secretion of peptide YY and GLP-1, which affects skeletal
muscle cell function (48). However, owing to the disturbance
of gut microbiota, the production of SCFAs has been proven
to significantly decrease in critically ill patients, leading to
insulin resistance, skeletal muscle wasting, and malnutrition
(49). In addition, Escherichia coli was also reported to play a
role in the development of skeletal muscle wasting through
the IGF-1/PI3K/Akt/mTOR signaling pathway (50). Thus,

alterations of gut microbiota impact the metabolic state in
patients with PICS.

In summary, gut dysfunction, manifested as a string of
pathophysiological alterations in PICS, limits the digestion and
absorption of nutrients and affects the metabolic state of patients
with the condition (Figure 2). All these changes imply that the
dysfunctional status of the gut may have an important role to play
in the development of hypercatabolism in PICS. Gut dysfunction
is receiving increasing attention and further studies are needed to
understand its exact role in PICS.

The Ubiquitin-Proteasome and
Autophagy-Lysosome Systems
The ubiquitin-proteasome and autophagy-lysosome systems also
play important roles in the decomposition of proteins and
organelles in skeletal muscles (13). The ubiquitin-proteasome
system is the main pathway of protein degradation in muscle
cells. In critically ill patients, the expression of forkhead
box protein O (FOXO) is upregulated, which can increase
the activity of muscle atrophy F-box (MAFbx, also called
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FIGURE 2 | Gut dysfunction and its impact on catabolism. Gut dysfunction contributes to a hypercatabolic state in many ways. Gut hypoperfusion and increased
epithelial apoptosis contribute to the intestinal barrier impairment, which is common in critically ill patients, leading to the increase in gut permeability and further
hindering nutrient absorption from the small intestine. Alterations in intestinal microbiota such as Escherichia coli decrease protein synthesis through the
IGF-1/PI3K/Akt signaling pathway. Changes in microbiota-derived metabolites such as SCFAs also lead to the development of hypercatabolism by inducing insulin
resistance and lipolysis. Together, these alterations contribute to the hypercatabolic status in patients with PICS. IGF-1, insulin-like growth factor-1; PI3K,
phosphoinositide 3-kinase; SCFAs, short-chain fatty acids; PICS, persistent inflammation, immunosuppression, and catabolism syndrome.

atrogin-1) and muscle ring finger 1 (MuRF1) (51). MAFbx
and MuRF1 are two key E3 (ubiquitin ligating enzyme)
ubiquitin ligases, and they play a crucial role in muscle
atrophy (52). The expression of MuRF1 can be induced by
inflammatory cytokines. The activity of MAFbx and MuRF1
has been observed to be upregulated in muscle atrophy (53).
The dysregulation of autophagy-lysosome systems, including
excessive autophagy and inadequate autophagy, also contributes
to muscle wasting in critically ill patients by impairing
myofiber homeostasis. Excessive autophagy leads to the removal
of cellular components needed for normal activities, which
will limit the function of cells and cause muscle atrophy
in the long term (51). And inadequate autophagy fails to
remove impaired proteins and leads to the accumulation of
dysfunctional cellular components which are toxic to skeletal
muscle cells (51).

HYPERCATABOLISM IS RELATED TO
THE PROGRESS OF PERSISTENT
INFLAMMATION,
IMMUNOSUPPRESSION, AND
CATABOLISM SYNDROME

In recent years, it has been found that skeletal muscle wasting
in patients with PICS is not just a clinical manifestation but a
process that is related to the progress of the disease.

Hypercatabolism Modulates
Inflammation
Increased skeletal muscle wasting in patients with PICS
releases its pro-inflammatory decomposition products into
the circulation and stimulates a sequence of inflammatory
responses (1). The insufficient energy supply and muscular injury
drive the liberation of damage-associated molecular partners
(DAMPs) (54), such as mitochondrial DNA and mitochondrial
transcription factor A (55). The released DAMPs bind to
pattern-recognizing receptors (PRRs) and are recognized by
the host. These receptors include toll-like receptors (TLRs)
and nucleotide-binding oligomerization domain-like receptors
(NLRs) (56, 57). These DAMPs function as endogenous alarmins
(58). When the host recognizes the DAMPs, PRRs will initiate
a series of complex downstream signaling events to induce
inflammatory responses (56). In addition, hypercatabolism
causes malnutrition, and even cachexia, making patients with
PICS susceptible to infections. Recurrent infections lead to the
invasion of pathogens and induce the release of pathogen-
associated molecular patterns (PAMPs), which will also initiate
inflammatory responses in the host via PRR signaling pathways
(54, 59).

Hypercatabolism Modulates
Immunosuppression
Patients with PICS are in a state of malnutrition, which
suppresses the host’s immune response. The imbalance

Frontiers in Nutrition | www.frontiersin.org 5 July 2022 | Volume 9 | Article 941097

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-941097 July 7, 2022 Time: 15:4 # 6

Zhang et al. Hypercatabolism in PICS

FIGURE 3 | The vicious cycle of PICS. There is a strong interaction between persistent inflammation, immunosuppression, and catabolism. In PICS, ongoing
catabolism results in malnutrition and muscle wasting, and its decomposition products such as mitochondrial DNA and other DAMPs may drive persistent low-grade
inflammation. Mitochondrial dysfunction and gut dysfunction impair ATP production and, consequently, suppress immunity. Persistent inflammation induces the
release of inflammatory cytokines and hormonal changes in patients with PICS, contributing to hypercatabolism. Besides, persistent inflammation also induces
inappropriate bone marrow hyperplasia, causing the dramatic expansion of MDSCs in patients with PICS, which will inhibit the proliferation of immune cells.
Suppressed immunity causes recurrent infections and inflammatory responses, which consume energy and nutrients. PICS, persistent inflammation,
immunosuppression, and catabolism syndrome; MDSCs, myeloid derived suppressor cells; DAMPs, damage-associated molecular patterns; PAMPs,
pathogen-associated molecular patterns. SCFAs, short-chain fatty acids; ROS, reactive oxygen species.

between energy production and utilization contributes to
the impairment in immune cell metabolism, affecting immune
cell function and triggering a series of pathophysiological
alterations (60). Metabolic reprogramming, a characteristic
alteration of immune cells in cancer and autoimmune
diseases, also acts as a central survival strategy during
sepsis. It changes the way immune cells generate ATP,
inhibiting mitochondrial respiration and inducing cell
cycle arrest (43). It can adjust the priority of energy
consumption, limit extra cellular injury and preserve
cellular components (55, 61). The Warburg effect, which
was first observed in cancer cells, is also a significant part
of metabolic reprogramming in immune cells (35). Intensive
glycolysis contributes to the increase in lactate levels. In
addition, the accumulation of lactate drives immune cells to
immunosuppressive phenotype and contributes to immune
impairment (62).

In patients with CCI, the high-density lipoprotein (HDL)
level was found to be decreased due to the impairment of
lecithin-cholesterol acyltransferase activity (63). Decreased HDL
levels during critical illness were also associated with suppressed
immunity during PICS and regarded as an independent

predictor of adverse outcomes and organ failure (64). HDL
can regulate immune responses by clearing bacterial toxins
and inhibiting monocyte inflammatory responses. When HDL
levels drop, these functions are impaired, thereby promoting
immunosuppression. Furthermore, persistent inflammation
induces inappropriate bone marrow hyperplasia, causing the
dramatical expansion of myeloid-derived suppressor cells
(MDSCs) in patients with PICS. Over the past several years,
MDSC expansion has been found to significantly suppress
immunity by inhibiting the proliferation of immune cells
(65) and producing anti-inflammatory cytokines such as
interleukin-10 (IL-10) (65). A recent study showed that HDL
could weaken myelopoiesis and inhibit MDSCs directly (66).
Therefore, decreased HDL levels in patients with PICS lead
to the freedom of MDSCs from inhibition and cause further
immunosuppression.

In sum, catabolism modulates inflammation and
immunosuppression in many ways. In recent years, it has
been widely discussed that the three elements of PICS, persistent
low-grade inflammation, immunosuppression, and catabolism,
may exist in reciprocal causation and form a vicious cycle (1).
Once this complicated cycle is initiated, it is hard to reverse
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TABLE 2 | Therapies for hypercatabolism.

Classification Supplements Dosage Main functions References

Nutrition

Protein supplements ≥1.3 g/kg/d Promote nitrogen balance and protein synthesis (71)

Arginine 6–9 g/d Immunologic regulator; Improve insulin sensitivity; Work in coordination
with arginine to stimulate the mTOR signaling pathways

(74, 78, 118)

Leucine 1.2–6 g/d Promote muscle growth by activating the mTOR signaling pathway (78, 119)

Glutamine 0.2–0.4 g/kg/d Antioxidant; Immunomodulator; Substrate for gluconeogenesis (120)

Glucose ≤5 mg/kg/min Preferential substrate for energy production (71)

Lipid ≤1.5 g/kg/d Energy substrate (71)

Omega 3 fatty acids 2 g/d or 0.2 g/kg/d Immunomodulator; Minimize muscle wasting; Inhibit oxidative injury (72, 80)

Anti-inflammatory agents

Anakinra 2.0 mg/kg/h# IL-1 receptor antagonist; Inhibit inflammatory responses (84)

Tocilizumab Unknown IL-6 receptor inhibitor; Inhibit inflammatory responses (85)

Anabolic agents (including hormones)

Propranolol 0.5–3 mg/kg/d Inhibit lipolysis; Promote protein synthesis; Counteract insulin resistance (121)

Oxandrolone 0.1 mg/kg/12 h Promote protein synthesis (122, 123)

Testosterone 200 mg/week Promote protein synthesis; Reduce protein catabolism and autophagy (89, 90)

IGF-1 40 µg/kg/d Promote muscle growth by activating the mTOR signaling pathway (124)

Antioxidants

Mit Q Unknown Alleviate oxidative stress in mitochondria (60)

Melatonin 50 mg for 5 days# Inhibit mitochondrial structural damage; Alleviate oxidative stress in
mitochondria; Improve ATP production

(31, 125)

Microbiota modulator

Probiotics (0.8—1.0) × 1010 cfu/d
Lactobacillus; 3.0 × 108 cfu/d
Lactobacillus and 3.0 × 108

cfu/d Bifidobacterium

Protect gut barriers; Rebuild the damaged microbiome; Inhibit bacterial
translocation

(126–129)

Exercise

Early mobilization 15–31 min/d Improve muscle strength by activating mTOR signaling pathways;
Improve mitochondrial function

(107, 111)

#Under preclinical trials.
mTOR, mammalian target of rapamycin; IL-1, interleukin-1; IL-6, interleukin-6; IGF-1, insulin-like growth factor-1; Mit Q, mitochondria-targeted ubiquinone; cfu, colony-
forming units.

(Figure 3). In the future, further studies on how to break the
vicious cycle of PICS should be conducted.

THERAPIES FOCUSING ON
HYPERCATABOLISM

Persistent inflammation, immunosuppression, and catabolism
syndrome is an intricate syndrome; thus, a single treatment
can hardly interrupt its vicious cycle. A multi-modal therapy
is necessary to limit its progression. In addition to eradicating
cause and modulating immunity, nutritional support and other
therapies to correct hypercatabolism in PICS are also attracting
researchers’ attention. Therapies targeted at improving the
hypercatabolic status in PICS are summarized in Table 2.

Nutritional Support
Nutritional support has become a routine and important
intervention for treating critical illnesses. Proper nutritional
support has been proven to help improve gut dysfunction
and the hypercatabolic state of patients with PICS. Guidelines
from the Society of Critical Care Medicine (SCCM, 2016)

suggest that early enteral nutrition (EEN, within 48 h after
ICU admission) may benefit critically ill patients by effectively
improving the nutritional status, alleviating the inflammatory
response, impeding bacterial translocation, and improving gut
dysfunction (67, 68). However, guideline recommendations for
protein intake in ICU patients are divergent. The Protein Summit
(2017) recommends protein supplementation in the range of 1.2–
2.5 g/kg/d could preserve muscle mass and decrease the mortality
rate of patients with CCI (69). Wolfe et al. (70) proposed
that higher protein supplementation could suppress endogenous
protein catabolism in a dose-dependent manner. The European
Society for Clinical Nutrition and Metabolism (ESPEN, 2019)
recommends supplying at least 1.3 g/kg of proteins daily for
critically ill patients (71). The findings of these studies support the
fact that reasonable protein supplementation is a crucial element
of care for CCI, and it may improve long-term outcomes and
provide benefits to patients with PICS (72).

Compared with the traditional nutritional support formula,
an immune-enhancing diet (IED), which can improve both
patients’ nutritional status and immune recovery, is more
favorable for patients with CCI. IED, which is composed of
arginine, glutamine, omega-3 fatty acids, nucleotides, fish oil,
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and vitamins, has been shown to impede infections, improve
adapted immunity, and shorten ICU stay (67). In recent years,
IED has become a recommended nutritional intervention for
many surgical patients to improve their prognosis (73).

Arginine serves as an immunologic regulator, promoting
lymphocyte proliferation and maturation (74). It also produces
nitric oxide in enzymatic reactions and dilates blood vessels to
enhance the delivery of oxygen and nutrients to the wound
(75). In PICS, arginine might be depleted due to the expression
of arginase-1 induced by MDSC expansion. Lymphocytes
fail to proliferate without arginine, which will contribute to
immunosuppression and the occurrence of infections during
PICS (74). However, the clinical use of arginine in septic
patients and patients with PICS remains controversial because its
products may worsen vasodilation and affect hemodynamics (67).
Leucine, a branched-chain amino acid, has been demonstrated
to decrease muscle catabolism and hypertrophic muscle growth
by promoting protein synthesis (76). During PICS, leucine and
its product, β-hydroxy-β-methylbutyrate, are likely to decrease
or reverse the hypercatabolic status (77). It has been found that
leucine can work in coordination with arginine to activate Akt-
mTOR signaling pathways, which can promote protein synthesis
and inhibit protein breakdown (78, 79). Therefore, arginine and
leucine can be supplemented together to benefit patients with
PICS. Moreover, glutamine is also likely to benefit patients with
PICS because it may act as an antioxidant, immunomodulator,
and substrate for gluconeogenesis (72). To sum up, arginine,
leucine, and glutamine can be considered to be beneficial
for patients with PICS because of their positive effects on
metabolism, which need to be studied further.

Omega-3 fatty acids and specialized pro-resolving mediators
(SPMs), as adjunctive therapeutic methods, provide potential
benefits to patients with PICS. Omega-3 fatty acids were reported
to minimize muscle wasting and inhibit oxidative injury by
modulating inflammatory responses (80). SPMs are unique
derivatives of omega-3 polyunsaturated fatty acids (PUFAs),
which can alleviate inflammation and improve a patient’s
functional status (81). They also promote tissue regeneration and
limit organ injury, which may impede the progression of PICS
(82, 83).

Anti-inflammatory Agents
Exposure to high levels of inflammatory cytokines contributes
to the catabolism that occurs during PICS. Hence, anti-
inflammatory treatments may help alleviate the hypercatabolic
status, and prevent the development of PICS. Current agents
used to regulate the inflammatory response during critical illness
mainly target IL-1 and IL-6. In a reanalysis of a prior phase III
clinical trial, anakinra, an IL-1 receptor antagonist, was shown
to have a positive effect on the prognosis of patients with
severe sepsis (84). Tocilizumab, a widely studied inhibitor of the
IL-6 receptor, blocks the activation of IL-6-mediated signaling
pathways, thereby alleviating inflammatory responses in critically
ill patients (85). Several candidate therapies targeting other
inflammatory cytokines, such as IL-10, interleukin-2 (86), and
TNF-α (87), are under investigation. However, the improper use
of anti-inflammatory agents may have adverse effects on patients

because it may block other relevant signaling pathways mediated
by these inflammatory cytokines. Hence, nanomaterial-based
therapies for sepsis have been taken seriously in recent years
because of their benefits of targeted delivery of anti-inflammatory
agents and the reduction in adverse reactions to these drugs (88).

Anabolic and Anti-catabolic Agents
Anabolic and anti-catabolic agents can alleviate ongoing muscle
breakdown and the hypercatabolic state. It has been described
above that the decrease in the levels of certain hormones and
the declined production of IGF-1 induce the hypercatabolic
state in patients with PICS. Hence, testosterone and IGF-1
supplementation may be helpful. Testosterone, an anabolic-
androgen steroid, can promote protein synthesis and reduce
protein catabolism and autophagy through androgen signaling
pathways (89). Testosterone administration has shown its role
in improving muscle catabolism in severe burns (90). IGF-1
treatment has also been reported to attenuate catabolism in
severely burned patients (91). Thus, testosterone and IGF-1
supplementation are potential therapies for improving skeletal
muscle wasting in patients with PICS. Moreover, growth
hormones (92) and thyroid hormones (24) were also reported
to have positive effects on metabolism; however, the effects of
glucocorticoids remain controversial.

In addition to hormonal therapy, other anti-catabolic agents
have been used to alleviate the catabolic status. Propranolol, a β-
adrenergic receptor blocker, has proven its effect on inhibiting
lipolysis, improving the efficiency of protein synthesis, and the
restoration of lean body mass in burned patients (93). In addition,
propranolol was found to counteract insulin resistance in a dose-
dependent manner (94). Oxandrolone, a testosterone analog, can
improve the lean body mass and shorten hospital stay in burned
individuals (95–97). A combination of rehabilitative exercise
training with propranolol and oxandrolone was suggested to
improve muscle strength, power, and protein turnover in children
recovering from severe burns (98). In summary, anabolic
and anti-catabolic agents are promising in attenuating the
hypercatabolic status in patients with PICS, and further studies
on this subject are necessary.

Antioxidants
Efforts have also been made to improve mitochondrial
dysfunction and oxidative stress in patients with PICS.
Antioxidants have been proposed to relieve oxidative stress
caused by mitochondrial dysfunction for decades. In recent years,
mitochondria-targeted antioxidants that contain ubiquinone
or vitamin E have been used to combat the overproduction
of ROS caused by mitochondrial dysfunction (60). Among
them, mitochondria-targeted ubiquinone (Mit Q) is the most
extensively studied. Septic animals treated with Mit Q showed
significantly reduced mitochondrial damage, organ dysfunction,
and inflammatory responses (99). However, there is a paucity of
clinical trials of Mit Q administered in septic patients. Melatonin
is another powerful antioxidant that could inhibit mitochondrial
structural damage and improve mitochondrial ATP production
during sepsis (31). In addition, there are other potential therapies
for mitochondrial dysfunction, such as lifestyle intervention,
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FIGURE 4 | Summary of pathophysiological mechanisms of skeletal muscle wasting in PICS and related therapies. Many pathophysiological changes in PICS affect
the function of skeletal muscle cells and contribute to skeletal muscle wasting in patients with PICS. Inflammatory cytokines, such as IL-6 and TNF-α, induce protein
degradation by activating the gp130/JAK/STAT3 and IKK/IKB/NF-κB signaling pathways, contributing to the production of ROS in muscle cells. Elevated
inflammatory cytokines also inhibit the mTOR-mediated signaling pathway to decrease protein synthesis. Some hormones such as growth hormones are inhibited
during PICS, which will cause decreased IGF-1 levels and suppress the IGF-1/PI3K/Akt/mTOR signaling pathway. Alterations in Escherichia coli, as a part of gut
dysfunction, also lead to the suppression of the IGF-1/PI3K/Akt/mTOR signaling pathway by inhibiting IGF-1 production. Hence, exercise and IGF-1
supplementation are encouraged for patients with PICS to activate the mTOR signaling pathway and promote protein synthesis. In addition, the expression of FOXO
is upregulated in skeletal muscle cells, which can increase the activity of MAFbx and MuRF1, activating the ubiquitin-proteasome system as a result. The
autophagy-lysosome system is also activated and the levels of autophagy-related genes are upregulated. Mitochondrial dysfunction contributes to the increase in
ROS, which induces skeletal muscle wasting and hypercatabolism in PICS. Therefore, anti-inflammatory agents, anabolic and anti-catabolic agents, microbiota
modulators, and antioxidants are recommended for patients with PICS. IL-6, interleukin 6; IL-6R, interleukin 6 receptor; JAK, Janus kinase; STAT3, signal transducer
and activator of transcription 3; ROS, reactive oxygen species; TNF-α, tumor necrosis factor α; TNFR, tumor necrosis factor receptor; IKK, IκB kinase complex;
NF-κB, nuclear factor-kappa B; FOXO, forkhead box protein O; MuRF1, muscle ring finger 1; MAFbx, muscle atrophy F-box; ATGs, autophagy-related genes; IGF-1,
insulin-like growth factor-1; IGF1R, insulin-like growth factor-1 receptor; PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin; gp130,
glycoprotein 130; PICS, persistent inflammation, immunosuppression, and catabolism syndrome.

mitochondria membrane stabilization, mitochondrial biogenesis
promotion, and mitochondrial transplantation (31, 100). These
potential therapies have also shown some efficacy in critically ill
animals or patients (31).

Microbiota Modulator
Therapeutic approaches targeting microbiota modulation have
received increasing attention in recent years. The application
of microbial modulators, such as probiotics, aims to restore
intestinal microbiota balance and intestinal homeostasis in
critically ill patients. Microbiota regulators have two main
uses; one is to increase the number of beneficial bacteria
and the other is to reduce the number of disease-causing
bacteria (101). Probiotics, most commonly Lactobacillus and
Bifidobacterium, inhibit the growth of pathogenic bacteria

and prevent gut bacteria from migrating to the blood and
other organs to rebuild the damaged gut microbiome and
restore normal gut function (102). Some probiotics such
as Lactobacillus and Saccharomyces boulardii have also been
reported to promote the secretion of immunoglobulins in
the gut, thereby enhancing the immune function of the gut
and reducing the harmful effects of toxins and pathogenic
bacteria (103). In addition, the nutrition support mentioned
above and fecal microbiota transplantation (104) are also
important means of promoting the recovery of gut function
in patients with PICS. However, these therapies may cause
side effects such as diarrhea, constipation, and infections when
bringing benefits to patients (104). Hence, more experimental
and clinical studies are needed to improve their safety and
efficacy in the future.
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Early Mobilization and Other Therapies
Not only hypercatabolism but also physical immobilization
contributes to rapid skeletal muscle wasting and impaired
functional status in ICU patients. Early mobilization, a promising
intervention in the ICU, has been proven to be beneficial
to critically ill patients in many studies (105, 106). Early
mobilization and exercise promote muscle fiber contraction,
which generates mechanical signals to stimulate the activation
of the mTOR signaling pathway (107). The activated mTOR
signaling pathway has a positive influence on muscle cell
hypertrophy and muscle growth. It may improve muscle strength,
reduce activity limitations, and shorten ICU stay (108–111). In
addition, early physical mobilization might counteract sepsis-
induced catabolism (112). A recent randomized controlled trial
supposed that early mobilization during the first week of septic
shock preserves skeletal muscle mass by limiting the excessive
activation of autophagy instead of inhibiting autophagy (113).
Therefore, early mobilization has the priority of use in the
hospital course of patients with PICS.

The ubiquitin-proteasome and autophagy-lysosome systems
contribute to skeletal muscle wasting in patients with PICS.
In recent years, therapies targeting these two systems have
been emerging. Ubiquitin-proteasome system inhibitors such
as bortezomib and MuRF1 inhibitors are useful in preventing
muscle atrophy (114). Autophagy modulators and other therapies
also have been studied to protect skeletal muscles from atrophy
(19). These therapies are potentially beneficial to patients
with PICS. However, the exact underlying mechanisms and
therapeutic schedules need to be further investigated. Therapies
targeting the pathophysiological mechanisms of skeletal muscle
wasting are shown in Figure 4.

RECOMMENDATIONS TO AVOID
PERSISTENT INFLAMMATION,
IMMUNOSUPPRESSION, AND
CATABOLISM SYNDROME

Driven by the continuous exposure to DAMPs and PAMPs,
patients with PICS are trapped in a vicious cycle of inflammation,
immunosuppression, and hypercatabolism, which leads to poor
outcomes. Hence, early intervention and interruption are
encouraged to prevent the occurrence of PICS. Initial insults
such as sepsis, severe burns, and severe trauma may develop
into PICS at a later stage. Therefore, aggressive treatment of
these initial insults is important in preventing the development
of PICS. Early removal of the etiology, proper nutritional
supplementation, and early exercise support are necessary.
These methods help critically ill patients better fight the
disease and avoid transitioning to its chronic stage. However,
arginine supplementation is not recommended in the early
stages because it may cause hemodynamic instability, which
can be detrimental to the patient (67). In addition, patients
suffering initial insults may have underlying mitochondrial
dysfunction and gut dysfunction; however, these changes
may be underappreciated. Therefore, improving mitochondrial

dysfunction and gut dysfunction at the initial stage of the
condition is also a potential means of preventing the occurrence
of PICS. In a nutshell, an early and multipronged therapeutic
schedule is required to avoid PICS.

CONCLUSION

Persistent inflammation, immunosuppression, and catabolism
syndrome, an important phenotype of CCI, has become an
arduous problem in the ICU since it was proposed. In
this review, we focused on hypercatabolism, which is less
mentioned in PICS, and proposed that inflammation, hormonal
changes, mitochondrial dysfunction, and gut dysfunction could
be important underlying mechanisms. Hypercatabolism is
involved in the progress of persistent inflammation and
immunosuppression in PICS. Hence, therapies for preventing
and improving the hypercatabolic status in patients with PICS are
vital. A multi-modal therapy that includes nutritional support,
anti-inflammatory agents, anabolic and anti-catabolic agents,
antioxidants, microbiota modulators, and early mobilization is
suggested to benefit patients with PICS.

OUTLOOK AND FUTURE DIRECTIONS

The existing difference in diagnostic criteria for PICS reflects
the complexity of its pathophysiological changes and difficulty
in its treatment. The detection of biomarkers of inflammation,
immunosuppression, and metabolism, such as GLP-1, may help
clinicians identify pathophysiological changes in patients and
prevent the development of PICS. However, it needs further
research. Based on the influence of gut microbes on body
metabolism, studying this process can provide more valuable
suggestions for treating PICS. Microbiota modulators have been
suggested as a way to improve gut dysfunction, but the long-
term effects of probiotics and their corresponding metabolites
on patients with PICS are needed to be fully understood.
Some therapies aimed at improving inflammatory response and
mitochondrial dysfunction such as anakinra and melatonin are
currently in phase III clinical trials. Additionally, studies on
the IL-6 inhibitor tocilizumab, ubiquitin-proteasome system
inhibitor bortezomib, and mitochondria-targeted antioxidant
Mit Q are still in their infancy. However, these limitations do not
deter the fact that therapies focusing on catabolism are promising
in challenging PICS. In future experiments, based on existing
studies, more evidence-based studies on metabolic characteristics
are needed to establish effective and standardized interventions
for PICS, so as to improve long-term prognosis.
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