
A
rticle

Efficient Inference of Recombination Hot Regions in
Bacterial Genomes
Koji Yahara,1,2,3 Xavier Didelot,4 M. Azim Ansari,5 Samuel K. Sheppard,3 and Daniel Falush*,6

1Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
2Institute of Medical Science, University of Tokyo, Tokyo, Japan
3Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
4Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
5Department of Statistics, University of Oxford, Oxford, United Kingdom
6Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

*Corresponding author: E-mail: daniel_falush@eva.mpg.de.

Associate editor: Eduardo Rocha

Abstract

In eukaryotes, detailed surveys of recombination rates have shown variation at multiple genomic scales and the presence
of “hotspots” of highly elevated recombination. In bacteria, studies of recombination rate variation are less developed, in
part because there are few analysis methods that take into account the clonal context within which bacterial evolution
occurs. Here, we focus in particular on identifying “hot regions” of the genome where DNA is transferred frequently
between isolates. We present a computationally efficient algorithm based on the recently developed “chromosome
painting” algorithm, which characterizes patterns of haplotype sharing across a genome. We compare the average
genome wide painting, which principally reflects clonal descent, with the painting for each site which additionally reflects
the specific deviations at the site due to recombination. Using simulated data, we show that hot regions have consistently
higher deviations from the genome wide average than normal regions. We applied our approach to previously analyzed
Escherichia coli genomes and revealed that the new method is highly correlated with the number of recombination events
affecting each site inferred by ClonalOrigin, a method that is only applicable to small numbers of genomes. Furthermore,
we analyzed recombination hot regions in Campylobacter jejuni by using 200 genomes. We identified three recombination
hot regions, which are enriched for genes related to membrane proteins. Our approach and its implementation, which is
downloadable from https://github.com/bioprojects/orderedPainting, will help to develop a new phase of population
genomic studies of recombination in prokaryotes.

Key words: recombination hotspot, recombination hot region, homologous recombination, selection, population geno-
mics, chromosome painting.

Introduction
Recombination is a fundamental driving force in evolution.
Patterns of recombination have been studied most actively in
humans, revealing considerable variation of recombination
rates across the genome with recombination “hotspots” in
which the majority of crossover occurs (McVean et al. 2004;
Myers et al. 2005). A high-resolution genetic map of recom-
bination was recently inferred in African Americans, based on
individuals who experienced recent genetic admixture to-
gether with the unadmixed reference populations (Price
et al. 2009; Hinch et al. 2011). A fine-scale map of recombi-
nation hotspots was also constructed in chimpanzee (Auton
et al. 2012).

Meanwhile, although studies have shown variation in re-
combination between bacterial species (Smith et al. 1993;
Narra and Ochman 2006; Vos and Didelot 2009), between
different lineages within the same species (Rocha et al. 2005;
Castillo-Ramirez et al. 2012; Joseph et al. 2012; Croucher et al.
2013), knowledge of variation in recombination rate
across a bacterial genome is relatively limited. Homologous

recombination in bacteria results in the import of short con-
tiguous DNA fragments, which is similar to gene conversion
in eukaryotes (Smith et al. 1991; Didelot and Falush 2007a;
Takuno et al. 2012). Here, we focus on the problem of iden-
tifying recombination hot regions, defined as locations of the
genome where DNA is transferred frequently between iso-
lates. This is not the same as locating hotspots, that is, regions
of the genome where recombination breakpoints occur fre-
quently. For example, in Neisseria meningitidis, preferential
recombination of DNA fragments spanning the TbpB (trans-
ferrin-binding protein B) gene has previously been reported,
presumably due to selection for host immune escape (Linz
et al. 2000). Many different recombinational breakpoints were
observed for the imported fragments, occurring both up and
downstream of the gene, suggesting that the hot region is not
due to specific hotspots around the gene but rather to natural
selection for different variants of the TbpB gene.

In addition to natural selection, recombination rates can
vary along the genome due to specificities of the mechanisms
that facilitate DNA transfer. Particular chromosomal regions
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of the genome might be more susceptible to recombination,
for example, due to their positions relative to the origin
of replication. Enzymes in the DNA replication and repair
machinery (e.g., the RecBCD enzyme [Dillingham and
Kowalczykowski 2008]) target specific sequences (e.g., the
chi sequence [Anderson and Kowalczykowski 1997; Handa
et al. 2012] and specific DNA uptake sequence [Treangen
et al. 2008; Frye et al. 2013]), and this can lead to them
being transferred more or less often in recombination events.

The increased availability of sequenced genomes creates an
opportunity to conduct data-driven inference of variation in
recombination rate across a bacterial genome. However, the
methods for eukaryotes are focused on finding hotspots
(Auton and McVean 2007; McVean and Auton 2007), and
there have been less methodological studies in statistical geno-
mics for the gene conversion-like recombination in bacteria
compared with those for crossing over in eukaryotes. A pio-
neering method explicitly modeling bacterial recombination is
ClonalFrame (Didelot and Falush 2007a), which has been suc-
cessfully used to reveal recombination events across genomes
ofvariousbacterialspecies(Didelotetal.2011; Josephetal.2012;
Namouchi et al. 2012; Sheppard, Didelot et al. 2012). However,
ClonalFrame does not model the origin of DNA imported in
homologousrecombinationevents,whichmeansthat itmisses
many events and is also likely to be inaccurate in inferring re-
combination boundaries. A related statistical genetic method,
ClonalOrigin, directly models bacterial recombination as an
event from a specific donor to a specific recipient, so that it
simultaneously detects events and their origins (Didelot et al.
2010). ClonalOrigin was recently applied to Escherichia coli ge-
nomes, which revealed detailed flux of recombination between
donors and recipients throughout the genome, and three re-
combination hot regions in which deviations from clonal de-
scent were significantly more frequent than elsewhere in the
genome (Didelot, Méric, et al. 2012).

There are two major difficulties with these methods. First,
ClonalOrigin requires a clonal genealogy to be specified,
which can be accurately inferred by ClonalFrame only if the
recombination rate is not too high (Didelot and Falush
2007b). Second, both methods are computationally expensive
and therefore not applicable to hundreds or thousands of bac-
terial genomes (Loman et al. 2012). Although ClonalFrame is
applicable to around 100 genomes if they are not too genet-
ically diverse (Didelot, Eyre, et al. 2012), the computation
takes at least several days.

In this study, we present a new approach that overcomes
some of the difficulties associated with existing methods for
investigating recombination in bacteria. Our approach is
based on the recently developed “chromosome painting”
algorithm. Under the approach, a hidden Markov model
(HMM) is used to “paint” a “recipient” haplotype as a series
of chunks from a panel of “donor” haplotypes from other
individuals in the sample based on sequence similarity be-
tween donor and recipient. The interpretation of the painting
is that the donor at a given region of the genome has the most
recent shared common ancestor with the recipient individual
among all of the possible donors in the panel. Changes in
the identity of the donor along the sequence reflect

recombination events that lead to different genealogical his-
tories for different parts of the genome. (Lawson et al. 2012).
The algorithm can be run separately for different recipient
individuals, making it applicable to hundreds or thousands
of genomes via parallelization. Lawson et al. used the algorithm
to summarize information of genome-wide single-nucleotide
polymorphisms (SNPs) into chunks based on a “co-ancestry
matrix,” which tabulated the number of chunks from each
donor to each recipient individual. The data reduction from a
haplotype matrix to a coancestry matrix enables model-based
clustering using fineSTRUCTURE (Lawson et al. 2012). The
two-step approach was recently demonstrated to be effective
not only in human but also in the highly recombining bacte-
rium Helicobacter pylori (Yahara et al. 2013).

The chromosome painting algorithm in the form used by
Lawson et al. (2012) was intended for identifying recent
shared ancestry within a freely recombining population.
Each individual was painted using all of the other individuals
in the sample as donors. In the context of a more clonal
organism, this implementation discards a large amount of
information in the presence of close relatives. Because each
individual is painted using all of the others as donors, the
clonally related recipient isolates will be inferred to receive
almost all of their genome from their closest relatives.
Recombination events that distinguish them may be identi-
fied, but all recombination events in the history of their
common ancestor will be obscured.

Toextractmoreinformationfromthedatathanprovidedby
the all-versus-all painting, we generate a random ordering and
paint each individual using only individuals preceding it in the
ordering (Li and Stephens 2003). This means that if two ge-
nomesarecloselyrelated,oneofthepairwillbepaintedwithout
using the other. This strategy gives different results, depending
upon the choice of ordering. For example, suppose that there is
a recombination event at one part of the genome from a bac-
teriacloselyrelatedtoDtothecommonancestorofAandBbut
nottheirmoredistantrelativeC(fig.1a). IftheorderingisD,C,B,
A, then there will be a donor switch from C to D in the ancestry
of B, although there will be no donor switch in the ancestry of A
which will copy from B throughout the sequence (fig. 1b). If the
ordering is A, B, D, C, no recombination event will be detected
(fig. 1c). We therefore generate multiple orderings for each data
set and average over them appropriately.

Here, we illustrate the use of the ordered painting method
to infer recombination hot regions in three different data
sets: 1) simulated data of a closed recombining population;
2) whole genomes of 27 E. coli isolates, which were recently
analyzed by ClonalOrigin; and 3) genomes of 200
Campylobacter jejuni isolates. The program to perform the
inference is called “orderedPainting” and is publicly available
from https://github.com/bioprojects/orderedPainting (last
accessed March 7, 2014).

New Approaches

Ordered Painting

The chromosome painting algorithm is based on the HMM
introduced by Li and Stephens (2003). It regards a single
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haplotype on the chromosome of a recipient individual as a
mosaic and reconstructs it as a series of chunks in the sample
of potential donors. A “chunk” refers to a set of contiguous
SNP(s) copied from a donor to a recipient, bounded by re-
combination sites beginning of another chunk from a differ-
ent donor. The donor of each chunk represents a nearest
neighbor of the recipient haplotype for that stretch, with
each chunk representing a different nearest neighbor. In
Lawson et al., the chromosome painting algorithm used an
approach in which a recipient haplotype is reconstructed
using the haplotypes from all other individuals as potential
donors (i.e., “all-versus-all” painting). The reconstruction
(painting) process is repeated for every recipient haplotype.
For that purpose, donors of each SNP are modeled as hidden
states of the HMM, in which transition probabilities depend
on recombination rate and distance between SNPs, and trans-
mission probabilities depend on a per site mutation rate. The
mutation parameter is fixed as Li and Stephens (2003), and
the recombination parameter is inferred from data. A detailed
mathematical formulation of the chromosome painting algo-
rithm is given in supporting information of Lawson et al.,
which applies not only to the all-versus-all painting but also
to the conditioning below.

Here, we conduct the chromosome painting by ordering
haplotypes in the spirit of the original Li and Stephens algo-
rithm (Li and Stephens 2003). Namely, for each ordering j, we
conduct the chromosome painting by conditioning donors
of each recipient haplotype (H2, . . . ,Hn) on the previous ones,
such that

H2 jH1

H3 jH2,H1

H4 jH3,H2,H1

:::

Hn jHn�1,:::, H1

ð1Þ

where (H1, H2, . . . , Hn) is the ordered sample of n haplotypes.
In typical applications, we conduct 10 random ordering and
their reverse (i.e., j = 1, . . . , 20), which is justified in the Results
section.

In each ordering, the chromosome painting gives posterior
probability of donors for each polymorphic site on a recipient
genome. For a given site i, this can be formatted as a matrix in
which rows represent recipients and columns represent
donors, with the values being normalized, so that each row
sums up to 1. We call this the site-by-site copying probability
matrix Sij of site i and ordering j. By taking the average of the
site-by-site copying probability matrix Sij for all sites, an aver-
age copying probability matrix Aj is calculated for ordering j.
Two examples of the average copying probability matrices Aj

obtained for two different orderings (j = 1, 2) are shown in
supplementary figure S1, Supplementary Material online.
Because of the conditioning on donors of recombination,
the matrices have values only in the lower triangles below
the diagonals. Note that different orderings mean different
conditioning of donors of recombination and give different

site-by-site copying probability matrix Sij and average copying
probability matrix Aj.

Next, we examine the distance between a site-specific
copying probability matrix Sij and the average copying prob-
ability matrix Aj. For each site i and each ordering j, we
calculate dij as the sum of squared distance of every element
of Sij and Aj:

dij ¼
X
ðSij � AjÞ

2
ð2Þ

Then we calculate a distance statistic Di by taking the sum-
mation of dij across orderings:

Di ¼
X

j

dij ð3Þ

Intuitively, this distance statistic captures the extent of
deviation of a specific site compared with the genome-wide
average. We can also say that it captures the extent of gene-
alogical changes due to recombination compared with the
average genealogy. We expect atypical values (e.g., top per-
centile) of this statistic to indicate recombination hot regions
or atypical sites, which are subject to frequent import. We also
calculate bootstrap support of the distance statistic by resam-
pling the contribution made to it by individual isolates in their
role as recipients. Each strain still contributes to the statistic as
a donor. Specifically, for each site i and each ordering j, we
calculate 100 bootstrapped samples of dij by resampling rows
of ðSij � AjÞ

2 with replacement. This resampled version of the
matrix is summed over all orderings. For each site i, we cal-
culate the bootstrap support value as the number of

FIG. 1. A conceptual example of the ordered painting. (a) A recombi-
nation event from D to the common ancestor of A and B. (b) In the
case of ordering D, C, B, A. The red arrow indicates the recombination
event from D to B inferred in this ordering. (c) In the case of ordering A,
B, C, D.
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bootstrapped samples that fall in the top percentile of the
distribution of Di for all sites without bootstrapping.

Visualization

To give an interpretable visualization of the ordered painting,
we calculate the following matrix for each site of interest:

X

j

Sij � Aj ð4Þ

Namely, it is the matrix obtained by summation over all
orderings of the differences between the site specific copying
probability matrices Sij and the average copying probability
matrices Aj. Positive values in the matrix indicate increased
copying probabilities, whereas negative values indicate de-
creased copying probabilities compared with the genome-
wide average.

Application to Simulated and Real Complete
Genome Sequence Data

We first applied the method to simulated data in the pres-
ence of recombination hot regions to test the sensitivity and
specificity of inference of recombination hot regions. We used
SimMLST (Didelot et al. 2009), which assumes a coalescent
(Ancestral Recombination Graph [ARG]) with gene conver-
sion model in a neutrally evolving unstructured closed
population (Wiuf and Hein 2000). To generate data in the
presence of recombination hot regions, we modified
SimMLST, so that relative recombination rate can be specified
for each simulated region. We simulated 100 genomes of 50
blocks of 5 kb each, in which there were two hot blocks with
elevated recombination rate (hot vs. background ratio �). We
used parameter values of � (mutation rate) = 2,500, � (mean
tract length) = 542 bp, and � (background recombination
rate) = 1,000. We assumed conditions of the hot versus back-
ground ratio �= 2, 3, 4, or 5 and conducted five runs of
simulation for each condition. In each simulation run, we
inferred recombination hot regions as blocks containing
sites in the top percentile of the distance statistic values.

One factor which is known to influence methods to infer
recombination is polymorphism levels (Posada and Crandall
2001; Posada et al. 2002). We also investigated variation in Di

due to variation in mutation rates between genome regions.
By using the modified version of simMLST, we simulated two
sets of 100 genomes of 50 blocks of 5 kb each, in which there
were two blocks with 5-fold higher mutation rate or half (25)
of the blocks with 2-fold higher mutation rate. We also inves-
tigated the correlation between Di and polymorphism levels
in the simulated data and another simulated data set, which
had no variation in mutation or recombination rates.
Nucleotide diversity at a polymorphic site was calculated by
sliding windows implemented in VariScan version 2.0 (Hutter
et al. 2006). We also applied the method to complete ge-
nomes of 27 E. coli isolates, which were recently analyzed by
ClonalOrigin to reveal impact of recombination in shaping
the genome evolution and diversification (Didelot, Méric,
et al. 2012). We used the same nucleotide sequence alignment
of 765 locally collinear blocks as used in the previous study.

Application to Real Genome Sequence Data with
Imputation

The method was also applied to genomes of 200 C. jejuni
isolates in which recombination plays an important role
(Wilson et al. 2009). One of them was a reference complete
genome sequence (Parkhill et al. 2000) and the others were
assembled de novo, resulting in an average of 77 contigs per
genome (with a minimum of 15 and a maximum of 617). The
200 isolates were broadly sampled from 26 clonal complexes
and various sources (supplementary table S1, Supplementary
Material online). Allele sequences of the C. jejuni genomes
were exported from BIGSdb (Jolley and Maiden 2010) by
the default option that excludes truncated sequences. The
exported data will be publicly available at Dryad, http://data
dryad.org/ (last accessed March 7, 2014). Gene-by-gene align-
ments were conducted by MAFFT-EINSI (Katoh and Toh
2008), and we combined SNPs on each gene while preserving
information of SNP positions to prepare genome-wide hap-
lotype data.

Because of the larger amount of missing data in the se-
quences of C. jejuni, compared with E. coli, we conducted
imputation for polymorphic sites with missing frequency
�10% using BEAGLE (Browning BL and Browning SR 2009).
In this case, after executing the chromosome painting algo-
rithm, we calculated the average copying probability matrices
Aj from the site-by-site copying probability matrices Sij by
masking columns and rows of missing individuals at site i and
normalizing Aj , so that each row sums to 1. The masked
copying probability matrix of each site was also normalized
and used to calculate the distance statistic Di.

Results

Accurate Inference of Recombination Hot Regions in
Simulated Data

An example of distribution of the distance statistic Di ob-
tained from simulation with hot versus background ratio
�= 5 is shown in figure 2. The statistic followed an approxi-
mately normal distribution for the background sites but was
elevated for the two hot regions (which account for most of
the values greater than 500 in fig. 2a, and peaks at 50,000 and
100,000 in fig. 2b). Sites within the top percentile of the dis-
tance statistic were all found in the two hot regions, and
median bootstrap value among the atypical sites was 73
(interquartile range: 63–83).

By conducting multiple runs of simulation and changing �
from 2 to 5, we calculated sensitivity and specificity, assuming
the sites with the top percentile of the distance statistic to be
hot (fig. 3). The results indicate that the method is effective in
distinguishing recombination hot regions and others when �
is 4 or 5 (sensitivity of 100% and specificity of 98–99%). The
method is less effective when � is 2 (sensitivity of 50% and
specificity of 93%). An example of false inference under �= 5
is shown in supplementary figure S2, Supplementary Material
online. The two highest peaks are located in true hot regions,
but a third high peak was also detected. The median boot-
strap value among sites in the false peak was 55 (interquartile
range: 54–56).
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We also examined two sets of simulated data, in which
there were two blocks with 5-fold higher mutation rates or
half of the blocks with 2-fold higher mutation rates.
Distributions of Di in the regions with elevated mutation
rate and other regions are shown in supplementary figure
S3a and b, Supplementary Material online. In either case, Di

was not substantially elevated in the regions with elevated
mutation rate.

We then examined a relationship between the distance
statistic Di and nucleotide diversity per site in the simulated

data, in the absence of variation in mutation rates. A result
using sliding windows with 250 bp is shown in supplementary
figure S4, Supplementary Material online. The plot shows
weak correlation (0.15) between them and that the atypical
sites with highest Di are not clustered in those with highest
nucleotide diversity per site. We tried to use different win-
dows sizes (from 500 bp to 1 bp), which account for all sites or
only polymorphic sites, but results were consistent with the
above one. When we examined another simulated data with-
out variation in mutation or recombination rates, similar
levels of correlation were found.

Correlation with Results from ClonalOrigin

Next, we applied the ordered painting method to 27 E. coli
genomes in which the clonal genealogy and recombination
edges were previously inferred by ClonalFrame and
ClonalOrigin (Didelot, Méric, et al. 2012). The results for 27
E. coli genomes are shown in figure 4.

When the number of recombination edges (events in-
ferred by ClonalOrigin) of each site was used as a measure
of the extent of recombination, the correlation coefficient
was 0.53 (fig. 4a). The top right of figure 4a shows the sites
with the highest values of the statistic and the number of
recombination edges (>40 per site). The correlation coeffi-
cient was similarly high (0.59) when the Robinson–Foulds
distance (Robinson and Foulds 1981) measuring differences
in topology between a local tree of each site and the clonal
genealogy is used as another measure of the extent of recom-
bination (fig. 4b). The top right of figure 4b shows sites
requiring more than 30 transformations to convert their
local trees to the clonal genealogy. Those sites also show
very high values for the distance statistic.

In figure 4, we applied the ordered painting method by
doing 10 orderings and their reverse. Another result obtained
by doing 100 orderings and their reverse is shown in supple-
mentary figure S5, Supplementary Material online. The
correlation coefficients were the same as when using 10 or-
derings and their reverse, which indicated that increasing the
number of orderings did not improve the results. We also
found that the values of the distance statistic obtained
from two different sets of 10 orderings and their reverse
were consistent (supplementary fig. S6, Supplementary
Material online) with a correlation coefficient of 0.999.
Therefore, a run of the ordered painting given 10 orderings
and their reverse is sufficient to detect atypical sites. We
caution, however, that the number of orderings required to
get consistent results might differ between data sets, particu-
larly if the composition is unbalanced, for example, due to
many clones from a particular lineage being included in a
sample. Therefore, the correlation between independent
orderings should be tested by users exploring new data sets.

In the above results, we used orderings together with its
reverse rather than independent orderings. This is because
one ordering and its reverse had a correlation with the
ClonalOrigin results significantly higher than two indepen-
dent random orderings (P< 0.005, Wilcoxon rank sum
test). Intuitively, opposite orderings are complementary

FIG. 2. Inference of recombination hot regions in simulated data. An
example with hot versus background ratio equal to 5 is shown. True
recombination hot regions are located at 50,000–55,000 and 150,000–
155,000. (a) Distribution of the distance statistic. (b) Plot of the distance
statistic along the genome.

FIG. 3. Benchmarking of inference of recombination hot regions.
Sensitivity (solid) and specificity (dashed) are calculated from five dif-
ferent simulation runs, each of which assumes two true recombination
hot regions (blocks) out of 50 blocks as shown in figure 2.
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because they are more likely to identify recombination
events in different parts of the clonal genealogy than inde-
pendent orderings are. The all-versus-all painting used in
Lawson et al. gave lower correlations of 0.37 for the number
of recombination edges of each site (supplementary fig. S7A,
Supplementary Material online) and 0.42 for the Robinson–
Foulds distance between local trees and the clonal genealogy
(supplementary fig. S7B, Supplementary Material online). This
indicates the ordered painting is more effective in capturing
information on recombination.

The above results show that there is a high correlation
between the distance statistic and the measures of the
extent of recombination inferred by ClonalOrigin. However,
for sites with an intermediate number of recombination
edges or level of Robinson–Foulds distance, the values of
the distance statistic are widely distributed from low to
high. We therefore focused on the 100 sites with lowest or
highest values of the distance statistic among sites with an
intermediate number (20) of recombination edges and exam-
ined the differences between them. We found that the

average recombination recipients estimated by ClonalOrigin
were significantly younger in the sites with highest values
of the distance statistic than in those with the lowest
values (fig. 5, P< 10�15, Wilcoxon rank sum test). This indi-
cates that as expected, the distance statistic is better at
detecting relatively recent recombination events.

Visualization of Genome-Wide Average Matrix

Although it does not capture all of the available information
on recombination events, the fineSTRUCTURE algorithm
clusters the isolates appropriately based on the whole
genome painting and this clustering is useful in visualizing
and interpreting results. A result of fineSTRUCTURE on
the E. coli isolates is shown in supplementary figure S8,
Supplementary Material online. The 27 E. coli isolates are
assigned into 11 subgroups. The subgroups are seen along
diagonal blocks in the coancestry matrix which summarizes
the expected number of chunks of DNA imported from a
donor to a recipient genome.

In the case of the all-versus-all painting, the average copy-
ing probability matrix can be also calculated (fig. 6). It seems
to have similar information content to the coancestry matrix
of fineSTRUCTURE (supplementary fig. S8, Supplementary
Material online). If the bacteria are independently sampled
from a freely recombining population, then the coancestry
matrix of fineSTRUCTURE or the average copying probability
matrix in the all-versus-all painting will be approximately flat.
Because our method is dependent on finding deviations from
genome-wide patterns of descent, a data set of equally related
strains will provide little or no information on hot regions.
Therefore, either of the two genome-wide average matrices,
namely the coancestry matrix of fineSTRUCTURE or the av-
erage copying probability matrix in the all-versus-all painting,
should be checked to see that there are actually clonally

FIG. 4. Correlation between the distance statistic and other measures of
recombination in the ordered painting condition. Each dot indicates
each polymorphic site in the Escherichia coli genomes. X axis is the
distance statistic Di obtained from 10 different orderings and their re-
verse. (a) Correlation with the number of recombination edges of each
site. (b) Correlation with Robinson–Foulds distances between the clonal
genealogy and local tree of each site.

FIG. 5. Comparison of average age of recombination edges on recipients
among sites with intermediate number (20) of recombination edges.
The sites are classified into the tree categories (from left to right):
bottom 100 sites with low Di , top 100 sites with high Di , and others.
The bold line indicates the median, and the bottom and top of the box
indicate the 25th and 75th percentiles, respectively.

1598

Yahara et al. . doi:10.1093/molbev/msu082 MBE

``
''
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu082/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu082/-/DC1
-
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu082/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu082/-/DC1
-
st
,
-
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu082/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu082/-/DC1
-
-
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu082/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu082/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu082/-/DC1
-
Since
dataset
-


related strains in the data set before proceeding with further
analysis.

Visualization of Individual Sites

In the results above, the atypical sites were detected as those
with the highest values (top percentile) of the distance sta-
tistic. These sites have the largest distances from the average
copying matrices (supplementary fig. S1, Supplementary
Material online) across the 10 orderings and their reverse.
The deviation is visualized using equation (4) as a matrix,
and an example is shown in figure 7. The matrix of an atypical
site (position 2092621 on hisH in the reference genome K-12
MG1655) is different from that of a typical site with an inter-
mediate value of the distance statistic. The number of red and
orange cells with increased copying probabilities is higher for
the atypical site than for the typical site. The red and orange
cells are frequently found far from the diagonal, suggesting
some recombination events occurred between the subgroups
identified by fineSTRUCTURE. The number of recombination
edges of this atypical site is 47, which is high and within top
0.1% (fig. 4). We have confirmed that a different set of 10
random orderings and their reverse showed visually similar
result for these sites although individual cells do have different
values (supplementary fig. S9, Supplementary Material
online).

Atypical Sites and Recombination Hot Regions

The empirical distribution of the distance statistic for E. coli
(fig. 8a) has a long tailed distribution similar to that obtained

by simulation in the presence of recombination hot regions
(fig. 2a). Most of the atypical sites above a threshold (top
percentile) were clustered in two large regions corresponding
to rfb and fim (fig. 8b), which have previously been reported
as hotspots for recombination or phylogenetic incongruence
(Touchon et al. 2009; Didelot, Méric, et al. 2012). The median
bootstrap value among these atypical sites was 86 (interquar-
tile range: 71–95). All of the other atypical sites were located
in or close to ribosomal genes: three genes of 23S ribosomal
RNA—B0204, B3275, and B3854 in the K-12 MG1655
genome, and two genes of 16S ribosomal RNA—B3851 and
B3968.

The method was also applied to 200 genomes of C. jejuni
in which recombination hot regions have not been previ-
ously described. The coancestry matrix of fineSTRUCTURE
is shown in supplementary figure S10, Supplementary
Material online, which shows much of the matrix is concen-
trated near to the diagonal, and therefore contains informa-
tion of clonal relationships among the isolates. The method
indeed revealed recombination hot regions (fig. 9).
Furthermore, the distribution of the distance statistic shows
a long tail (fig. 9a), also suggesting the presence of recombi-
nation hot regions. The atypical sites in the top percentile
above the threshold were clustered in three regions (fig. 9b).
Median bootstrap value among these atypical sites was 87,
with an interquartile range of 73–100.

A list of genes contained in the hot regions is given in
table 1. They are classified into the three regions in the
reference genome: 51967–57211 (Cj0034c–Cj0038); 143953–

FIG. 6. Average copying probability matrix in the all-versus-all painting condition. The right is a tree inferred by fineSTRUCTURE.
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146506 (Cj0141c–Cj0143c); and 1188414–1191631 (Cj1258c–
Cj1260c). By using the names of representative loci, these three
regions are indicated in figure 9b as Cj0034, znuABC, and porA,
respectively. Interestingly, about half of the genes are related to

membrane proteins, which is significantly higher (P< 0.0005,
Fisher’s exact test) than in the whole genome.

The first region (Cj0034c–Cj0038c) overlaps with previ-
ously reported hypervariable regions (C0032–Cj0036)

FIG. 7. Visualization of deviation of the extent of recombination from the genome-wide average. The value of each cell of the matrix is obtained from
equation (4): summation of a site-specific copying probability matrix minus average copying matrix across ten different orderings and their reverse. The
name of each strain is indicated on the left and top. The right is a tree inferred by fineSTRUCTURE. (a) An atypical site with the highest level of
recombination. (b) A typical site with the intermediate level of recombination.
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(Parker et al. 2006) in which three genes related to membrane
proteins (Cj0034c, Cj0035c, and Cj0038c) are located. Cj0034c
was recently reported to be an adhesion and virulence factor
in C. jejuni (Nielsen et al. 2011). Cj0035c encodes a putative
efflux pump (membrane transporter) belonging to the major
facilitator family. Cj0038c is a hypothetical gene that encodes
a possible membrane protein containing two possible trans-
membrane domains at the N-terminus. The second region
(Cj0140–Cj0143c) encodes a zinc-dependent operon of
ZnuABC zinc uptake system, part of the family of ABC trans-
porters. The ZnuABC system is used by a number of bacterial
pathogens as an essential factor for host colonization and
virulence (Davis et al. 2009). The third region (Cj1258c–
Cj1260c) includes the porA gene, which encodes the major
outer membrane protein (MOMP). The MOMP is a porin,
which is responsible for adhesion to the intestinal mucosa
(Moser et al. 1997).

Inaccuracies in imputation might inflate values of the dis-
tance statistic compared with cells without missing data. To
minimize the effect of imputation on the distance statistic, we
prepared the site-by-site copying probability matrix Sij by
masking columns and rows for which the individuals had
missing data and then calculated the average copying

probability matrix Aj. For each site i, we then calculated the
distance statistic.

To examine whether the inferred recombination hot re-
gions in C. jejuni are not artifacts of the imputation method
used, we created bins of SNPs sorted by missing frequency
(10 SNPs/bin). Average values of the distance statistic of
the SNP bins are shown in supplementary figure S11,
Supplementary Material online, based on using polymorphic
sites with missing frequency�10%, which indicates no overall
relationship between missing frequency and the distance sta-
tistic. The atypical sites with high values of the distance
statistic are not collocated with those with high missing fre-
quency. However, if sites with up to 50% missing data are
included, many of these additional sites have atypically high
values for the distance statistic (supplementary fig. S12,
Supplementary Material online).

When sites with missing frequency �10% are imputed
(supplementary fig. S13A and B, Supplementary Material
online), the contribution of masked cells is indeed inflated
(supplementary fig. S13B, Supplementary Material online)
compared with the other cells (supplementary fig. S13A,
Supplementary Material online). When sites with missing

FIG. 9. Results for the 200 Campylobacter jejuni genomes. The format is
the same as figure 8. A total of 112,253 SNPs were used. (a) Empirical
distribution of the distance statistic. (b) The relative intensity of recom-
bination along the genome. The X axis indicates the position in the
reference genome NCTC11168 (Parkhill et al. 2000).

FIG. 8. Results for the 27 Escherichia coli genomes. A total of 190,551
SNPs were used. (a) Empirical distribution of the distance statistic.
(b) The relative intensity of recombination along the genome. The X
axis indicates the position in the reference genome K-12 MG1655
(Blattner et al. 1997). Y axis indicates the value of the distance statistic.
The dotted line represents the top percentile. Two large regions are
indicated by names of loci as a symbol.
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frequency �50% are imputed (supplementary fig. S13C
and D, Supplementary Material online), the inflation is seen
not only in the masked cells (supplementary fig. S13D,
Supplementary Material online) but also in other cells (sup-
plementary fig. S13C, Supplementary Material online).
This explains why the inflation was seen in supplementary
figure S12, Supplementary Material online, even after the
masking was conducted.

Discussion
We developed a computationally efficient method for iden-
tifying recombination hot regions. The method is based on
the chromosome painting algorithm, which is implemented
in ChromoPainter (Lawson et al. 2012). The input data are
aligned bacterial genome sequences, as for ChromoPainter. If
there are sites with missing data, then they need to be either
imputed or excluded. We have found that in practice it is
necessary to exclude sites with >10% missing data. Here, we
describe and implement programs to apply ChromoPainter
with different random orderings and to conduct postprocess-
ing of the data for calculating and visualizing statistics of in-
terest. Many of the steps in the pipeline are parallelizable and
computation of the ordered painting of the 27 E. coli genomes
is complete within approximately half an hour using about
100 CPU cores, whereas ClonalOrigin took almost a month
on hundreds of CPU cores. The analysis of 200 C. jejuni
genomes was more time consuming but was also com-
plete within several hours. A package of programs called
orderedPainting is publicly available at https://github.com/
bioprojects/orderedPainting (last accessed March 7, 2014).

We applied the ordered painting method first to simulated
data in which the majority of the genome had a background
rate, whereas others were in hot regions, with a factor �more
recombination. The method reliably identified the hot regions
when � was 4 or higher and had some power when � was 2
or 3. We then applied the ordered painting method to the
E. coli genome data, which were previously analyzed by
ClonalOrigin, and confirmed previously known hotspots of

phylogenetic incongruence or recombination (rfb and fim,
fig. 8). Although both of the methods showed the consistent
results in terms of inference of recombination hot regions,
we would like to discuss and clarify theoretical differences
between them below.

ClonalOrigin can be considered as a “gold standard” for
inferring recombination in bacteria because it identifies a
donor and recipient for each recombination event in the
ancestry of the sample and the time at which the event oc-
curred. Conceptually, the donor and recipient can be thought
of as individual bacteria, living at a particular time in the past.
Within the algorithm, the relationships of these bacteria to
those that have been sampled are represented by positions in
the clonal genealogy; the higher up in the tree, the further
back in time the recombination event occurred. This can be
considered as the extent of what can be inferred from the full
ARG (Wiuf and Hein 2000; Hein et al. 2005) and is essentially
all the information that sequence data can provide on histor-
ical recombination events. A hot region is a part of the
genome where there is a high rate of recombination events
that impact on the clonal genealogy. This information can be
summarized from the ClonalOrigin output by the number of
recombination edges that affect each site.

ChromoPainter detects shared ancestry and changes in it
along the genome and thus can also be considered to be
mining information about the ARG based on genome
sequences. The algorithm works by reconstructing the
genome of each bacterium in the sample as a mosaic of all
the other bacteria in the sample. To identify recombination
hot regions, we have attempted to extract the most relevant
information on departures from clonal descent provided the
ChromoPainter output. Specifically, a recombination event at
a particular site is likely in the ancestry of a bacterium if the
donor for the site inferred by ChromoPainter is infrequently
used as a donor for that individual elsewhere in the genome-
wide painting. The genome-wide painting will much of the
time reflect patterns of clonal descent. Our statistic for devi-
ations from the genome wide average is summed across both

Table 1. Genes in Inferred Recombination Hot Regions in Campylobacter jejuni.

Locus Taga Positiona Description

Cj0034c 51967–52668 Putative periplasmic protein, probable integral membrane protein, containing six possi-
ble transmembrane domains in C-terminal half, supporting host cell adhesion

Cj0035c 52665–53867 Putative efflux transporter belonging to the major facilitator super family

Cj0036 53970–55319 Hypothetical protein

Cj0037c 55343–56386 Putative cytochrome c

Cj0038c 56564–57211 Hypothetical protein (possible membrane protein, containing two possible transmem-
brane domains at the N-terminus)

Cj0141c 143953–144756 znuB, integral membrane protein in ZnuABC systemb

Cj0142c 144749–145603 znuC, ATPase component in ZnuABC systemb

Cj0143c 145616–146506 znuA, zinc-binding protein in ZnuABC systemb

Cj1258 1188414–1188869 Possible phosphotyrosine protein phosphatase

Cj1259 1189121–1190395 porA, major outer membrane protein (MOMP)

Cj1260c 1190510–1191631 dnaJ, chaperone

aThe C. jejuni 11168 genome.
bZnuABC zinc update system, part of the family of ABC transporters.
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donors and recipients. In practice, we have found it is strongly
correlated with the number of recombination edges found by
ClonalOrigin and particularly reflects recombination events in
the relatively recent history of the sample.

It is possible in principle to try and infer additional infor-
mation on recombination from the ChromoPainter results,
although we do not attempt this here. For example, a high
rate of ancestry switches is likely to correlate with the fre-
quency of recombination start and end point and so might be
used to identify hotspots, similar to the original application of
Li and Stephens (2003). Further, the painting does provide
some information on which donor and recipient are likely to
be involved in particular recombination events. However, this
information is likely to be more difficult to interpret than, for
example, the output of ClonalOrigin because of the order
dependence of the algorithm and the absence of a tree
within the algorithm to provide a clonal context.

As well as being computationally intensive, ClonalOrigin
requires a fully resolved clonal genealogy to be estimated. This
is a difficult computational problem in itself and becomes
problematic or impossible when there are isolates in the
data set that have little or no shared clonal frame. The paint-
ing method can be applied to arbitrary data sets and should
be able to extract a signal as long as “some” isolates have
clonal relatives. However, if isolates are unrelated members
of a freely recombining population, then the genome wide
average copying matrix will be flat, that is to say, that every
cell in the matrix has similar value. Under these circum-
stances, the ordered painting method will not extract a
signal. For most bacterial species, there is enough clonal struc-
ture within global samples that this will not be an issue.

There are many other statistical methods for studying re-
combination based on sequences, but few of them are suited
to the specific problem of identifying hot regions. Many of the
methods used in eukaryotes are based on the four-gamete
test of recombination (Hudson and Kaplan 1985; McVean
et al. 2002; McVean et al. 2004; Chan et al. 2012) and examine
pairs of SNPs, to identify the rate at which genealogical an-
cestry changes due to recombination. These methods are
suited to identifying hotspots rather than hot regions. Li
and Stephens (2003) studied hotspots based on using the
copying algorithm to identify high rates of ancestry switching.
Meanwhile, BratNextGen (Marttinen et al. 2012) identifies
recombination events within a clonal context but without
inferring the number of recombination events at each locus.

Our comparison with ClonalOrigin for the E. coli analysis
implies that our method is less sensitive to old recombination
events (many of which will be shared by many strains) than to
new ones. Figure 1 provides an explanation for this. Even if a
recombination occurred in the common ancestor of two or
more strain in the sample, it is unlikely to be detected more
than once and may not be detected at all for particular
orderings.

A known confounder of recombination rate estimators
such as homoplasy is variation in polymorphism levels
(Posada and Crandall 2001; Posada et al. 2002; Yahara et al.
2012). We found that in simulated data, variation in mutation
rates between regions had little effect on values of Di

(supplementary fig. S3, Supplementary Material online). We
found a positive correlation between Di and polymorphism
levels in simulated data with or without variation in recom-
bination or mutation rates. Correlations can arise due to var-
iation in genealogical history, because recombination changes
the genealogy and thus changes the amount of polymor-
phism that is observed. The direction and amount of this
effect are likely to depend in a complicated way on both
the composition of the sample and patterns of gene flow.
We conclude that our method is not substantially con-
founded by variation in polymorphism levels and that appli-
cation of statistical methods Di to correct for confounding
would be complicated by the risk of removing real correla-
tions between recombination and polymorphism that may
be present in the data.

Our method, like others based on patterns of within pop-
ulation variation, detects recombination events that have
survived in the population. Therefore, natural selection will
inevitably affect inferences. One factor that can systematically
alter the amount of recombination and diversity that is ob-
served is diversifying selection. Correlations between Di and
nucleotide diversity in the real data of E. coli and C. jejuni are
shown in supplementary figure S14, Supplementary Material
online. In the case of C. jejuni, the region of the genome with
the highest Di values was the porA locus, which also had ex-
ceptional levels of polymorphism (supplementary fig. S14b,
Supplementary Material online) and is a likely target of diver-
sifying selection, although the other membrane proteins
detected by our method were not exceptionally diverse. In
our view, it is very challenging to disentangle the effect of
natural selection from other causes of variation in observed
recombination rates based on the pattern of variation at
individual loci.

Another potential confounder is a recombination
imported from a very distant source. We also examine its
effect on Di by artificially incorporating a distant sequence
to the simulated data with elevated recombination rate. The
result is shown in supplementary figure S15, Supplementary
Material online. Di is not elevated, and the true recombina-
tion hot regions are inferred as previously.

In the application of the ordered painting method to the
E. coli data set, we also found that a minority of the atypical
sites were located in ribosomal genes in five different locations
of the E. coli genome. However, when the number of genome
sequences is increased, these signals disappear and these
genes were also not found in 10 independent 27 E. coli data
sets. The presence of hot regions at these genes is therefore
not well supported, although the hint that there may be
higher recombination rates at ribosomal genes is intriguing.

Applying the ordered painting method to 200 C. jejuni
genomes revealed three recombination hot regions
(Cj0034c, znuABC and porA). Genes related to membrane
proteins are significantly more frequent in these regions.
Frequent recombination in these genes presumably promotes
diversification of the proteins that are advantageous for host
interaction and colonization and are likely to be under diver-
sifying selection due to the action of the host immune system.
Recent experiments showed that inactivation of Cj0034c
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dramatically reduced the ability of C. jejuni to adhere to the
intestinal epithelial cell line (Nielsen et al. 2011). Another
experimental study reported that znuABC in C. jejuni is essen-
tial for colonization of the chicken ceaca and for growth in
low-zinc environments (Davis et al. 2009).

Among the other genes related to membrane proteins,
porA is notable for being extremely genetically diverse
(Cody et al. 2009) and has been used as a tool for antigen
gene sequence typing (Colles and Maiden 2012). So far, about
1,400 porA nucleotide and MOMP (PorA) peptide sequences
are known and registered in the public database (http://
pubmlst.org/campylobacter/, last accessed March 7, 2014)
(Colles and Maiden 2012; Sheppard, Jolley et al. 2012). The
high diversity among porA alleles is indicative of strong pos-
itive immune selection (Colles and Maiden 2012) and a pre-
vious study presented evidence of an excess of
nonsynonymous substitutions in the putative surface-ex-
posed loops (Cody et al. 2009).

Cj0035c encodes a putative efflux pump (membrane trans-
porter), which is regulated by a transcriptional repressor
CmeR modulating the expression of the multidrug efflux
pump CmeABC (Guo et al. 2008). It is annotated as similar
to the BCR_ECOLI bicyclomycin resistance protein. The gene
may be related to drug resistance. Besides the genes related to
membrane proteins, Cj0037c is a gene that encodes an
uncharacterized cytochrome C related to stress survival of
C. jejuni (Gaynor et al. 2005). This has been reported to
show significantly higher expression in a laboratory strain
adapted for survival in higher O2 conditions. Its frequent re-
combination could contribute to the survival of C. jejuni in
stressful environments.

The ordered painting method that we have introduced
here will be applicable to identify recombination hot re-
gions in other important bacterial species. That will im-
prove our understanding of recombination landscape
across the bacterial genome, distribution of recombination
hot genes in nature, and the association of recombination
with the emergence of important phenotypes such as
pathogenicity.

Supplementary Material
Supplementary figures S1–S15 are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjour
nals.org/).
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