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Abstract
The impact of modern imaging in uncovering the underlying pathology of PMR cannot be understated. Long dismissed as an inflammatory
syndrome with links to the large vessel vasculitis giant cell arteritis (GCA), a pathognomonic pattern of musculotendinous inflammation is now
attributed to PMR and may be used to confirm its diagnosis. Among the available modalities, 18F-fluorodeoxyglucose (18F-FDG) PET/CT is in-
creasingly recognized for its high sensitivity and specificity, as well as added ability to detect concomitant large vessel GCA and exclude other
relevant differentials like infection and malignancy. This atlas provides a contemporary depiction of PMR’s pathology and outlines how this
knowledge translates into a pattern of findings on whole body 18F-FDG PET/CT that can reliably confirm its diagnosis.

Lay Summary
PMR is the most common inflammatory rheumatic disease of older people. It typically causes disabling pain and stiffness in affected individuals
at the shoulders and hips. Until recently, the precise cause for these symptoms was poorly understood. Modern scans using whole-body PET/
CT (an advanced imaging test that shows where inflammation is in the body) and MRI have now identified characteristic muscle and tendon
inflammation around the shoulder and hip joints, in addition to other features within the spine and at the knees and wrists/hands. This unique
appearance has resulted in increasing use of PET/CT to aid PMR diagnosis in everyday clinical practice and research settings. These major
advances in our knowledge are highlighted in this atlas, alongside typical examples of PMR’s appearance on whole-body PET/CT.
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Introduction

In the past decade, PMR, a common rheumatic entity charac-
terized clinically by profound shoulder and hip girdle pain
and stiffness, has undergone somewhat of a renaissance cour-
tesy of advances in imaging technology. Long described as a
vague inflammatory syndrome, the condition’s unique mus-
culotendinous pathology is now indisputable [1]. This devel-
opment has also made it possible to definitively confirm a
PMR diagnosis on imaging rather than relying solely upon
clinician judgement. Previously this proved a source of

frustration for primary care providers and rheumatologists
alike, particularly when assessing patients presenting with
atypical features or those seemingly failing to respond to
usual therapies. Among the available imaging modalities,
18F-fluorodeoxyglucose (18F-FDG) PET/CT has emerged as
the logical gold standard investigation, owing to its unique
ability to document PMR’s characteristic whole-body pathol-
ogy, detect concomitant large vessel giant cell arteritis (LV-
GCA) and exclude relevant differential diagnoses including

Key messages
• PMR is a common, chronic rheumatic disease that causes inflammation of musculotendinous structures.

• A pattern of findings throughout the whole body is characteristic of PMR on 18F-FDG PET/CT.

• Whole-body 18F-FDG PET/CT should be considered the new gold standard investigation for PMR diagnosis.
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infection and malignancy [2]. Although radiation exposure,
cost and availability represent certain barriers to the routine
use of PET/CT for PMR diagnosis, its utility in circumstances
of diagnostic uncertainty and, potentially, to ensure the ho-
mogeneity of clinical trials populations is clear. In the follow-
ing atlas, a modern interpretation of PMR’s underlying
pathology based on imaging insights is provided, together
with examples of hallmark findings that may be detected by
whole-body 18F-FDG PET/CT.

Imaging and its role in revealing the pathology
of PMR

The first report of PMR in the medical literature is attributed
to Dr William Bruce in 1888, however, it took another cen-
tury before imaging, in the form of ultrasound, was employed
to help characterize its pathology [3, 4]. Early biopsy studies
ultimately failed to account for the severity of pain and stiff-
ness experienced by PMR patients at the shoulder and hip
girdle, with a mild synovitis documented at the glenohumeral
joint and no discernible abnormality of muscle fibres on his-
topathology (although oedema and perivascular chronic in-
flammatory cell infiltration of the muscular fascia and its
tendinous septum were described) [5, 6]. In 1999, Cantini
et al. [7] found a significantly higher frequency of subacro-
mial bursitis among PMR patients compared with cases of
elderly-onset RA but no difference in their respective rates of
synovitis/joint effusion or biceps tenosynovitis. Evidence for
an extracapsular predominant pattern of inflammation to
distinguish PMR from RA was subsequently confirmed using
shoulder MRI [8].

While early PET work documented increased 18F-FDG up-
take at the shoulders and hips of PMR patients, it was not un-
til the advent of hybrid technology with low-dose CT that
distinct anatomical structures could be accurately correlated
[9]. Accordingly, key differences in the distribution of abnor-
mal findings in PMR as compared with RA and SpA have be-
come increasingly apparent, including the highly specific
presence of cervical and/or lumbar interspinous involvement
and pathognomonic intense 18F-FDG avidity adjacent to the
ischial tuberosities [10]. While both these findings were previ-
ously attributed to bursitis, the latter has since been demon-
strated to correspond to hamstring peritendonitis on PET/
MRI fusion [11]. Indeed, work by Fruth et al. [12] using
contrast-enhanced pelvic MRI proved tendinous structures as
the precise anatomic correlate of extracapsular inflammation
in PMR, the pathology ranging from ‘circumferential periten-
dinous inflammation to complete intratendinous involvement
up to the level of the musculotendinous junction’. The discov-
ery of myofascial inflammatory lesions (described as high T2
short-tau inversion recovery signal within the affected muscle
or forming a line around it) at the shoulder and/or pelvic gir-
dle among all participants in the landmark Tocilizumab
Effect in Polymyalgia Rheumatica (TENOR) study has since
confirmed that PMR’s pathology can also extend into the ad-
jacent muscle perimysium; a notable finding, considering his-
torical histopathology recording inflammatory infiltration of
the muscle fascia [6, 13].

Such imaging insights have effectively demystified the pa-
thology of PMR. Increasingly, it seems that the connective tis-
sues surrounding the muscle and its adjacent tendon,
specifically the contiguous perimysium and peritendon, repre-
sent the target antigen of autoimmunity in this rheumatic

disease. Involvement of adjacent structures, including the
bursa, which sit between tendons at large joints to prevent
friction, and the underlying joint capsule and ligaments is
also typical. Clinically, the result is extreme limitation of
movement at the glenohumeral and coxofemoral joints, to-
gether with painful impingement due to subacromial bursitis
at the shoulders and discomfort localizing to key musculoten-
dinous sites including biceps brachii and the origin (adjacent
to the ischial tuberosities) and insertion (at the posteromedial
knee) of the hamstring muscles. In Figs 1 and 2, a modern de-
piction of PMR’s pathology at the peri-articular shoulder and
posterior hip and knee is provided.

Utilising whole-body 18F-FDG PET/CT to
detect PMR’s distinctive pathology

Although the combination of functional and anatomic imag-
ing offered by PET/CT was developed for evaluating malig-
nancies, the value of co-registration for the diagnosis and
monitoring of inflammatory conditions is similarly clear [14].
Blockmans et al. [15] first noted the presence of abnormal
18F-FDG uptake at the shoulder and hip joints among GCA
patients undergoing PET to assess for the presence of large
vessel vasculitis (LVV). Later work in a dedicated PMR popu-
lation documented a novel finding at the processi spinosi,
now referred to in the literature as interspinous uptake/in-
volvement [9]. As alluded to, although PET/CT involves radi-
ation exposure and is subject to certain practical limitations,
its capacity to document this distinctive extracapsular pathol-
ogy throughout the whole body is unrivalled. This is of par-
ticular importance given that isolated musculoskeletal
findings on imaging have consistently proven insufficient for
making a reliable PMR diagnosis; when developing the op-
tional ultrasound component of the 2012 EULAR/ACR
Classification Criteria, only the combination of abnormalities
at both shoulders, or one shoulder and one hip, proved suffi-
cient to improve specificity [16]. Similarly, while the superior
resolution and depth of MRI offers the advantage over ultra-
sound of detecting other characteristic features like periten-
donitis and myofascial inflammation, this modality is
otherwise limited to evaluating a single musculoskeletal re-
gion at a time and consequently cannot simultaneously assess
for concomitant LV-GCA or exclude other relevant
differentials.

Peri-articular 18F-FDG uptake at the shoulders and

hips including the trochanteric regions

With knowledge of PMR’s unique predilection for muscle
tendon, its fascia and the adjacent bursae and joint capsule, it
stands to reason that a peri-articular distribution of abnormal
18F-FDG uptake is characteristically observed at the should-
ers and hips on PET/CT (Figs 3–5). Anterior to the gleno-
humeral joint, a discrete area of 18F-FDG avidity can be seen
corresponding to the long head of the biceps tendon, with in-
volvement near the distal insertion at the elbow also appreci-
ated in some instances (Fig. 6). This may account for the
common report by patients of pain coursing down the arm
into the elbow joint. Similarly, at the hip, intensities adjacent
to the origins and insertions of muscle groups around the
coxofemoral joints can be appreciated. The bursae of both
the shoulder and trochanteric regions notably comprise nu-
merous synovial membrane–lined sacs, positioned between
muscles, tendons, ligaments and bones to minimize friction
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and permit free movement of the underlying large joint [17].
Not surprisingly, such structures are not clearly apparent at
the image resolution offered by low-dose CT.

A peri-articular pattern of abnormal 18F-FDG uptake
should be visualized at the shoulder and/or hip girdle in every
PMR patient. While normal controls may demonstrate
abnormalities in a similar distribution, corresponding to de-
generative tendinopathy at the same musculotendinous struc-
tures, the extent is far greater and the 18F-FDG avidity
recorded by objective measures like the maximum standar-
dised uptake value (SUVmax) significantly higher among PMR
cases [10]. In particular, bilateral low-grade trochanteric up-
take is often appreciated on PET/CT in older adults and
hence possesses insufficient specificity for a PMR diagnosis.

Intra-articular abnormalities are still commonly detected
among PMR patients at the shoulders and hips, however,
such findings fail to distinguish PMR from other

inflammatory conditions, like RA and SpA [10]. However,
involvement of the sternoclavicular joints is an exception to
this rule, with intense 18F-FDG avidity at these sites noted
for their high specificity to PMR [2]. Abnormalities at the
sternoclavicular joints have accordingly been included
in several PET/CT scoring systems developed to aid
PMR diagnosis.

Interspinous involvement

Between the cervical and lumbar interspinous processes, ab-
normal 18F-FDG uptake is frequently observed in PMR. This
finding has consistently been demonstrated to be a highly spe-
cific imaging feature in the literature [2, 10, 18, 19].
Salvarani et al. [20, 21] first investigated the anatomic corre-
late of PET anomalies in the cervical and lumbar spine using
MRI, documenting cervical interspinous bursitis in all PMR
patients scanned and lumbar interspinous bursitis in 9/10

Figure 1. PMR’s pathology at the peri-articular shoulder. (A) A depiction of inflammation arising from the connective tissues of the tendons and muscles

(peritendineum and perimysium) to involve adjacent structures including the bursa and joint capsule. (B) A posteromedial view of the shoulder for

anatomical orientation. (C) Distinctive musculotendinous manifestations of PMR at the shoulder. Bic: biceps bracii; Isp: infraspinatus; SSp: supraspinatus;

SubSc: subscapularis. # Dr Levent Efe, CMI
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cases. In this instance, however, the interspinous bursa is not
a synovial membrane–lined sac positioned between musculo-
skeletal structures, but adventitial—a potential space that
develops due to local mechanical factors, specifically a small
interspinous distance relative to the height of the vertebral
body (‘the bursal index’) [17, 22]. These bursae typically con-
sist of narrow slits arising from the base of the spinous pro-
cess below, extending up from the dorsal surface of the
ligamentum flavum to the underside of the spinous process
above [23]. On histology, mucoid and myxomatous degener-
ation of surrounding connective tissues is noted, with com-
paratively few synovial cells seen [22, 24].

Like elsewhere in the body, improved imaging technology has
enabled better anatomical correlation of interspinous 18F-FDG
uptake. Consequently, it is now established that two distinct
patterns may be observed on PET/CT in the interspinous
regions: focal, due to interspinous bursitis, and diffuse, hypothe-
sized until now to arise from interspinous ligament inflamma-
tion. In Fig. 7 we present MRI correlation confirming
ligamentous inflammation as the aetiology of a diffuse pattern
of abnormal 18F-FDG uptake between the interspinous pro-
cesses. As previously suggested, and in keeping with the model
of pathology presented at the beginning of this atlas, chronic lig-
amentous inflammation due to PMR may lead to interspinous

Figure 2. PMR’s pathology at the posterior hip and knee. (A) A posterior view of the hip and knee joints for anatomical orientation. (B–F) Distinctive
musculotendinous manifestations of PMR at the hip and knee. BF: biceps femoris; G: gracilis; ST: semitendinosus. # Dr Levent Efe, CMI
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bursa formation and the development of bursitis, which can be
detected by whole-body PET/CT.

18F-FDG uptake adjacent to the ischial tuberosities

and at the posteromedial knee

Posterior thigh pain behind the knee and into the calf region is a
common complaint among PMR patients. On PET/MRI fusion,
intense 18F-FDG uptake adjacent to the ischial tuberosities
(Fig. 8) is known to correspond to peritendonitis of the ham-
string tendons, specifically the semimembranosus and the long
head of the biceps femoris, at their common origin. Given their
size relative to other PMR-affected musculotendinous struc-
tures, it is unsurprising that this site consistently records the
highest mean SUVmax throughout the whole body.

At the knee, a peri-articular pattern of abnormal uptake
analogous to the shoulder and hip joints is similarly observed

in the majority of PMR patients (Fig. 8) [25]. Noted to corre-
late anatomically with the contour of the fibrous joint capsule
by Cimmino et al. [11], this work also documented focal
areas of 18F-FDG avidity in a posteromedial distribution,
which have since been attributed to peritendonitis of the dis-
tal semitendinosis and gracilis muscles that insert via the pes
anserinus at the medial tibial condyle. Given praepubic up-
take on PET/CT has also been reported in the PMR literature,
it stands to reason that the tendon of the gracilis muscle as it
arises from the pubic symphysis may also be affected, to-
gether with adjacent hip adductors [26].

Wrist and hand involvement

In the PMR literature, there is no more contentious issue than
that of peripheral arthritis. For some rheumatologists, pain
and swelling at the wrists and/or hands still mandates a

Figure 3. Characteristic peri-articular 18F-FDG uptake on PET/CT at the shoulders and hips in a PMR patient (white arrows). Whole-body coronal views are

provided from an (A) anterior and (B) posterior aspect. �Maximal intensity projection (MIP); #CT windowing with bone only; ^CT windowing with muscle

and bone

Figure 4. Shoulder involvement on PET/CT in PMR: abnormal 18F-FDG uptake (white arrows) at the shoulders appreciated in (A) sequential axial views

and (B–D) coronal views
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Figure 5. Hip involvement on PET/CT in PMR: abnormal 18F-FDG uptake (white arrows) at the hips appreciated in (A) sequential axial views, including at

the trochanteric regions (red arrows), and (B–D) coronal views, with yellow arrows also indicating 18F-FDG avidity adjacent to the ischial tuberosities

Figure 6. Biceps involvement on PET/CT in PMR: (A) sequential axial views tracking the biceps down the arm to the elbow (white arrows); 18F-FDG

avidity of the distal triceps is also appreciated in the olecranon fossa (red arrow); (B, C) coronal views
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change in classification to late-onset seronegative RA. From
both a clinical and imaging standpoint though, this approach
is not evidence-based, with almost one-half of patients
experiencing symptoms in this distribution and a similar pro-
portion exhibiting abnormal 18F-FDG uptake using dedicated
hand views on whole-body PET/CT [11, 27]. Both joint-
based and volar patterns can be observed, the latter corre-
sponding to the presence of flexor tenosynovitis (Fig. 9). This
is of particular significance, given MRI studies have estab-
lished an extracapsular distribution of inflammation at the
metacarpophalangeal joints as a key differentiator between
PMR and RA, while a much higher incidence of tenosynovitis
has been documented among PMR patients compared with
normal controls [28, 29].

Remitting seronegative symmetrical synovitis with pitting
oedema (RS3PE) syndrome describes a clinical entity charac-
terized by an exquisitely steroid-responsive polysynovitis of
the hands and/or feet that occurs in association with swelling

of the extremities [30]. Originally considered a distinct subset
of seronegative RA, RS3PE has since been reported in associ-
ation with a range of rheumatic conditions, including PMR.
Given tenosynovial sheath inflammation represents the imag-
ing hallmark of this presentation, with concomitant joint sy-
novitis also present in some cases, RS3PE syndrome
represents another example of musculotendinous pathology
that may be seen as part of PMR’s disease spectrum.

Concomitant LV-GCA

Approximately one in five PMR patients will have concomi-
tant GCA, although up to 50% of GCA cases experience
musculoskeletal symptoms of PMR [31]. In a recent meta-
analysis, the pooled prevalence of subclinical LV-GCA across
13 studies comprising 566 steroid-naïve participants was
23%, although this figure was higher (29%) when PET/CT
was utilized as the screening method (n¼ 266 patients) [32].
A diffuse and linear pattern of abnormal 18F-FDG uptake is

Figure 7. Interspinous involvement on PET/CT in PMR: abnormal 18F-FDG uptake (white arrows) at (A) the cervical spine and (B) the lumbar spine. (C, D)
Correlation of lumbar spine findings on T1-weighted fat saturated (T1FS) post-contrast MRI demonstrating interspinous and supraspinous ligament

enhancement at L4–5

Figure 8. Hamstring involvement on PET/CT in PMR: abnormal 18F-FDG uptake (white arrows) adjacent to (A) the ischial tuberosities and at (B) the
posteromedial knee; (C, D) coronal views
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characteristic of LVV (Fig. 10), with the degree of avidity
equal to or higher than that observed at the liver [33]. Such
findings merit institution of treatment as in confirmed cranial
GCA. Sometimes, lower grade vascular abnormalities are ob-
served in PMR patients on imaging, but their long-term sig-
nificance is presently unknown and hence more aggressive
management is not justified. It is apparent however that
patients experiencing intractable PMR symptoms are more
likely to have underlying LV-GCA [34]. A PET/CT study of
84 PMR cases found positive scan results in 60.7%, with

predictors including diffuse lower limb pain [odds ratio (OR)
8.8], pelvic girdle pain (OR 4.8) and inflammatory low back
pain (OR 4.7).

Determining the likelihood of a PMR diagnosis
on whole-body 18F-FDG PET/CT

Knowledge of PMR’s distinctive pathology on PET/CT has
led to further evaluation of its diagnostic potential. In Figs 11
and 12, key differences in the imaging appearance of PMR

Figure 9. Hand involvement on PET/CT in PMR: (A) a volar pattern of abnormal 18F-FDG (white arrows) uptake at the hand; (B) confirmation of flexor

tenosynovitis as the corresponding abnormality on T1FS post-contrast MRI; (C–E) coronal views

Figure 10. Concomitant LV-GCA (red arrows) detected on PET/CT in a PMR patient with characteristic involvement of the peri-articular shoulders and

hips, sternoclavicular joints and left posteromedial knee (white arrows). �Maximal Intensity projection (MIP); #CT windowing with bone only; ^CT

windowing with muscle and bone
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compared with seropositive RA and dermatomyositis are
demonstrated. Early PET/CT studies established significant
differences in the frequency of abnormalities and 18F-FDG
avidity between cases and normal controls, but also deter-
mined that the sensitivity and/or specificity of findings at in-
dividual musculoskeletal sites was insufficient to confirm a
PMR diagnosis [18, 19]. More recent scoring approaches
have therefore combined pathognomonic PET/CT findings of
PMR, including abnormal 18F-FDG uptake around the
shoulders and hips, in the interspinous regions and adjacent
to the ischial tuberosities [2, 35]. The Leuven score, which is
calculated by summing the degree of 18F-FDG avidity at 12
prespecified sites based on the Meller score [33], has been
demonstrated to possess the best diagnostic accuracy in the

existing literature (sensitivity 91.4%, specificity 97.6%) [36].
A modified version (the Leuven/Groningen score) that limits
the number of musculoskeletal sites scored to only seven has
since been developed and validated, achieving comparable
sensitivity and specificity [2]. In everyday clinical practice
however, a simpler approach is preferred. To that end, the
Heidelberg algorithm, which mandates the presence of 18F-
FDG uptake equal to or greater than that of the liver (Meller
score �2 [33]) adjacent to the ischial tuberosities in combina-
tion with either the peri-articular shoulders or interspinous
regions, has been proposed [10]. In an external validation ex-
ercise, this actually achieved the same sensitivity as the
Leuven/Groningen score, although it had slightly less specific-
ity (78.9%) [2].

Figure 11. Differences in the whole-body appearance of PET/CT in (A) PMR compared with the relevant differential diagnoses of (B) seropositive RA and

(C) dermatomyositis. In RA, 18F-FDG avidity is appreciated in an intra-articular distribution, while in dermatomyositis, abnormalities are localized to the

muscle (white arrows). �Maximal intensity projection (MIP); #CT windowing with bone only; ^CT windowing with muscle and bone

Figure 12. Differences in the axial appearance of 18F-FDG PET/CT in (A) PMR, (B) seropositive RA and (C) dermatomyositis (white arrows). Views are

taken at the level of the shoulders, hips, ischial tuberosities and knees for direct comparison
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Pitfalls to consider

Heterogeneity in the performance of 18F-FDG PET/CT for
the diagnosis of PMR has been previously attributed to varia-
tions in imaging protocols [35, 37]. Census procedural rec-
ommendations now outline technical aspects specific to PMR
and LVV, thereby ensuring consistent interpretation of find-
ings, as some features are common to other inflammatory
conditions (e.g. RA and atherosclerosis) [38, 39]. In Table 1,
the recommended protocol for PET/CT in patients with sus-
pected or established PMR is outlined. Key factors to mini-
mize false-negative results include appropriate fasting and
blood glucose control to minimize competitive inhibition of
18F-FDG, while strenuous activity should be avoided for 24 h
prior to and immediately following tracer administration so
that physiological muscle and brown fat uptake is limited
[41, 42]. Given that a diagnosis of PMR on PET/CT is depen-
dent upon a combination of abnormal findings, it is crucial
that the field of view encompasses all relevant musculoskele-
tal sites. Image acquisition is recommended after a minimum
uptake time of 60min to ensure optimal target:background
ratios, although several studies have advocated for longer up-
take times (typically 120min) to ensure accurate large vessel
imaging and better distinguish between atherosclerosis and
arteritis [38, 40, 41]. Spatial resolution and accuracy can be
further improved by increasing acquisition time per bed posi-
tion from 2–3min to 8min, however, this significantly
increases the total scan duration [38, 43].

Glucocorticoid use is known to reduce the sensitivity of
PET/CT, both due to treatment of the underlying inflamma-
tory condition and its impact on physiological liver uptake,
which typically provides the reference standard for grading
18F-FDG uptake [18, 44]. In the LV-GCA literature, it is
established that the intensity of 18F-FDG decreases after just
72 h of high-dose glucocorticoid therapy, with resultant com-
promise in the likelihood of a PET-positive result by day 10
[45]. Comparatively little is known about the impact of pred-
nisolone doses used to treat PMR (typically �15mg/day).
However, it is the experience of the authors of this atlas that
while 18F-FDG avidity is reduced, the distribution of uptake

on PET/CT remains consistent with that observed in steroid-
naïve PMR patients. If clinically appropriate, a brief
withdrawal of glucocorticoid therapy to restore pathological
18F-FDG uptake can be considered, but again the evidence to
support this approach is lacking.

Conclusion and future avenues

For far too long, PMR has been the archetype of an invisible
illness, causing chronic pain and disability among its many
sufferers but proving difficult for health professionals to de-
finitively diagnose and manage. Thanks to the role played by
imaging in revealing its unique musculotendinous pathology,
the legitimacy of PMR as a distinct disease entity is no longer
in question. This atlas provides examples of characteristic
findings on whole-body 18F-FDG PET/CT that can reliably
form the basis for a PMR diagnosis. There is no doubt that
this modality represents the modern gold standard investiga-
tion for PMR, although it would be preferable to find a
lower-cost imaging test with greater availability to fulfil this
role in everyday clinical practice. Moving forwards, it will be
key to translate the information that PET/CT has provided
into meaningful change in the standard of care available to
patients living with PMR. Study of the interplay between
scintigraphic changes and conventional and novel biomarkers
will be imperative, along with pilot evaluation of PET/CT’s
potential as an instrument to measure PMR disease activity
and assess treatment response.
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Fasting Minimum 6h Limit oral intake to plain water only
Ensure cessation of tube feeding, i.v. dex-
trose and parenteral nutrition

Blood glucose control �7mmol/l Exogenous insulin may be utilized to address
hyperglycaemia [40]

18F-FDG dosage Weight based 2–3MBq/kg (0.054–0.081mCi/kg)
Uptake period 60min; 120min has been advocated for in

some studies to optimize large ves-
sel imaging

Ensure temperature-regulated room

Position Supine with arms by side Avoid arms overhead to optimize shoul-
der imaging

Extent Skull vertex to below the knees Dedicated hand views may also be obtained
Expected findings Peri-articular shoulder uptake

Peri-articular hip uptake
Interspinous uptake
Uptake adjacent to the ischial tuberosities
Posteromedial knee uptake
Volar hand uptake
Concomitant LV-GCA (�20%)
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