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Abstract

Background: Obesity is associated with inflammation of visceral adipose tissues, which increases the risk for insulin
resistance. Animal models suggest that T-lymphocyte infiltration is an important early step, although it is unclear why these
cells are attracted. We have recently demonstrated that dietary triglycerides, major components of high fat diets, promote
intestinal absorption of a protein antigen (ovalbumin, ‘‘OVA’’). The antigen was partly transported on chylomicrons, which
are prominently cleared in adipose tissues. We hypothesized that intestinally absorbed gut antigens may cause T-
lymphocyte associated inflammation in adipose tissue.

Methodology/Principal Findings: Triglyceride absorption promoted intestinal absorption of OVA into adipose tissue, in a
chylomicron-dependent manner. Absorption tended to be higher in mesenteric than subcutaneous adipose tissue, and was
lowest in gonadal tissue. OVA immunoreactivity was detected in stromal vascular cells, including endothelial cells. In OVA-
sensitized mice, OVA feeding caused marked accumulation of CD3+ and osteopontin+ cells in mesenteric adipose tissue.
The accumulating T-lymphocytes were mainly CD4+. As expected, high-fat (60% kCal) diets promoted mesenteric adipose
tissue inflammation compared to low-fat diets (10% Kcal), as reflected by increased expression of osteopontin and
interferon-gamma. Immune responses to dietary OVA further increased diet-induced osteopontin and interferon-gamma
expression in mesenteric adipose. Inflammatory gene expression in subcutaneous tissue did not respond significantly to
OVA or dietary fat content. Lastly, whereas OVA responses did not significantly affect bodyweight or adiposity, they
significantly impaired glucose tolerance.

Conclusions/Significance: Our results suggest that loss or lack of immunological tolerance to intestinally absorbed T-
lymphocyte antigens can contribute to mesenteric adipose tissue inflammation and defective glucose metabolism during
high-fat dieting.
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Introduction

Obesity is an important component of the metabolic syndrome

[1] and represents a strong risk factor for cardiovascular disease

[2]. Obesity is associated with inflammatory responses in adipose

tissues [3], and such tissues may affect systemic inflammation

through the release of a pro-inflammatory cocktail of cytokines

and chemokines. Visceral fat tissues are particularly involved in

metabolic defects during obesity [4], and inflammation in visceral

fat may drive part of the metabolic syndrome [5,6]. Besides

affecting whole body metabolism, inflammation in visceral fat

tissue is also commonly associated with Crohn’s Disease, a chronic

inflammatory affliction of the gastro-intestinal tract [7,8]. Given

the strong association of visceral fat inflammation with metabolic

disorders and with inflammatory bowel diseases, it is of crucial

importance to elucidate how and why expanding adipose tissues

become inflamed.

Studies with mice on high-fat diets have demonstrated that

expanding adipose tissues become infiltrated with macrophages,

which may be responsible for most of the inflammatory events in

these tissues [9,10]. However, the infiltration of macrophages is a

relatively late event in diet-induced obesity, and their accumula-

tion is preceded by the accumulation of T-lymphocytes [11].

These infiltrating cells may play an important role in the

recruitment of macrophages [12] and in the regulation of the

inflammatory response [13,14].

Whereas the discovery of the involvement of lymphocytes,

macrophages, and other immune cells, such as mast cells [15], in

adipose tissue inflammation in obesity has led to an increasingly

detailed description of adipose tissue inflammation, it is still not
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clear why leukocytes are attracted. The focus of the quest for

causal factors has mainly been on endogenous or dietary factors,

such as saturated fatty acids [16,17]. However, it is now clear that

the intestinal microflora is of pivotal importance in obesity and

metabolic syndrome [18,19,20], perhaps by affecting dietary

energy harvest [18]. Another possibility is that high fat diets, which

exert important stress to the intestinal epithelium [21], promote

the intestinal absorption of antigenic material from the gut, which

then could induce inflammatory immune responses, especially in

tissues in close proximity to the gut. We have previously

demonstrated that intestinal absorption of dietary fat promotes

the absorption of gut-derived lipopolysaccharides (LPS) and of a

protein antigen (ovalbumin; OVA), and both were significantly

associated with chylomicrons [22,23]. Since chylomicrons are

cleared in part in adipose tissue [24,25], we tested, in the present

study, whether fat absorption also promotes OVA absorption into

adipose tissues, and whether this can promote T-lymphocyte

responses and inflammation.

We observed that fat absorption indeed promoted antigen

absorption into adipose tissue. Moreover, mice previously

sensitized to the antigen showed significant inflammatory

responses in mesenteric, but not subcutaneous, adipose tissues,

and these responses were further enhanced during high-fat dieting.

Over time, these responses resulted in a decrease of glucose

tolerance. We propose that intestinal antigen absorption may be a

contributor to inflammation of visceral adipose tissue during high-

fat feeding.

Materials and Methods

Materials, reagents
Medium-chain triglyceride (MCT) oil was from Novartis, the

long-chain triglyceride (LCT) consisted of food grade soybean oil.

Intralipid (20%) was from Glaxo-Welcome. Pluronic L-81, a

surfactant blocking chylomicron secretion from enterocytes at

pharmacological dose [26], was a generous gift from BASF

corporation (Florham Park, NJ). Diets were custom prepared by

Research Diets Inc., based on the D12450B low-fat (10 kcal% fat)

or D12492 high-fat (60 kcal% Fat) diets, and were modified by

exchanging 5% of the dietary protein with egg white for a final

OVA content of 1% by weight. Anti-CD3 was from Abcam

(ab5690), and was visualized in immunohistochemistry with Alexa-

Red 568-labeled goat anti-rabbit IgG from Invitrogen (A-11011).

The anti-osteopontin antibody was from R&D Systems (AF808)

and was visualized by diaminobenzamidine staining using an anti-

goat ABC kit from Pierce. Alexa-488, Alexa-647, and PE-labeled

anti-mouse CD3, CD4, and CD8 antibodies and their isotype

controls were from BioLegend. Ovalbumin (Sigma-Aldrich Grade

V) was radiolabeled with 125-I as described elsewhere [22].

Mice
Male BALB/C mice and C57Bl/6 mice, ordered at 6 weeks of

age from The Jackson Laboratory, were held in a room of a

specific pathogen-free animal facility with a 12 h light/dark cycle,

and were used at 8 weeks of age. For OVA absorption

experiments, mice were fasted (4 h), then gavaged with 125I-

OVA in various vehicles (0.2 ml). Tissues were harvested from

humanely killed mice, after cardiac perfusion with 10 ml cold

phosphate-buffered saline (PBS; except for immunohistochemistry

experiments). For feeding experiments, OVA-naı̈ve mice were

sensitized by two intraperitoneal injections with 10 mg OVA in

0.2 ml alum (Accurate Chemical and Scientific Corp.), with one

week between injection. Control mice were injected with alum

only. Mice received OVA-containing diets one week after the

second injection for indicated durations. For glucose tolerance

tests, mice were fasted (4 h) before being intraperitoneally injected

with 2 g glucose in PBS/kg bodyweight. Blood samples were

obtained from the tail vein at several time points and were tested

for glucose concentration with a TrueTrack glucose meter from

Home Diagnostics Inc. Adiposity was measured using a

EchoMRI-5000 Whole Body Composition machine (Echo Med-

ical System, Houston, TX). All animals were handled in strict

accordance with good animal practice as defined by the relevant

national and local animal welfare bodies, and all animal work was

approved by the Institutional Animal Care and Use Committee of

the University of Kentucky (Animal Welfare Assurance Number of

the University of Kentucky A3336-01; U.K. IACUC protocol

2008-0306).

Immunohistochemistry
Adipose tissue samples, isolated while strictly avoiding lymph

node material, were fixed in 10% formalin, embedded in paraffin,

and cut in 5 mm sections. Antigens were retrieved in deparaffi-

nized and rehydrated sections by boiling in citrate buffer (10 mM,

pH 6) for 30 minutes. CD3 was stained by successive incubation

with anti-CD3 and Alexa-568 labeled secondary antibody,

whereupon the slides were mounted in 49,6-diamidino-2-pheny-

lindole- (DAPI) containing mounting medium (Vectashield). The

slides were observed with an Olympus BX51 fluorescence

microscope equipped with a digital camera. Osteopontin (OPN)

was detected by using a chromogenic substrate for the secondary

antibody according to the kit manufacturer’s instructions.

Flow Cytometry
Stromal vascular cells were isolated from adipose tissue by

collagenase digestion as described elsewhere [27]. Fluorescently

labeled antibodies, optimized for concentration and specificity

using isotype controls, were added to the cells, and these were

analyzed, after washing, with a FACScalibur flow cytometer

(Becton Dickinson) in the Microbiology, Immunology and

Molecular Genetics Core facility of the University of Kentucky.

Histograms represent cells gated for lymphocyte phenotype based

on forward and side scatter data. Results were plotted with

GateLogic software, version 305.

Quantitative real-time polymerase chain reactions
RNA from adipose tissue samples was extracted with the Trizol-

reagent based method. RNA was transcribed into cDNA with the

iScript kit from Quanta Biosciences, and the resulting cDNA was

amplified using Quanta Bioscience’s Perfect Sybr mix using a

Biorad iQ5 multicycler. Primer pairs were, in 59-39 direction,

AGC-AAG-AAA-CTC-TTC-CAA-GCA-A/GTG-AGA-TTC-

GTC-AGA-TTC-ATC-CG (OPN), TTG-GCC-AGC-GCC-ATC-

TT/CCT-GTT-GCT-GTA-GCC-GTA-TTC-A (Glyceraldehyde

3-phosphate dehydrogenase (GAPDH)), ATG AAC GCT ACA

CAC TGC ATC/CCATCC TTT TGC CAG TTC CTC

(Interferon gamma (IFNc)), and TTG GCC AGC GCC ATC

TT/TGC CTC CTC CAG AGA GAA GTG (Forkhead Box P3

(FOXP3)).

Statistical Analyses
Comparison of gene expression between naı̈ve or sensitized

mice on low- or high-fat OVA diets was performed with two-way

ANOVA and Bonferroni’s post-hoc tests using XLstat Software

(Addinsoft SARL). Plasma glucose levels over time were compared

between groups with a linear mixed model using SAS software.

OVA absorption data were tested for statistical significance by
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ANOVA with a Bonferroni post-hoc test, and T-lymphocyte

subtype percentages with Student’s T-test, using Graphpad Prism

v5. All bar graphs represent average values 6 S.D.

Results

Adipose tissue contains intestinally absorbed antigen
(OVA)

We have recently demonstrated in experiments with mice that

dietary long-chain triglycerides (LCT) significantly enhanced

intestinal absorption of concomitantly ingested dietary OVA,

and that a significant fraction of the OVA was associated with

chylomicrons [22]. To test whether intestinally absorbed OVA

reaches adipose tissue, a major site of chylomicron clearance

[24,25], we gavaged fasted mice with 125I- OVA in 0.2 ml LCT,

MCT (medium-chain triglycerides), or LCT to which the

chylomicron secretion inhibitor Pluronic L-81 (Pl-81) was added.

We observed that gonadal adipose tissue, isolated 60 minutes after

gavage, contained significantly more 125I when the OVA was

gavaged with LCT compared with MCT or LCT plus Pl-81,

suggesting that chylomicron formation, essential for dietary fat

absorption, promotes absorption of gut antigen into adipose tissue

(Figure 1A).

Next, we attempted to determine the preferential adipose tissue

target for absorbed antigen. Fasted mice received an intragastric

bolus of 125I-OVA in 0.2 ml of 20% Intralipid, and 125I levels were

measured in mesenteric (visceral), gonadal (visceral), and inguinal

(subcutaneous) adipose tissue fifteen minutes after gavage. Pilot

experiments had revealed similar levels of radioactivity in the

tissues 15 minutes and 1 h after gavage. Gonadal adipose tissue

contained the least 125I, and mesenteric adipose tissue the most,

although the difference between mesenteric and subcutaneous fat

did not reach statistical significance (Figure 1B).

We next tested whether the radiolabel in adipose tissue

represented antigenic OVA and not just 125I-breakdown products.

This was done by immunohistochemistry of mesenteric adipose

tissue isolated from OVA-naı̈ve mice fed with 1% egg white-

enriched diet for two weeks. We observed substantial OVA

staining in the adipose tissue of OVA-fed mice, with most of the

signal in cells of the stromal vascular fraction (SVF; Figure 1D, E).

Mice on high-fat diets seemed to have more pronounced OVA

staining, especially in association with the SVF. The absence of

signal in mice on egg-free standard laboratory diets indicated

staining specificity. Collectively, these data indicate that a fraction

of antigenic material in the gut is absorbed into adipose tissue. The

involvement of chylomicronemia in the process suggests that

Figure 1. Intestinal absorption of dietary antigen (OVA) into adipose tissue. (A) Fasted BALB/c mice (n = 4) were gavaged with 0.2 ml LCT,
MCT, or LCT plus the inhibitor of chylomicron formation Pluronic L-81, and identical amounts of 125I-OVA. Gonadal adipose tissue was removed 60
minutes later and radioactivity was measured and normalized to tissue weight. (B) shows appearance of 125I-OVA into indicated adipose tissue
samples 15 minutes after gavage of 125I-OVA in 0.2 ml 20% Intralipid. Asterisks indicate statistically significant differences (P,0.05) by one-way
ANOVA with Bonferroni-adjusted post-hoc tests. (C–E) OVA immunostaining (red signal) in mesenteric adipose tissue of mice on OVA-free diets (C) or
1% OVA diets with low- (D) or high- (E) fat content. Blue signals represent DAPI-stained nuclei. OVA is mainly detectable in apparent endothelial cells,
but staining can also be observed in other SVF cells and adipocytes.
doi:10.1371/journal.pone.0013951.g001
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increased fat consumption could lead to increased antigen

absorption into adipose tissue.

T-lymphocytes accumulate in adipose tissue in response
to dietary OVA

To test whether gut antigens in adipose tissue can provoke T-

lymphocyte responses, we fed OVA-sensitized or OVA-naı̈ve

BALB/c mice a diet enriched with 1% egg white for two weeks.

Mesenteric adipose tissue samples, isolated after removing the

lymph nodes, were embedded in paraffin for sectioning and

staining with anti-CD3. Whereas CD3+ cells were barely

detectable in mesenteric adipose tissue from OVA-naive mice

(Figure 2A,B), such cells were present in the tissue of sensitized

mice, either in clusters (Figure 2E) or more dispersed throughout

the tissue (Figure 2D). All of the 3 sensitized mice that were thus

analyzed, but none of the three naı̈ve mice, contained several

CD3+ cell clusters. CD3 immunostaining in OVA-sensitized mice

on OVA-free diets was not different from that in naı̈ve mice (not

shown).

To determine whether the T-lymphocytes were CD4+ or

CD8+, we fed naı̈ve or sensitized C57Bl/6 mice with 1% OVA-

containing high-fat diets for 14 weeks and isolated the SVF from

their mesenteric adipose tissue for flow-cytometry. As shown in

Figure 3, the SVF lymphocyte fraction of sensitized mice showed

significant increases in the number of CD3+ cells, with the

majority being accounted for by CD4 T-lymphocytes. Thus, it

appears as if antigen-sensitized mice show increased CD4 T-

lymphocyte infiltration into antigen-containing mesenteric adipose

tissues.

The apparent T-lymphocyte response to gut antigens prompted

us to investigate whether the adipose tissue was inflamed. We used

immunohistochemistry to determine whether the apparent T-

lymphocyte clusters expressed osteopontin. This pro-inflammatory

protein is produced by several cells, including T-lymphocytes (it is

also referred to as Early T Lymphocyte Activation 1; Eta-1), and

has been implicated in adipose tissue inflammation in diet-induced

obesity [27]. Similar to our findings with CD3, we did not detect

osteopontin-expressing cells in adipose tissue from OVA-fed,

Figure 2. Expression of CD3 and osteopontin in mesenteric fat in response to dietary antigen. Naı̈ve mice (A–C) or OVA-sensitized mice
(D–F) were fed 1% egg-white diets for two weeks, and mesenteric adipose tissue was stained for CD3 (Panels A,B, D, E; red signal) or osteopontin (C, F;
brown signal). Nuclei in A,B,D and E were stained blue with DAPI.
doi:10.1371/journal.pone.0013951.g002
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OVA-naı̈ve mice (Figure 2C). In contrast, the clusters of

apparent T-lymphocytes present in mesenteric adipose tissue of

OVA-fed, OVA-sensitized mice showed considerable reactivity

with anti- osteopontin-antibodies (Figure 2F). Thus, the apparent

accumulation of T-lymphocytes in mesenteric adipose tissue was

associated with increased expression of pro-inflammatory

osteopontin.

Increased inflammatory gene expression in mesenteric,
but not subcutaneous adipose tissue in OVA-sensitized
OVA-fed mice

To further investigate the potential contribution of T-lympho-

cyte responses to intestinally absorbed antigens in adipose tissue

inflammation, we fed OVA-naı̈ve or OVA-sensitized mice with

low- or high- fat diets containing 1% egg-white powder.

Mesenteric and inguinal adipose tissue samples were obtained

after two or ten weeks. As expected, osteopontin gene expression

increased significantly in mesenteric adipose tissue in mice on

high-fat diets. Differences were already apparent after two weeks.

However, osteopontin expression in subcutaneous fat was not

significantly affected by dietary fat content (Figure 4). These

observations are in line with the notion that visceral fat is more

readily inflamed in diet-induced obesity than subcutaneous fat

[4,5,6]. Strikingly, mice responding to the absorbed gut antigen

(OVA sensitized mice) showed even higher osteopontin gene

expression in their mesenteric fat. Similar results were observed

with interferon gamma, another Th1 cytokine implicated in

adipose tissue inflammation in diet-induced obesity [28], except

that the difference was no longer apparent after 10 weeks. This

could be due to the fact that the expression of FOXP3 (Forkhead

Box P3), a marker for regulatory T-lymphocytes, was upregulated.

This observation confirms that T-lymphocytes accumulate in

mesenteric fat (since FOXP3 is restricted to T-lymphocytes) and

indicates that mechanisms are mounted to suppress OVA-driven

inflammation.

Effect of antigen-driven inflammatory immune responses
in adipose tissue on bodyweight, adiposity, and glucose
tolerance

To test the physiological implications of apparent inflammatory

immune responses to gut antigens in adipose tissue, we sensitized

BALB/c mice with OVA plus alum or with alum only (control)

and fed them low or high-fat diets enriched with 1% OVA. Both

naı̈ve and sensitized mice (n = 6 per group) showed similar weight

Figure 3. CD4 T-cell accumulation in mesenteric adipose tissue of OVA-fed, OVA sensitized mice. Naı̈ve or OVA-sensitized C57Bl/6 mice
were fed 1% OVA-containing high-fat diets for 14 weeks and SVF cells from their mesenteric adipose tissue were analyzed by flow cytometry. Two
representative scatter plots are shown (A). The bar graph (B) shows the average percentage CD4 or CD8 T-lymphocytes 6 S.D. (n = 5 mice per group).
The asterisk (*) indicates statistically significant differences (P,0.05; Student’s T-test).
doi:10.1371/journal.pone.0013951.g003
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gain within their dietary treatment over the course of the

experiment, and total fat weight gain was similar at 2 and 10

weeks (Figure 5). However, glucose tolerance tests of mice on

OVA-containing high fat diets revealed that sensitized BALB/c

mice showed significantly impaired clearance of blood glucose

after 10 and 14 weeks (Figure 6B, C). In C57Bl/6 mice, glucose

tolerance tended to significantly differ after 14 weeks (Figure 6D).

The lack of significance in C57Bl/6 mice may be due to the fact

that blood glucose levels exceeded the detection ceiling of the test

during the first hour.

Figure 4. Inflammatory gene expression in mesenteric and subcutaneous fat in response to gut antigen. OVA-sensitized BALB/c mice
(black bars) or naı̈ve BALB/c mice (white bars) were fed 1% egg-white-containing low- or high- fat diets for 2 or 10 weeks, and expression of OPN,
IFNc and FOXP3 were measured in mesenteric and subcutaneous adipose tissue. Groups contained five to six mice, and were compared by two-way
ANOVA after log-transformation of the data. Groups not sharing the same letter were considered statistically significantly different by Bonferroni-
adjusted post-hoc tests.
doi:10.1371/journal.pone.0013951.g004
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Discussion

Mounting evidence indicates that T-lymphocytes are involved

in the early stages of visceral adipose tissue inflammation in diet-

induced obesity. However, it is still unclear why T-lymphocytes

are attracted. In this study, we provide evidence for a potential role

of antigenic material absorbed from the gut in T-lymphocyte

activation in visceral adipose tissue. First, we show that intestinal

absorption of dietary fat also stimulates the intestinal absorption of

a gut antigen, ovalbumin (OVA), into adipose tissue. Second, we

show that under conditions of lack of immunological tolerance to

such an antigen, mesenteric adipose tissue is a site of T-

lymphocyte dependent inflammation. Third, we show that

prolonged exposure to an antigenic insult from the gut can lead

to a loss of glucose tolerance, an important feature of metabolic

syndrome. Taking these observations into consideration, we

propose that T-lymphocyte activation in visceral adipose tissue

during diet-induced obesity could be, at least in part, a response to

influx of antigenic material absorbed from the gut.

Central adiposity is an important component of metabolic

syndrome. The problem with expanded visceral fat is that it is

frequently inflamed, and this can affect other tissues and lead to

deregulation of lipid and carbohydrate metabolism. A hallmark of

adipose tissue inflammation in diet-induced obesity is the

infiltration of macrophages [9,10]. However, more recent work

has shown that macrophage infiltration occurs relatively late in

diet-induced obesity, and is preceded by T-lymphocytes [11]. CD4

and CD8 T-lymphocytes have since been implicated in macro-

phage recruitment and in the regulation of the inflammatory

response in adipose tissue [12,13,14]. However, these studies still

do not explain why T-lymphocytes are attracted in the first place.

Since excess fat intake is a major cause of obesity in Western

societies, it has been suggested that excess free fatty acids can cause

adipose tissue inflammation through activation of innate immune

receptors [16,17]. However, high-fat diets fail to induce obesity

and the associated chronic inflammation in germfree mice

[19,20,29,30]. This prompted us to test whether antigen

absorption from the gut could elicit inflammatory immune

responses in visceral adipose tissue, and whether excess dietary

fat promotes such responses.

We and others have previously demonstrated that there is a link

between fat absorption and the absorption of bacterial LPS from

the gut [23,31,32]. Interestingly, systemic infusion of absorbed

amounts of LPS in mice was sufficient for diet-induced obesity and

metabolic syndrome, even when the mice were fed standard diets

[32]. We have observed that LPS absorption largely depends on

the formation of chylomicrons, and that these particles contain

most of the absorbed LPS [23]. Since chylomicrons transport

dietary fat to adipose tissue [24,25], these tissues are likely exposed

to considerable amount of LPS. We recently found that a protein

antigen, ovalbumin (OVA), is also increasingly absorbed during

chylomicron formation, and is also associated with these particles

[22]. This may explain why we observed that chylomicron

formation promoted the delivery of dietary OVA to adipose

tissues. Immunohistochemistry suggested that the antigen was

present in several cell types, including adipocytes and SVF cells,

with prominent staining in endothelial cells, which bind chylomi-

crons during lipolytic fatty acid transfer. The fact that chylomicron

formation promotes OVA absorption into adipose tissue suggests

that increased fat intake, which leads to increased postprandial

chylomicronemia, leads to increased antigen exposure of adipose

tissue.

The apparent absorption of an antigen and its uptake into

tissues does not necessarily mean that it will cause inflammatory

Figure 5. No significant effect of immune responses to gut
antigen on body weight or fat mass. Groups of naı̈ve or sensitized
BALB/c mice (n = 6 per group) were fed 1% OVA containing low- or
high- fat diets. Whereas mice on high-fat diets gained more weight than
mice on low-fat diets, there was no significant difference between naı̈ve
and sensitized mice within each diet group. LF = low-fat diet, HF =
high fat diet, N = naı̈ve, S = sensitized. (B) Weight gain of body fat (in
grams) of naı̈ve (white bars) or sensitized (black bars) mice (n = 6 per
group) on 1% OVA diets for 2 weeks (B) or 10 weeks (C). Bonferroni-
adjusted post-hoc tests following two-way ANOVA revealed statistically
significant differences between groups not sharing the same letter.
doi:10.1371/journal.pone.0013951.g005
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immune responses. In fact, naı̈ve mice typically develop oral

tolerance to absorbed antigens, which protects against allergic or

inflammatory responses [33]. Indeed, when we fed naı̈ve mice (i.e.,

mice that were injected intraperitoneally with OVA-free adjuvant)

with OVA-enriched diets, we did not observe T-lymphocyte

infiltration into adipose tissue even though antigen was present.

However, when we sensitized the mice before the feeding started,

we observed significant CD4 T-lymphocyte infiltration into the

tissue. This was associated with an antigen-specific increase in

inflammatory gene expression of mesenteric adipose tissue. In the

early stages of antigen feeding (2 weeks), the apparent inflamma-

tory responses in the adipose tissue did not significantly affect body

weight gain or adiposity, and did also not affect the clearance of

blood glucose. However, after 10 and 14 weeks, the mice displayed

a significant loss of glucose tolerance. The fact that it took so long

for glucose intolerance to occur could perhaps be due to the

concomitant increase in FOXP3 expression in adipose tissue,

which indicates that regulatory T-lymphocytes are present, likely

in an attempt to suppress inflammation.

Our model could be seen as a rather artificial situation, with an

antigen not known to affect obesity and metabolic syndrome and

with an artificially induced immunological sensitivity to the

antigen. Moreover, the mice were sensitized intraperitoneally,

which may have biased the response somehow to the viscera.

Nevertheless, we clearly observed that even OVA-naı̈ve mice

showed significant inflammation in mesenteric adipose tissue

during high-fat feeding, in contrast to subcutaneous adipose tissue,

which was refractive. We speculate that this difference is due to

increased exposure of mesenteric fat to antigenic material from the

gut. We believe that our work is novel in that it shows, for the first

time (as far as we know), that antigenic material can be absorbed

from the intestine into adipose tissue, and that high-fat diets and

such antigens mutually reinforce mesenteric adipose tissue

inflammation. Since our intestines contain large amounts of

microbial antigens with inflammatory potential, and since their

presence is required for high-fat diet-induced obesity and

metabolic syndrome [19,20,30], it is tempting to speculate that

such antigens can play a role in visceral adipose tissue

inflammation. Antigen absorption and systemic antigen dissemi-

nation certainly do not restrict the antigen to adipose tissue, even

when the antigen is associated with chylomicrons [22]. We

observed substantial antigen accumulation in other tissues, such as

the liver and skeletal muscle. When we looked at the liver, we

found that sensitized mice showed increased OPN expression

during OVA-feeding (unpublished observations). It is possible that

inappropriate responses to gut antigens (perhaps from the

microflora) have deleterious consequences for many physiological

processes.

In summary, we propose a novel mechanism for T-lymphocyte

dependent mesenteric adipose tissue inflammation in obesity:

High-fat diets promote intestinal absorption of gut antigens, and

the delivery of the antigens to adipose tissues, preferentially

visceral depots. This leads to early infiltration of T-lymphocytes

into the tissue. A pro-inflammatory milieu within the visceral fat,

Figure 6. Inflammatory immune responses to gut antigen in mesenteric adipose tissue impair glucose tolerance. OVA-sensitized (solid
lines and symbols) or naı̈ve (dashed lines, open symbols) mice were put on 1% OVA-containing high-fat diets for the indicated duration, and a
glucose tolerance test was then performed on fasted mice. Glucose clearance was significantly impaired in sensitized BALB/c mice after 10 and 14
weeks (linear mixed model test for identical trajectories) and trended to significantly decrease in C57Bl/6 mice after 14 weeks.
doi:10.1371/journal.pone.0013951.g006
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perhaps through increased free fatty acids, might increase the

risk for loss of tolerance to the antigens, favoring chronic

inflammation.
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