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Adult neurogenesis is widespread among metazoans, it occurs in animals with a network
nervous system, as cnidarians, and in animals with a complex and centralized brain,
such as mammals, non-mammalian vertebrates, ecdysozoans, and a lophotrochozoan,
Octopus vulgaris. Nevertheless, there are important differences among taxa, especially
in the number of the regions involved and in cell proliferation rate during the life-cycle.
The comparative evaluation of adult neurogenesis among different brain regions is
an arduous task to achieve with only stereological techniques. However, in Octopus
vulgaris we recently confirmed the presence of active proliferation in the learning-
memory centers, multisensory integration centers, and the motor centers of the adult
brain. Here, using a flow cytometry technique, we provide a method to quantify the
active proliferation in octopus nervous system using a BrdU in vitro administration
without exposing the animals to stress or painful injections usually used. This method is
in line with the current animal welfare regulations regarding cephalopods, and the flow
cytometry-based technique enabled us to measure adult neurogenesis more quickly and
reliably than histological techniques, with the additional advantage of processing multiple
samples in parallel. Flow cytometry is thus an appropriate technique for measuring and
comparing adult neurogenesis in animals that are in a different physiological and/or
environmental contexts. A BrdU immunoreactivity distribution, to define the neurogenic
areas, and the effective penetration in vitro of the BrdU is also provided.

Keywords: Octopus vulgaris, adult neurogenesis, lophotrochozoan brain, BrdU, flow cytometry

INTRODUCTION

Adult neurogenesis is a process consisting of proliferation, migration, and differentiation of
newborn cells, which then become functionally integrated into the existing neural circuitry of the
adult brain (Duan et al., 2008; Sun et al., 2011). It takes place in defined neurogenic zones which are
brain areas exhibiting a high degree of structural plasticity where proliferating neural progenitors
produce new cells throughout the entire life of the organisms (Grandel and Brand, 2013).

Abbreviations: ASW, artificial seawater; BrDU, bromodeoxyuridine; BSA, bovine serum albumin; FITC, fluorescein
isothiocyanate; G0, gap 0 phase of the cell cycle; G1, gap 1 phase of the cell cycle; G2, gap 2 phase of the cell cycle; -ir,
immunoreactivity; KLH, keyhole limpet hemocyanin; M, mitotic phase; OL, optic lobes; PBS, phosphate buffered saline;
PCNA, proliferating cell nuclear antigen; PI, propidium iodide; RPM, revolutions per minute; S, synthesis phase; SUB,
suboesophageal mass; SUP, supraesophageal mass.
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The adult neurogenic process is widespread among
metazoans, given that it occurs both in animals with a network
nervous system, for example cnidarians (Galliot et al., 2009),
and in animals with complex centralized brains: these include
humans and other mammals (Ninkovic et al., 2007; Bergmann
et al., 2015), non-mammalian vertebrates (Kaslin et al., 2008),
ecdysozoans (Cayre et al., 2002), and lophotrochozoans (Polese
et al., 2016; Bertapelle et al., 2017). However, there are important
differences in neurogenesis among taxa, particularly with respect
to the number of regions involved (Cayre et al., 2002; Lindsey
and Tropepe, 2006; Grandel and Brand, 2013) and the cell
proliferation rate during the life-cycle also (Lindsey and Tropepe,
2006; Amrein et al., 2011).

Adult neurogenesis goes on throughout life, although the
sophisticated balance of multiple factors, such as growth factors,
hormones, neurotransmitters, is altered by senescence (Klempin
and Kempermann, 2007; Couillard-Després et al., 2011). The
latter results in a reduced number of stem cells and cell precursors
(Hamilton et al., 2013), in a decrease of their proliferation rate
and in a compromised development of new neurons, which taken
together lead to a substantial decline in neurogenesis (Riddle
and Lichtenwalner, 2007; Couillard-Després et al., 2011; Capilla-
Gonzalez et al., 2015).

Considering the variation in lifespan and in time scales of
aging, it seems difficult to normalize adult neurogenesis across
taxa (Lindsey and Tropepe, 2006). Among mammals, short-
lived species are characterized by rapid senescence and a high
cell proliferation rate (Amrein et al., 2011). In contrast, long-
lived species demonstrate more gradual senescence and a slower
proliferation rate (Amrein et al., 2011; Hamilton et al., 2013).
The comparison of absolute age shows that both short- and
long-lived species are affected by an exponential decline in
proliferation, occurring mostly between young and middle age
(Barker et al., 2011). The areas implicated in adult neurogenesis
in the mammalian brain (Fuchs and Flügge, 2014) are the sub-
ventricular zone, from where neuroblasts migrate to the olfactory
bulbs, which are involved in olfactory memory formation,
odorant discrimination and social interactions (Ming and Song,
2011), and the sub-granular zone of the hippocampal dentate
gyri, which are implicated in learning and spatial memory (Ernst
and Frisén, 2015; Yau et al., 2015).

A different scenario occurs in non-mammalian vertebrates
such as birds, reptiles, amphibians, and teleosts, in whose brains
adult neurogenesis is more diffuse (Grandel and Brand, 2013) and
widespread, but is more pronounced in comparison to mammals
(Lindsey and Tropepe, 2006).

In the avian brain proliferating cells are located in the
ventricular zone of the forebrain (Alvarez-Buylla et al., 1990,
1992, 1998) and migrate to specific telencephalic sites (Grandel
and Brand, 2013).

In reptiles, adult neurogenesis contributes to the brain
enlargement observed with the age (Marchioro et al., 2005) and
takes place in several areas of the telencephalon. The nervous
systems of amphibians and teleosts are characterized by more
neurogenic compartments than is described in other vertebrates
(Raucci et al., 2006; Zupanc and Sîrbulescu, 2011; D’Amico
et al., 2013; Ganz and Brand, 2016). In zebrafish, neurogenic

compartments are distributed along the entire rostro-caudal
axis of the brain which ensures the availability of new neurons
throughout life to replace cells lost after injury (Kizil et al., 2012).

Studies on adult neurogenesis in invertebrates are few in
comparison to those in vertebrates (Lindsey and Tropepe, 2006).
The process has been investigated only in few taxa, such as
cnidarians (Galliot et al., 2009; Galliot and Quiquand, 2011),
ecdysozoans (Cayre et al., 2002; Dufour and Gadenne, 2006;
Schmidt and Derby, 2011; Fernández-Hernández et al., 2013;
Benton et al., 2014), and recently in the lophotrochozoan mollusc:
Octopus vulgaris among cephalopods (Bertapelle et al., 2017),
and Cipangopaludina chinensis among gastropods (Swart et al.,
2017). In cnidarians, which lack a centralized brain, proliferation,
migration and differentiation occur: the interstitial stem cells
of body column proliferate, providing progenitors for neurons
that migrate to the dense nerve nets located in apical and basal
regions, as described in Hydra polyps (Galliot and Quiquand,
2011).

In ecdysozoan taxa, the process is restricted to specific
compartments of the brain: mushroom bodies of insects and the
lateral-medial soma clusters of the crustacean olfactory pathway
(Schmidt and Harzsch, 1999; Cayre et al., 2000, 2007; Schmidt
and Derby, 2011). In the lophotrochozoan O. vulgaris, adult
neurogenesis is mainly located in specific lobes of the SUP
including the vertical frontal system, optic tract lobes and the OL
(Bertapelle et al., 2017). Interestingly, the neurogenic process in
adult O. vulgaris is affected by environmental stimuli (Bertapelle
et al., 2017).

The model of the neurogenesis emerging from adult insect
studies describes a persistent cluster of proliferating cells in the
mushroom bodies (Cayre et al., 2007). Newborn interneurons
push old cells to the outer layer of cortex, increasing cell density
(Cayre et al., 1997; Scotto-Lomassese et al., 2002), implying
a constant reorganization of neural circuits throughout life
(Cayre et al., 2002, Cayre et al., 2006, 2007; Malaterre et al.,
2002). A completely different model is found in the crustacean
brain, where proliferation occurs in cell niches located in two
different clusters of the integrative sensory areas (Sandeman
and Sandeman, 2000). Active proliferation again suggests that
the continual turnover of olfactory interneurons may be linked
to the turnover of olfactory circuits (Sullivan and Beltz, 2005).
The niche cell population appears not to be self-renewing and
some histological evidence suggests that cell precursors have a
hematopoietic origin, due to intimate connections of the niches
with the blood vessels (Benton et al., 2014; Hartenstein, 2014;
Chaves da Silva et al., 2015). To date, the few data about
neurogenic events in lophotrochozoans refer to regeneration
after injury as described in planarians (Cowles et al., 2013),
annelids (Meyer and Seaver, 2009), and gastropods (Matsuo et al.,
2012).

The occurrence of adult neurogenesis in cephalopods was
demonstrated in the brain of O. vulgaris in which cell
proliferation and synaptogenesis following intellectual, sensory
and motor stimulation (Bertapelle et al., 2017). The O. vulgaris
brain is located around the esophagus, in a cartilaginous
“cranium” between the eyes, and it consists in a supra-
oesophageal and sub-oesophageal masses connected to two OL,
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and it is characterized by a hierarchical organization (Young,
1971, 1977; Wells, 1978; De Lisa et al., 2012; Shomrat et al., 2015).
O. vulgaris has a short life cycle, unlike other molluscs, most
cephalopods “live fast and die young” (Powell and Cummins,
1985; O’Dor and Wells, 1978). O. vulgaris females live 1 year or
rarely 2, during which time they grow very fast and reproduce.
After mating, the female spawns and spends all its energies in
maternal care: it refrains from feeding and spends its whole
time in cleaning and ventilating the eggs, eventually dying of
starvation. The male mates several times during its life and may
live longer than the female (Di Cosmo and Polese, 2014; Polese
et al., 2015).

Here, for the first time in Lophotrochozoa, we quantify
adult neurogenesis in specific areas of the O. vulgaris brain,
using a flow cytometry techniques based on BrdU incorporation
(Taupin, 2007). BrdU is a synthetic nucleoside, analog of
thymine, incorporated into newly synthesized DNA during the
S-phase of the cell cycle (Nowakowski et al., 1989), and largely
used in proliferation assays (Kee et al., 2002) because it is
an excellent specific marker of neurogenesis. Using the same
specific marker, we performed a quantitative fluorescence-based
cytometry assay on dissociated cells from brain areas previously
identified as adult neurogenic sites by BrdU immunoreactivity
distribution. To perform the flow-cytometry assay we developed
a novel and appropriate protocol to dissociate octopus brain
specific neurogenic areas (Maselli et al., 2018). The choice of an
in vitro BrdU administration is to avoid any kind of stressful
manipulation that could interfere with the animal physiological
status affecting somehow neurogenic processes (Bertapelle et al.,
2017).

MATERIALS AND METHODS

Animals
Specimens of O. vulgaris [n = 7 (three male and four female),
weight 800–1000 g], collected from the wild in the Bay of Naples,
were maintained in aquarium tanks for 3 days (Polese et al.,
2014; Di Cosmo et al., 2015). All specimens were sexually mature
and before spawning. Our research conformed to the European
Directive 2010/63 EU L276, the Italian DL. 4/03/2014, n. 26 and

the ethical principles of Reduction, Refinement and Replacement
(protocol n. 0124283-08/11/2012 approved by the University
Ethical Committee and the Italian Ministry of Health). Octopuses
were euthanized by isoflurane overdose (Polese et al., 2014) and
brains were dissected in sterile conditions. No attempt was made
to induce neurogenesis in these specimens.

BrdU Immunohistochemistry
Dissected brains (n = 2: one male and one female) masses: central
brain SUP, SUB, and OL were exposed in vitro (Cayre et al.,
1996) to BrdU (Sigma–Aldrich, St. Louis, MO, United States)
(30 µg/ml) to a final concentration of 0.1 mM in cell culture
medium (Maselli et al., 2018) for 1 h in an incubator at
saturation humidity at 18◦C, then fixed in Bouin’s fluid for
24 h at room temperature, dehydrated in ethanol, cleared
in Bioclear and embedded in paraffin. Sections (7 µm) were
cut on a microtome and mounted on albumin-coated slides,
then cleared, rehydrated and incubated with HCl 1N for
30 min to allow DNA denaturation. After several rinses (4
for 10′ each in PBS), sections were incubated for 20 min
with 1% normal horse serum (Life Technologies, Carlsbad,
CA, United States) and then incubated in anti-BrdU (dilution
1:1000, clone BU-33, Cat# B8434, RRID:AB_476811, from
Sigma–Aldrich, St. Louis, MO, United States) at 4◦C overnight
in a humid chamber. After many washes in PBS (4 of 10′
each), sections were incubated with horse anti-mouse secondary
antibody biotin conjugated (dilution 1:200, from ThermoFisher
Scientific, Waltham, MA, United States), for 1 h at room
temperature, then rinsed in PBS (2 of 10′ each) and incubated
with streptavidin conjugated to horseradish peroxidase (dilution
1:200, from Life Technologies Carlsbad, CA, United States)
for 1 h at room temperature. 3% DAB (3.30-diaminobenzidine
tetrahydrochloride, Sigma–Aldrich, St. Louis, MO, United States)
with 0.03% hydrogen peroxide in Tris buffer (0.05 M, pH
7.6) was used as chromogen and sections were dehydrated
and mounted in Permount (ThermoFisher Scientific, Waltham,
MA, United States). In controls, sections from a brain of
octopus that had not received BrdU incorporation (n = 1
female) were treated for labeling with anti-BrdU as well. Using
imageJ software (version 1.48, National Institute of Health,

FIGURE 1 | Photomicrographs of Octopus vulgaris healthy neurons freshly dissociated from different brain areas before to perform flow cytometry assay: A – optic
lobe neurons; B – suboesophageal mass neurons; C – supraesophageal mass neurons (scale bar = 50 µm).
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FIGURE 2 | Diagram of BrdU immunoreactivity distribution on transversal section of O. vulgaris supra and suboesophageal masses (A), horizontal section of
O. vulgaris optic lobe and optic lobe tract (B). SUP, supraoesophageal mass; vl, vertical lobe; E, esophagus; SUB, suboesophageal mass; OL, optic lobe; OlfLs,
olfactory lobules; OG, optic gland; ped, peduncle lobe.

New York, NY, United States), the background signal detected
in negative controls was subtracted to evaluate the BrdU
positive cells. The BrdU-ir was detected using a Leica DM-RB
microscope.

Preparation of Samples for Flow
Cytometry
Dissected brains (n = 3: two males and one female) masses (SUP,
SUB, and OL) were exposed in vitro (Cayre et al., 1996) to BrdU
(Sigma–Aldrich, St. Louis, MO, United States) in cell culture
medium (Maselli et al., 2018) (30 µg/ml) to a final concentration
of 0.1 mM for 1 h in an incubator at saturation humidity at 18◦C.
Cells from a brain of octopus (n = 1 female) that had not received
BrdU incorporation were used as negative control.

Cell Dissociation
Suboesophageal mass, SUB, and OL were separately minced
with a scalpel, incubated with 1 mg/ml papain enzyme (Sigma–
Aldrich, St. Louis, MO, United States) in artificial sea water
(ASW) for 30 min at room temperature and then incubated with
1 mg/ml trypsin (Sigma–Aldrich, St. Louis, MO, United States)
in ASW for 20 min at room temperature. Samples were
extensively washed in Leibovitz-15 medium (ThermoFisher
Scientific, Waltham, MA, United States) to stop the enzyme
function and triturated with 1 ml and 0.200 ml pipette tips to yield
single cells until no cell cluster were visible (Maselli et al., 2018).
Dissociated cells were checked with an inverted microscope

(Figure 1), counted in a Burker chamber and centrifuged at 6× g,
fixed in cool 70% ethanol and stored at−20◦C.

Flow Cytometry
Cells were extensively washed and incubated with HCl 2N for
30 min, rinsed twice (10′) in phosphate/citrate buffer at pH 7.4
and incubate with anti-BrdU-FITC (10 µl of anti-BrdU-FITC
per 106 cells) (clone B44, Cat# 347583, RRID: AB_400327, from
Becton, Dickinson and Company BD Biosciences, San Jose, CA,
United States) in ASW and BSA 1% for 30 min, raised against
a iodouridine-conjugated ovalbumin, that recognizes 5-bromo-
2′deoxyuridin and iodouridine in single-stranded DNA. After
washes, the cells were stained with PI (10 µg/ml) in ASW Triton
0.1% with RNAse A (100 µg/ml). Flow cytometry was performed
using a BD Accuri C6 flow cytometer (Becton, Dickinson
and Company BD Biosciences, San Jose, CA, United States).
Doublets and cell aggregates were subtracted on the basis
of pulse shape (pulse peak vs. pulse area analysis) and by
applying the aggregation model in the cell cycle analysis
(Wersto et al., 2001). Bivariate analysis of BrdU content FITC
versus DNA content PI were performed using FlowJo software
(FlowJo LLC, Ashland, OR, United States). Experiments were
performed in triplicate. The background signal was based on
data collected from a brain that was not incorporated with
BrdU and gates were set manually by using control samples.
All data are reported as percentage ± standard deviation
(s.d.).
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FIGURE 3 | BrdU immunoreactivity on transversal section of O. vulgaris
central nervous system suboesophageal mass: A – palliovisceral lobe
showing several interneuron nuclei labeled; B – posterior pedal lobe with few
scattered immunopositive interneuron nuclei (scale bar = 50 µm).

RESULTS

Distribution of BrdU Immunoreactivity
BrdU immunoreactivity (-ir) was positively located in the
neuron nuclei of the specific lobes of the supra-esophageal
mass including the optic tract lobes and the OL, and in
the sub-esophageal mass (summarized in Figures 2, 3). This
results non-only confirm and straighten what was previously
found using just PCNA immunocytochemistry (Bertapelle
et al., 2017), but more over let us to discriminate between
neurons and glial cells since that the latter nuclei are
exclusively located in the neuropils of all lobes of the CNS
(Young, 1971) and never appear labeled with anti BrdU.
An example of BrdU-ir staining is shown in Figure 3. The
BrdU immunoreactivity in both specimens (one male and one
female) showed an overlapping distribution that is summarized
in the Table 1. In control sections, no specific labeling was
observed, as also on randomly picked sections from BrdU
treated brains where the primary antibody against BrdU was
substituted with plain PBS to control secondary unspecific
staining.

TABLE 1 | BrDU immunoreactivity distribution.

Brain regions Functions

Subesophageal mass

Brachial − Intermediate and lower motor centers: motor

Anterior pedal − coordination – control of movement and

Lateral pedal + visceral functions

Posterior pedal +

Palliovisceral +

Supraesophageal mass

Anterior basal − Higher motor centers:

Median basal − motor coordination – motor control

Dorsal basal +

Posterior buccal + Tactile discrimination – Predatory and

Superior buccal − exploratory behaviors –

Median inferior frontal + Nociceptive information

Subfrontal +

Lateral superior frontal + Cognitive centers: Learning – Memory storage

Median superior frontal + and consolidation – Elaboration of motor

Subvertical + program

Vertical +

Optic lobe

Outer granular layer − Memory storage – Integration and coordination

Inner granular layer − of sensory stimuli – Genesis of motor action

Medulla + pattern

Optic tract lobes

Olfactory lobes + Integration of olfactory stimuli – Endocrine

Peduncle + control of reproduction

Optic gland −

Presence (+)/Absence (−) of neurogenesis.

Flow-Cytometry/Bivariate Analysis
Bivariate analysis of BrdU content (FITC) versus DNA content
(PI) was performed in order to discriminate between cells
in G2/M or S-phase that incorporate BrdU during de novo
DNA synthesis, and cell doublets or cells that incorporate
BrdU for DNA repair. Furthermore, given the occurrence
of polyploidy in molluscan nervous systems (Matsuo et al.,
2012; Yamagishi et al., 2012), doublets and cell aggregates
were subtracted on the basis of pulse shape (pulse peak vs.
pulse area analysis) (van Oven and Aten, 1990) and the
bivariate analysis that allowed us to exclude G0/G1 cells
with DNA content higher than 2 n that overlaps the S/G2
peaks and are difficult to distinguish on the histogram of
DNA content analysis carried out with PI alone. Figure 4
shows an example of gating strategy performed on OL
neurons.

The proportion of BrdU positive cells (duplicating and self
DNA repairing) in the supraesophageal mass without OL is
11.98 ± 1.2%, showing a DNA content compatible with G1,
S, and G2 cell cycle phases. Double positive (BrdU and PI)
cells are 6.63 ± 0.75%, their DNA content is higher than 2N,
according to S and G2/M phase (Table 2). BrdU positive cells
in the OL and optic tract lobes are 13.0 ± 0.88%, showing a
DNA content compatible with G1, S, and G2 cell cycle phases.
Double positive (BrdU and PI) cells are 8.6 ± 1.03%, showing a
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FIGURE 4 | Example of the gating strategy for flow cytometry analysis. In this sample gating performed on OL neurons, cells were first gated for Propidium Iodide
staining, to exclude debris (FL2-A vs. FSC-A, see panels A and D) and then gated for singlets (FL2-H vs. FL2-A, see panels B and E), to exclude cell doublets. This
cell population was further analyzed for their uptake of BrdU versus DNA content (FL1-H vs. FL2A). Panels C and F show the gates used to evaluate the percentage
of cells in S and G2/M phase (stained with PI) and to measure the percentage of BrdU-positive cells (DNA content ranging between G1 and G2).

TABLE 2 | Percentage of BrdU+ and PI+ cells among brain areas.

Brain areas BrdU + cells
(%)

PI + cells (DNA
content > 2N) (%)

Supraesophageal
mass: central (SUP)
and lateral (OL/OTLs)

SUP
OL/OTLs

11.98 ± 1.2
13.0 ± 0.88

6.63 ± 0.75
8.6 ± 1.03

Subaesophageal mass SUB 15.5 ± 2.55 8.35 ± 0.75

DNA content higher than 2N, compared with S and G2/M phases
(Table 2). BrdU positive cells in the SUB make up 15.5 ± 2.55%
of the cells, showing a DNA content compatible with G1, S,
and G2 cell cycle phases. Double positive (BrdU and PI) cells
make up 8.35 ± 0.75%, showing a DNA content higher than 2N,
according to S and G2/M phases. In Figure 5 it is shown the
percentage of PI positive and PI-BrdU double positive neurons
within the three different cell cycle phases in each brain areas
considered.

DISCUSSION

Besides confirming adult neurogenesis in the lophotrochozoan
clade, this study has quantified the extent of active cell
proliferation in the brain of adult O. vulgaris using a flow
cytometry assay. Given its complex nervous system, which
is comparable to mammalian and insect brains (Katz, 2016),

octopus becomes the most suitable candidate to study adult
neurogenesis among lophotrochozoans (Bertapelle et al.,
2017). The functional role of adult neurogenesis is not fully
understood, however, it is indisputably involved in higher
cognitive capabilities (Kempermann, 2002; Cameron and
Christie, 2007; Braun and Jessberger, 2014), processing of
sensory information (Nissant et al., 2009; Breton-Provencher
and Saghatelyan, 2012; Cheetham et al., 2016) and thus
to improve adaptation to environmental changes (Glasper
et al., 2012; Opendak and Gould, 2015; Liscovitch-Brauer
et al., 2017), features extensively exhibited by O. vulgaris
(Bertapelle et al., 2017). Going beyond our previous data
obtained with PCNA (Bertapelle et al., 2017) here, we
used a more reliable marker of cell proliferation, the
BrdU, in both immunocytochemistry analysis and in flow
cytometry assay, the latter for a rapid quantification of adult
neurogenesis.

To carry out this research we developed an appropriate
cell dissociation protocol for the octopus brain (Maselli
et al., 2018) and applied it to specific neurogenic sites. This
allowed us to assess the magnitude of the adult neurogenic
event in octopus by the flow-cytometry assay based on a
bivariate analysis of incorporated BrdU versus DNA content in
neurons.

The bivariate analysis using PI and conjugated anti-BrdU
FITC allowed us to discriminate proliferating cells from non-
proliferating cells (Kim and Sederstrom, 2015).
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FIGURE 5 | Percentage of PI positive (white) and PI-BrdU double positive (gray) neurons within the three different cell cycle phases in each brain areas considered.

Furthermore, aneuploid and tetraploid neurons in G0/G1
with DNA content >2N were excluded from cell cycle analysis
since they were unable to incorporate BrdU in a fast pulse
administration (Figure 5).

The advantage of this assay results in a faster and
more accurate quantitative analysis if compared with the
counting of BrdU-ir cells performed at microscope level
(Bilsland et al., 2006; Spoelgen et al., 2011). The BrdU
immunocytochemistry analysis though, still retain its essential
function in localizing the proliferating cells labeling the
neurogenic areas. Furthermore, in octopus, where it is well
known the anatomical distribution of neurons and glial cells,
the BrdU immunocytochemistry is fundamental to discriminate
between them given that the latter are exclusively located
in the neuropils of all lobes of the CNS (Young, 1971). At
last, the combination of both immunocytochemistry analysis
and flow cytometry assay resulted absolutely necessary to
give an accurate characterization of adult neurogenesis in
O. vulgaris.

The effective proliferating neurons detected in different
O. vulgaris brain areas revile that neurogenic events appear in a
comparable measure in both cognitive centers and motor centers
(Table 2) (Bertapelle et al., 2017).

Tracing a parallel between O. vulgaris and mammals we
observed that the effective proliferating cells detected in
octopus supraesophageal mass are mainly located in the vertical
frontal system, basal and buccal lobes considered analogous
to mammalian hippocampus (Young, 1991) in which adult
neurogenesis occurs (Zhang et al., 2015).

In SUB, the lobes that appear to be BrdU-ir (Table 1)
with a discrete percentage of effective proliferating cells
(Table 2) are the pedal and palliovisceral lobes that are
the intermediate motor centers in charge of controlling and
modulating the lower motor centers that supply the muscle
directly (Wells, 1978; Boycott, 1961). In spite of this the
occurrence of adult neurogenesis in the SUB, that are considered
as equivalent to the vertebrate spinal cord (Boycott and
Young, 1950), could be related to a potential mechanism
of response to a novel stimulus and for habituation to

repeated mechanosensory exposures (Shechter et al., 2011).
Furthermore, in mammals, comparative analysis conducted on
different species revealed that short-lived species had more
extensive hippocampal proliferation than long-lived species
(Amrein and Lipp, 2009; Amrein et al., 2011). The fast
life cycle of O. vulgaris (Hanlon and Messenger, 1998;
Anderson et al., 2002) may be comparable to short lived
mammalian species allowing us to interpret the adult neurogenic
events of octopus brain as required features necessary to
enhance the plasticity needed to face changing environmental
challenges.

Thus, avoiding any undesired effect due to the classical
stressful BrdU injection, our experimental approach results
appropriate for further study on O. vulgaris aimed to evaluate the
effects of varied physiological and/or environmental contexts on
adult neurogenesis.
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