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Signaling between neurons in the human central nervous system (CNS) is accomplished 
through a highly interconnected network of presynaptic and postsynaptic elements 
essential in the conveyance of electrical and neurochemical information. One recently 
characterized core postsynaptic element essential to the efficient operation of this com-
plex network is a relatively abundant ~184.7 kDa proline-rich synapse-associated cyto-
skeletal protein known as Shank3 (SH3-ankyrin repeat domain; encoded at human chr 
22q13.33). In this “Perspectives” article, we review and comment on current advances 
in Shank3 research and include some original data that show common Shank3 deficits 
in a number of seemingly unrelated human neurological disorders that include spo-
radic Alzheimer’s disease (AD), autism spectrum disorder (ASD), bipolar disorder (BD), 
Phelan–McDermid syndrome (PMS; 22q13.3 deletion syndrome), and schizophrenia 
(SZ). Shank3 was also found to be downregulated in the CNS of the transgenic AD 
(TgAD) 5x familial Alzheimer’s disease murine model engineered to overexpress the 42 
amino acid amyloid-beta (Aβ42) peptide. Interestingly, the application of known pro-in-
flammatory stressors, such as the Aβ42 peptide and the metal-neurotoxin aluminum 
sulfate, to human neuronal–glial cells in primary culture resulted in a significant decrease 
in the expression of Shank3. These data indicate that deficits in Shank3-expression 
may be one common denominator linking a wide-range of human neurological disorders 
that exhibit a progressive or developmental synaptic disorganization that is temporally 
associated with cognitive decline.

Keywords: 5x familial Alzheimer’s disease transgenic mice, 42 amino acid amyloid-beta peptides, aluminum 
sulfate, Alzheimer’s disease, autism spectrum disorder, bipolar disorder-schizophrenia, neurotransmission, 
shank3 protein

shank3—AN esseNtiAL POstsYNAPtic scAFFOLDiNG 
PrOteiN

A small gene family of proline-enriched synapse-associated “SH3 and multiple ankyrin repeat 
domain” proteins known as Shank1, Shank2, and Shank3 encode abundant postsynaptic scaffold-
ing proteins highly enriched at glutamatergic synapses in the human and murine central nervous 

Abbreviations: 5xFAD, 5x familial Alzheimer’s disease (a TgAD model carrying 2 PSEN1 and 3βAPP mutations; see text); 
AD, Alzheimer’s disease; ASD, autism spectrum disorder; BD, bipolar disorder; mGlu5 miRNA, microRNA; PMS, Phelan–
McDermid syndrome (22q13.3 deletion syndrome); SZ, schizophrenia.
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system (CNS) (1–5). All three Shank genes have alternative 
promoter options and complex intron/exon arrangements 
resulting in the generation of a complex array of mRNA tran-
scripts and protein isoforms. For example, Shank3 (also known 
as ProSAP2), the best studied of the three Shank proteins, is 
encoded at mouse chromosome 15E3 (analogous to human 
chr 22q13.3), spans ~60 kb of genomic DNA, has 22 exons and 
multiple intragenic promoters and several alternative splicing 
exons, and is highly expressed in CNS neurons (1, 2, 4, 6). As 
part of this small Shank gene family, the neuronal-enriched, 
multi-domain integral scaffolding protein Shank3 functions:  
(i) to organize and interconnect multiple postsynaptic-membrane 
proteins, ionic-channel and neurotransmitter receptors to the  
β-actin-enriched microfilament cytoskeletal-system; (ii) to regu late 
synaptic development, function, and plasticity by orchestrating 
the assembly of postsynaptic-signaling complexes, maintain-
ing dendritic spine and synaptic architecture and supporting 
G-protein-coupled signaling-pathways (1–3, 5, 7). To add to 
this complexity, Shank3 gene expression appears to be regulated 
by epigenetic mechanisms that include DNA methylation, 
histone acetylation, and posttranscriptional regulators involv-
ing microRNA activities, thus contributing to the temporal 
and tissue-specific expression of different Shank3 isoforms  
(8, 9). Different Shank3 protein isoforms are alternately expressed 
according to brain region, cell type, and developmental stage; for 
example, (i) all five major Shank3 isoforms (Shank 3A-3E) are 
highly abundant in mouse hippocampal neurons throughout 
development and aging (1–3, 7); (ii) full length human Shank3 
(1,731 amino acids; 184,667 Da) contains six highly interactive 
domains in tandem conducive to engagement in multiple pro-
tein–protein interactions at the postsynaptic density (PSD) (1–4); 
(iii) posttranscriptional regulation of Shank3 expression may be 
mediated by microRNAs, such as miRNA-34a, that itself has 
been implicated in multiple neuropsychiatric disorders involving 
synaptic disruption (8–11); and (iv) Shank3 possesses a remark-
ably complex interactome, conducive to Shank3’s role as a master 
organizer of a highly interconnected synaptic and cytoskeletal 
network (12–17). This involves the 4–7  nm diameter β-actin 
microfilaments, the major cytoskeletal protein found in the PSD, 
and the 10 nm diameter intermediate filaments within the soma, 
neurites, and synapses of neuronal cells (1–4, 6, 11, 14, 18, 19).

ALZHeiMer’s DiseAse (AD), AutisM 
sPectruM DisOrDer (AsD), BiPOLAr 
DisOrDer (BD), PHeLAN–McDerMiD 
sYNDrOMe (PMs), and scHiZOPHreNiA 
(sZ)—shank3-MeDiAteD sYNAPtic 
DeGeNerAtiON AND cOGNitive 
DisABiLitY

As forementioned alternate Shank3 protein isoforms are differen-
tially expressed according to developmental stage, cell type, and 
course of aging, suggesting the existence of isoform-specific roles 
for Shank3 at varying subcellular localizations, along different CNS 
neurites and synaptic endings at different stages of development 

and disease. Shank3 mutations that include gene breakpoints, 
deletions, point mutations, missense mutations, microdeletions, 
and nonsense mutations are associated with moderate to severe 
intellectual disabilities (2–7). AD with an incidence of one in 
seven people at age of 65–74 years and one in three people at age 
of 85 years and older, and the most common cause of intellectual 
decline associated with aging, is characterized by neuronal cell 
atrophy, swelling of neuronal nuclei, synaptic atrophy and loss, 
inflammatory neurodegeneration, progressive memory impair-
ment, and a devastating cognitive decline (20–24). In AD brain 
tissues, in parallel, occurs the appearance of the 42 amino acid 
amyloid-beta (Aβ42) peptide-containing extracellular lesions, 
and although controversial, the accumulation of metallic neu-
rotoxins such as aluminum (23–27). Shank3 was found to be 
reduced to ~0.25-fold of controls in AD neocortex (Figure 1). 
Shank3 gene mutations were first implicated (i) in ASD, a devel-
opmental disorder involving the disruption of social skills, speech 
and nonverbal communication, repetitive behaviors, and cogni-
tive disabilities characterized pathologically by disordered gray 
and white matter, consistent changes in the densities of dendritic 
spines, region-specific abnormalities in neuronal morphology and 
cytoarchitectural organization, impairment in synaptic plasticity 
and progressive synaptic disorganization (28–30); (ii) in PMS, a 
developmental disorder that is caused by a 22q13.3 deletion and is 
characterized by ASD-like behavior, hypotonia, delayed or absent 
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FiGure 1 | Continued  
The abundance of the ~184.7 kDa Shank3 protein is decreased in 
synaptosome preparations from multiple human neurological disorders; 
 (A) Shank3 protein levels are reduced in age- and gender-matched (all 
female) human brain temporal lobe neocortex from sporadic Alzheimer’s 
disease (AD) patients (control and AD; upper panel) when compared with 
control β-actin signals in the same sample [mean age ± 1 SD; control mean 
age 75 ± 8.3 years, N = 6; AD mean age 77 ± 6.5 years, N = 3]; all 
postmortem intervals (PMI; interval of death-to brain-freezing at −81°C) were 
3 h or less; β-actin antibody 3598-100; Sigma-Aldrich, St. Louis, MO, USA 
and human Shank3 monoclonal antibody (C-4; sc-10479: H-75; sc-377088; 
Santa Cruz Biotechnologies, Santa Cruz, CA, USA; the main band at 
~184.7 kDa is Shank3 protein); (B) similarly the levels of Shank3 protein are 
reduced in murine brain cortex from 7-month-old 5x familial Alzheimer’s 
disease (5xFAD) transgenic animals versus wild-type C57BL/6 age-matched 
controls; wild-type (Wt) and TgAD (5xFAD) murine models compared with 
β-actin signals in the same sample, as demonstrated by representative 
Western blot analysis using methods previously described in detail by our 
laboratory and as suggested by the manufacturer (11, 36, 37); modulation of 
actin dynamics at the synapse is likely to drive the cytoarchitectural changes 
that are associated with synaptic plasticity; in panels (A,B) multiple bands for 
Shank3 protein on Western gels may be indicative of alternate translation 
products from differentially spliced Shank3 mRNAs and/or amino acid 
side-chain modification [(1–5, 7); see text]; (c) bar graphs representative of 
Shank3 protein levels in age- and gender-matched (all female) human brain 
temporal lobe neocortex in control, AD, autism spectrum disorder (ASD), 
bipolar disorder (BD), Phelan–McDermid syndrome (PMS) (22q13.3 deletion 
syndrome), and schizophrenia (SZ) using Western blot analysis of 
synaptosome-enriched fractions [prepared using differential gradient 
centrifugation (12, 38–40)]; for control and AD, mean age ± 1 SD is given 
above; for all six tissue types PMIs were 3 h or less; ASD, BD, PMS, or SZ 
cases each had their own individual age-matched controls set to 1.0 in panel 
(c); there were no significant differences in age between ASD, BD, PMS, or 
SZ cases and their individual controls; mean ages for ASD, BD, PMS, and SZ 
cases were 7.2 ± 2.7, 41.1 ± 7.1, 38.4 ± 6.8, and 44.3 ± 6.5 years, 
respectively; in these neurological disorders, Shank3 protein abundance was 
observed to be reduced from 0.21-fold (SZ) to 0.42-fold (ASD) of controls; 
(D) Shank3 protein abundance is similarly reduced to approximately 0.2-fold 
of control in the cortex of 7-month-old 5xFAD TgAD models; N = 3–6 
samples of each neurological deficit or control; a dashed horizontal line at 1.0 
has been included for ease of comparison; bars are the mean ± 1 SD of that 
mean; *p < 0.01 (ANOVA).

FiGure 2 | Shank3 downregulation in 42 amino acid amyloid-beta (Aβ42) 
peptide- or aluminum sulfate [Al2(SO4)3]-stressed human neuronal–glial (HNG) 
cells in primary coculture; (A) 2-week-old HNG cocultures (approximately 
60% neurons and 40% astroglia) stained with the neuron-specific marker β 
tubulin 3 (red signal; λmax ~680 nm) or the astroglial-specific marker GFAP 
(green signal; λmax ~550 nm); HNG nuclei have been also stained with DAPI 
(blue; λmax ~430 nm); culture of HNG cells has been previously described in 
detail by our laboratory (19, 41, 42); human brain neurons do not culture well 
without the presence of astroglial cells; magnification 40×; HNG cocultures 
were incubated with Aβ42 peptide (0, 50, 100, or 150 nM for 36 h) or 
ultrapure aluminum sulfate [Al2(SO4)3; 0, 50, 100 or 150 nM for 36 h]; these 
concentrations of stressors and times were selected from previous reports of 
Aβ42 peptide- and aluminum sulfate-induced inflammatory 
neurodegeneration and other relevant reports on neurotoxicity toward HNG 
cells, human brain microvessel endothelial cells that line the cerebral 
vasculature and other brain cell types (25–27, 36, 42–47); methodologies 
involving the application of Aβ42 peptide- or aluminum sulfate as 
physiologically realistic stressors to HNG cells in primary coculture have been 
explained in detail in previously published reports from our laboratory (11, 36, 
42, 45–47); HNG whole-cell protein extracts were prepared, and Shank3 
abundance was quantified using Western analysis and ImageQuant as 
described in Figures 1A,B (10, 36, 37, 43); (B) results are quantified in 
bar-graph format; at 100 nM Aβ42 peptide- or aluminum sulfate-treatment 
Shank3 levels were reduced between 0.2- and 0.3-fold of untreated control 
values; N = 3–5 samples of each treatment or condition; in Figure 2B, a 
dashed horizontal line at 1.0 has been included for ease of comparison; bars 
represent the mean ± 1 SD; *p < 0.01; **p < 0.05 (ANOVA).
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speech, intellectual disability, and cognitive impairment (28, 29, 
31). Interestingly, patients with Shank3 mutations appear to have 
more-severe cognitive deficits than those with Shank1 or Shank2 
mutations, and suggest that Shank3 mutation screening in clinical 
practice, and perhaps the restoration of the Shank3 gene activity 
may selectively rescue pathogenic synaptic defects of some ASD-
associated behavioral phenotypes (7, 28, 29). Similar attributes 
in BD and SZ involving malformations in neuronal morphology, 
abnormalities in cytoarchitectural organization, impairment in 
synaptic plasticity and synaptic disorganization, impairment or 
insufficiency in a large portfolio of synaptic adhesion/organizing 
molecules, and cognitive disability are widely reported, and 
three extremely comprehensive studies have recently appeared 
(32–34). Also very recently, genetic- and bioinformatics-based 
analysis of brain region-specific Shank3 interactomes has been 
generated, which may be useful for understanding the hetero-
geneity of neuronal pathophysiology related to Shank3 genetic 
mutations and alternate Shank3 isoforms (12–15, 33–35). Here, 
we report the common downregulation in the expression of 

Shank3 in sporadic AD, ASD, BD, PMS, and SZ in 7-month-old 
5x familial Alzheimer’s disease (5xFAD) transgenic animals 
exhibiting extensive amyloid deposition, compared with age-
matched controls and in stressed human neuronal–glial (HNG) 
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cell cocultures (see below; Figures  1 and 2). Ongoing work is 
currently in progress to further compare other neurological 
diseases involving progressive synaptic disorganization and 
intellectual disability, including attention deficit hyperactivity 
disorder, epilepsy, prion disease and others for Shank3 deficits, 
and how different “loss-of-function” mutations or altered Shank3 
expression can lead to such phenotypic diversity.

Aβ42 PePtiDe Or ALuMiNuM suLFAte 
[Al2(sO4)3] DOWNreGuLAte shank3 
eXPressiON

The 42 amino acid amyloid-beta peptide and aluminum (sulfate) 
were chosen as highly relevant pathogenic neurological stressors 
for the experimental treatment of HNG cells and assessment of 
Shank3 expression for the following reasons (see also Figure 2). 
First, the highly amyloidogenic Aβ42 peptides are one of the 
two key molecular lesions associated with AD (the other being 
and hyperphosphorylated tau), and multiple transgenic murine 
models for AD (TgAD) and involving massive amyloid over-
expression have been generated (23, 24). The 5xFAD murine 
TgAD model containing five familial AD mutations; including 
three amyloid mutations and two presenilin 1 (PSEN1) muta-
tions [APP KM670/671NL (Swedish), APP I716V (Florida), APP 
V717I (London), PSEN1 M146L (A>C), and PSEN1 L286V] 
exhibit substantial Aβ42 peptide generation, amyloid plaque 
deposition, astrogliosis, and cognitive impairment by 7 months 
of age and also exhibit deficits in Shank3 at this time point [(25); 
Figure 1].

Aluminum is a ubiquitous metallic neurotoxin and extremely 
potent genotoxin (25–27). Human intake of an average of 
10  mg Al/day (range 10–1,000  mg Al/day) occurs chiefly via 
the ingestion of drinking water, food, medicine, and inhalation 
of airborne dust (43, 44, 48). Fortunately, the low solubility of 
aluminum at biological pH and highly evolved endothelial- and 
epithelial cell-based gastrointestinal and blood–brain barriers 
prevent this potent and ubiquitous metallotoxin from easy 
access to human biological compartments. However, aluminum 
that does gain entry into the CNS in animal models has been 
shown to induce NF-κB and specific microRNA-mediated 
inflammatory and neuro-immune pathogenic gene expression 
programs that closely emulate many aspects of CNS pathol-
ogy and progressive memory dysfunction, including synaptic 
disorganization, as seen in advanced late stage AD brain (43, 44, 
48). Our laboratory and others, for example, have further shown  
(i) the aluminum-mediated downregulation of several key 
brain essential genes in multiple neurodegenerative disorders 
by a pro-inflammatory NF-κB-regulated microRNA-146a (27, 
36, 43, 45, 46, 48); (ii) a robust upregulation of microRNA-34a 
expression by reactive oxygen species and NF-κB increases 
in the presence of aluminum sulfate in HNG cocultures that 
decreases the expression of Shank3 [see Figure 2; (36, 46)]. We 
speculate that this may contribute to altered neurotransmission 
in multiple neuropsychiatric disorders [(25–27); unpublished 
observations]. The Shank3 downregulation in Aβ42 peptide- 
or aluminum sulfate-stressed HNG cells in primary culture  

(at concentrations of 0, 50, 100, or 150 nM for 36 h) is shown in 
Figure 2. Altered neurotransmission and synaptic dysfunction 
in the presence of amyloid peptides or neurotoxic metal salts are 
widely documented in very recent reviews in this subject area 
(25–27, 31, 41, 43, 44, 48–50).

cONcLuDiNG reMArKs

Multifactorial diseases that include sporadic AD, ASD, BD, PMS, 
and SZ exhibit considerable heterogeneity in their presentation, 
and on the surface appear to exhibit more neuropathological vari-
ability than commonality. However, current research has advanced 
our understanding of the dynamics of the postsynaptic multi-
domain proline-rich synapse-associated Shank3 protein and, 
perhaps surprisingly, has revealed a common Shank3-mediated 
“generic” disruption of synaptic organization in each of these 
neurological disorders. Interestingly, in neurological diseases 
involving synaptic disruption and cognitive decline, not all synap-
tic proteins appear to be equally affected. For example, the PSD-, 
β-actin-, and Shank3-associated scaffolding protein Homer 1 is 
decreased in AD but not in SZ brains [unpublished observations; 
(35)], and the relatively abundant PSD-95-associated DLGAP 
scaffold protein subtype DLGAP4 is significantly decreased in 
SZ but not in BD (15). Recently published studies including our 
own provides at least five novel and significant findings: (i) that 
the essential scaffolding protein Shank3 appears to be commonly 
and significantly reduced in synaptosomal preparations of brain 
tissues obtained from AD, ASD, BD, PMS, and SZ patients  
(2, 6–8, 37); (ii) that in the 5xFAD amyloid-overexpressing TgAD 
model [bearing the APP KM670/671NL (Swedish), APP I716V 
(Florida), APP V717I (London), PSEN1 M146L (A>C), and 
PSEN1 L286V mutations], the accumulation of Aβ42 peptides in 
the brain appears to be accompanied by reduced bioavailability of 
Shank3 (Figures 1 and 2); (iii) that research implicating Shank3 
as an essential postsynaptic cytoskeletal organizing protein infers 
that the presence of Aβ42 peptides driving Shank3 downregula-
tion would also be disruptive toward normal synaptic structure 
and signaling capabilities (12–17); (iv) that deficits in Shank3 
abundance can be induced in HNG cells in primary coculture 
from the peripheral application of AD-relevant stressor sub-
stances, at physiologically realistic concentrations, that include 
Aβ42 peptides or environmentally abundant neurotoxins such 
as aluminum sulfate (42–44, 48); and (v) that Aβ42 peptide, 
aluminum sulfate, and perhaps other related intrinsic or 
environmental neurotoxins via depletion of essential synaptic 
proteins such as Shank3 can be detrimental to the homeostatic 
maintenance of synaptic structure, function, and plasticity, and 
may be conducive to a phenotype involving progressive cognitive 
insufficiency (42–44, 47, 48, 51).

Importantly, these experimental interpretations should 
remain be somewhat speculative as they are derived from pre-
liminary studies, and more research is required to further clarify 
the significance of Shank3 deficits in other neurological disorders 
and experimental models. Whether Shank3 downregulation is a 
direct cause or consequence of these neurological disorders, or an 
unrelated epiphenomenon remains open to question. However, 
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several recent studies of Shank3’s extensive and remarkably diverse 
interactome further underscore the idea that this highly intercon-
nected synaptic protein is a “master cytoskeletal hub” within the 
PSD network. This further suggests that Shank3 disruption or 
deficiency could contribute to multiple neurological disorders 
associated with: (i) altered neurogenesis and disrupted expres-
sion of synaptic proteins that affect synaptic organization and 
plasticity; (ii) altered activation of cell adhesion molecules such as 
integrin; (iii) developmental and morphogenetic abnormalities; 
(iv) changes in biometal abundances and transporters such as 
those for zinc; (v) alterations in G protein-coupled metabotropic 
glutamate receptor 5 (mGluR5)-Homer scaffolds and mGlu5 
receptors; and (vi) peripheral aberrations such as abnormally 
heightened sensitivity to pain in diseases associated with Shank3 
deficits or in Shank3 animal models (12–17, 47, 51–61). From 
these most recent findings, we may further speculate (i) that defi-
cits in Shank3 expression and synaptic structural disorganization 
represent a common underlying mechanism for neurological dis-
orders, which exhibit abnormal synaptic dynamics and a neuro-
degenerative phenotype; (ii) predict that detectable alterations in 
Shank3 gene structure and/or alternate Shank3 mRNA isoforms 
screened in utero or in newborns may be diagnostic for the onset 
of neurological disorders such as AD, ASD, BD, PMS, and SZ 
in later life; and (iii) propose that pharmacological approaches 
including anti-microRNA strategies directed toward the manipu-
lation of Shank3 and/or related synaptic protein expression may 
be useful in the clinical management of multiple neuropsychiatric 
disorders, which exhibit an underlying commonality in intellec-
tual disability and/or progressive cognitive decline.
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